ARCHIMEDEAN CLOSURES IN
LATTICE-ORDERED GROUPS

RICHARD D. BYRD

1. Introduction. Conrad (10) and Wolfenstein (15; 16) have introduced the
notion of an archimedean extension (a-extension) of a lattice-ordered group
(I-group). In this note the class 4 of I-groups that possessa plenary subset of
regular subgroups which are normal in the convex l-subgroups that cover them
are studied. It is shown in § 3 (Corollary 3.4) that the class .4 is closed with
respect to a-extensions and (Corollary 3.7) that each member of the class A
has an a-closure. This extends (6, p. 324, Corollary II; 10, Theorems 3.2
and 4.2; 15, Theorem 1) and gives a partial answer to (10, p. 159, Question 1).
The key to proving both of these results is Theorem 3.3, which asserts that if a
regular subgroup is normal in the convex l-subgroup that covers it, then this
property is preserved by a-extensions.

Theorem 4.1 of § 4 generalizes (8, Theorem 6.3) and (14, Theorem 6.2) by
showing that the only members of A4 which are topological groups in their
interval topology are the totally ordered groups (o-groups).

My thanks are due to my advisor, Professor Paul F. Conrad.

2. Preliminaries. In this section, some definitions and notation are given.
Throughout this note G will denote an /-group. The reader is referred to (1; 12)
for the standard results concerning /-groups.

A convex I-subgroup that is maximal with respect to not containing some g
in G is called a regular subgroup. Let T'(G) be an index set for the collection of
all regular subgroups G, of G. For each v € T'(G) there exists a unique convex
l-subgroup G” of G that covers G,. If g belongs to G but not G,, then y (or Gy)
is said to be a value of g. A regular subgroup G, is called special if there exists
an element g in G such that G, is the unique value of g. If this is the case, then g
is also called special. For v, A € T(G) we define v = X if G, C G). With this
order, I'(G) is a root system (9, Theorem 3.3), that is, a partially ordered set in
which no two incomparable elements have a common lower bound. A subset A
of T'(G) is said to be plenary if

(i) each 0 5% g in G has at least one value in A;
(ii) if g ¢ Gs (6 € A), then there exists A = § (A € A) such that X is a value
for g.
A, will denote the set of all values of g which are members of A.
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If g and /% are positive elements in an l-group H such thatg < nhand & < mg
for some positive integers m and #, then g and & are said to be a-equivalent.
H is said to be an a-extension of an I-subgroup G of H if for each 0 < h € H
there exists 0 < g € G such that g and % are a-equivalent. G is said to be
a-closed if there does not exist a proper a-extension of G. An a-extension of G
which is itself a-closed is called an a-closure of G.

Let G be an l-subgroup of an I-group H and let € (G) (% (H)) denote the
lattice of convex /-subgroups of G (H). We define a mapping ¢ from % (G) into
% (H) by

Mo = N{J € CH): MC T} (M € Z(G)).

Then ¢ is a lattice isomorphism of % (G) onto ¥ (H) if and only if H is an
a-extension of G (10, Theorem 2.1). If this is the case, then
Joet=JNG J € ¥H)).

Suppose that H is an a-extension of G and for v € T'(G) let G,o0 = H, and let
GYe = H. 1t was shown (10, p. 137) that {H,: v € T'(G)} is the collection of
all regular subgroups of H, and hence the same index set may be chosen for the
regular subgroups of G and H. In particular, ¢ maps a plenary subset onto a
plenary subset.

Let A be a root system and for each X\ in A let Ry be a subgroup of the
naturally ordered additive group of real numbers. Let II denote the un-
restricted direct sum of the R\’'sand forv = (..., 5, ...) € II, let

S, = (N € A: vy 5= 0}.

Let V(A,R)) = {v € II: S, satisfies the maximum condition}. Forvin V (A, Ry),
let A, = {N € Spiv, =0 for all @« > N\}. If A € A,, then \ is said to be a
maximal component of v. Thenv € V(A, R)) is defined to be positive if v, > 0 for
each A € A,. With this order, V' (A, R)) is an abelian /-group (11, Theorems 2.1
and 2.2). The main embedding theorem in (11) asserts that every abelian /-group
can be embedded as an /-subgroup in an /-group of this form. For each A € A
let V) = {v € V(A, R\): v, = 0 for all @ = A}. Then it is shown in (11) that
Vy is a regular subgroup of V(4A, R)), A is a plenary subset of T'(V (A, Ry)),
and if N € A,, then X is a value of v.

If M € €(G), then (M) will denote the collection of right cosets of M in G.
This collection is partially ordered by the relation M + x = M + yif and only
ifm + x < yforsomem € M. With respect to this order, 7 (M) is a distributive
lattice in which (M 4 x) V (M + y) = M + x V yand dually. In particular,
if M is a regular subgroup, then 7 (M) is a totally ordered set (9, Theorem 3.2).

If " C G, then [T'] will denote the subgroup of G that is generated by 7" and
if A and B are sets, then A\B will denote the set of elements in 4 but not in B.

3. Archimedean extensions. Throughout this section we shall assume that
H is an a-extension of G, that ¢ is defined as in § 2, that I'(G) = I'(H),
and that for v € T(G),Gy = H, and G = H*. If M ¢ ¥ (G), let
Ng(M) (N(Mo)) denote the normalizer of M(Mg) in G(H).
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LemMA 3.1. If M € € (G), then No(M) = G N\ N(Mo).

Proof. If x € Ne(M), then M =x+ M —x C x + Mo — x. Thus,
MCx+Meo—x)NG=x+ Mo N\G) —x=x+ M — x = M.Sinceo™!
is one-to-one, it follows that Mo = x + M¢ — x. Conversely, if x € G\ N(Mo),
thenx+M—-—x=x4+ MeNG) —x=(x~+ Mes—x)NG=MocN\G = M.

LemMa 3.2. If M is a maximal convex I-subgroup of G, then x € Ng(M) if and
only if M + x4+ g = M + x for all g in M.

Proof. It foreachgin M, M +x+g= M+ x,then M = M+ x+ g — «
and it follows that x + M — x & M. Since x + M — x is also a maximal
convex [-subgroup of G, x + M — x = M. The converse is immediate.

THEOREM 3.3. For each v € T'(G), Gy is normal in G if and only if H, is
normal m H.

Proof. Since H” is an a-extension of G* (10, p. 135, Corollary I), it suffices to
take G, maximal in G. Assume that G, is normal in G and suppose (by way of
contradiction) that there exists 0 < y € H\N(H,). By Lemma 3.2 there exists
h € Hysuchthat H, +y < H,+y+ h £ H + y + |h|, where |h| = h \V —h.
Hence, it may be assumed that # > 0. By induction it follows that

H <H,+y<H,+y+h<H,+y+2n<....

Now 0 < y+ h — vy € H, and since H is an a-extension of G, there exists
0 < x € G such that

y+h—y<x<nly+h—y)=y+nh—y<y-+nh
for some positive integer n. Thus, for all positive integers m,
my < mn(y +h —y) <y mnh.

Sincey + b — y ¢ H,, it follows that ¥ ¢ G,. Again, since H is an a-extension
of G,y < z for some z € G.

Now G/G, is an archimedean o-group, hence there is a positive integer m
such that

Gy + 2 < m(Gy + x) = Gy + mx.

Therefore H, + 2 = H, + mx. Since y < g, it follows that H,+ y < H, + 2.
Thus

H,+y=H,+mx < H,+ vy + mnh.

Since G, is normal in G, it follows by Lemma 3.1 that mx € N(H,). If
H, + mx = H, + y + mnh, then by Lemma 3.2,

H 4+mex=H,+mx+h=H,+y+ (mn+ 1)k
> H,+y+ mnh = H, + mx,
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a contradiction. Hence

H +y=H,4+mx < H +y + mnh.
But then

H,+mx < H +y+ mnh < H, + mx + mnh = H, + mx,

a contradiction. Therefore N(H,) = H.
Conversely, if H, is normal in H, then
G=GNH=GNN(H,) =GN N(Gy) = Ng(G,)
by Lemma 3.1.

An [-group G is said to be representable if there exists an l-isomorphism of G
into an unrestricted cardinal sum of o-groups. Let A4 = {G: G isan I-group and
there exists a plenary subset A(G) C TI'(G) such that G; is normal in G® for
each § € A}. By (3, Corollary 3.2), if G is a representable I-group, then G € A

COROLLARY 3.4. A is closed with respect to a-extensions.

Let A be a plenary subset of I'(G) such that G;is normal in G? for each § in A.
It is well known that G%/G; is o-isomorphic to a subgroup of the real numbers.
Form V (A, G%/G5). If vand w are elements of V' (4, G?/G;), then w is said to be
a Bth head of v if B € A, and w = 0, the identity of V (4, G?/Gs), or if:

(i) B < 6 for some § € A,
(1) v, # Gy for some a < B,a € A,

(iii) wy, = v, for all ¥y > B,

(iv) w, = Gy forall y £ 8.

Thus v hasa Sth head ifand onlyif 8 € A, or (i) and (ii) hold. A mapping = of G
into V (4, G%/G5) is said to be value-preserving if whenever § € Ay, thend € Ay,
and (gm)s = G5 + ¢.

The proof of the next theorem, which is patterned after the proof of
(6, Lemma 1.1), is exceedingly long and will be omitted. The proof may be
found in (2, pp. 65-71).

THEOREM 3.5. If G € N and if A is a plenary subset of T'(G) such that G; is
normal i G® for each & in A, then there exists a ome-to-ome order and value-
preserving mapping w of the set G into V (A, G°/Gs) such that for each g in G:

(@) Ay = Aprand (gr)s = Gs+ gif 6 € A, O = 6;

(b) If gr has a Bth head, then there exists k in G such that kw is a Bth head
of grand (gm)s = Gs+ g — k;

(¢) If kr is a Bth head of gm, k € G, then (gr)s = Gg+ g — k;

d) If a € Ayiy k € G, then (gr — km)e = Go+ g — k.

COROLLARY 3.6. Let G € N and let A be a plenary subset of T'(G) such that Gs
is normal in G® for each & € A. Then an upper bound for the number of elements in
any a-extension of G is c®, where ¢ and d are the cardinal numbers of the set of real
numbers and the set A, respectively.
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Proof. If H is any a-extension of G, then as observed earlier, A is a plenary
subset of T'(H) = I'(G). By Theorem 3.3, H; is normal in H? for each § in A.
By Theorem 3.5, there exists a one-to-one mapping of H into V (A, H®/H;) and
by (10, Theorem 4.1) there exists an isomorphism of V (A, H®/H;) into
V (A, Rs), where R; is the group of real numbers for each § € A. The cardinality
of V(A, R;) is less than or equal to ¢%

COROLLARY 3.7. If G € N, then G has an a-closure and this a-closure belongs
to N

Proof. By Corollary 3.4, any a-extension of G belongs to.#. That G has an
a-closure follows from the preceding corollary and (10, Lemma 2.1).

The proof of the next theorem is similar to that of (7, Theorem 4.1).

THEOREM 3.8. For an l-group G and for v € T'(G), the following are equivalent:

(1) G, 1s normal in G

(2) If 0 < x,y € G\G,, then there exists a positive inieger m such that
G7+y <G7+1’lx;

(3) If0 < x € G\G,and 0 = g € G,, then there exisis h € G, and a positive
integer m such that h + nx — g > x.

Proof. (1) implies (2) as G*/G, is an archimedean o-group.
(2) implies (3). Let 0 < x € G"\G, and let 0 < g € G,. Then

g+x—geG\G,
and hence by (2) there exists a positive integer # such that
Gyt+x<Gy+nlg+x—g) =G +g+nx—g=G,+nx—g.

Thus x < b + nx — g for some k& € G,.

(3) implies (1). The proof is divided into three parts. Let 0 < x € G"\G,.

(i) f 0 < a,b € G such that Gy +a = G, + mx and G, + b = G, + nx
for some positive integer m and #, then there exists a positive integer p such
that Gy +a + b = G, + px.

It follows from the definition of the order in 7(G,) that ¢ < g1 + mx and
b < go+ nx < g + nx, where gy, g2 € G,, and it may be assumed that
g220. Thus, a+b =g+ mx+ g:+ nx. Now 0<mx € G'\G, and
0 = g: € G,, and hence by (3), there exists % in G, and a positive integer g
such thatmx = h + gmx — g, and therefore mx 4+ g = h + gmx. Therefore
a+b =g+ h+ gnx + nx.

(i1) Next we show that (2) is true.

Let 0 < ¥ € G'\G, and suppose (by way of contradiction) that

Gy +nx =G, +y

for all positive integers n. Since x € G'\G,, it follows that G, + nx < G, + y
for all n. Let S={2€ G:220 and G, + z < G, + mx for some positive
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integer m}. Clearly, S is a convex set that contains 0, and by (i), S is a semi-
group. Moreover, x € [S\G,, y € G'\[S], and G, C [S]. By (8, Theorem 2.1),
[S] is a convex [-subgroup of G. Thus [S] properly contains G, and is properly
contained in G, which is a contradiction. Therefore (ii) holds.

(iii) G, is normal in G".

Suppose (by way of contradiction) that there exists 0 < y € G"\G, such that
—y+ G, + v £ G,. Thus there exists 0 < & € G, such thatG, < G, —y+ h 4+ y.
By (2), it follows that there exists a positive integer # such that

G, +y<G,+n(—y+h+y)=G, —y+nh+y.

Therefore Gy < Gy — y + nhor G, = G, — nh < Gy, — y < Gy, a contradiction.

For g in G let G(g) denote the convex [-subgroup of G generated by g. Then,
as well as the conditions given in Lemma 3.2 and Theorem 3.3, it is shown in
(2, Theorem 2.7) that Theorem 3.8 (1) is equivalent to each of the following.

4) G, M G(g) is normal in G(g) for each 0 < g € G'\G,.
5) Gy M G(g) is normal in G(g) for some 0 < g € G'\G,.

A convex l-subgroup M of G is said to be closed if whenever {g.|a € A} S M
and Vaeu go exists, then Vaes g« € M. The next theorem and its corollary were
proven by J. T. Lloyd and me.

THEOREM 3.9. If M € € (G), then M is a closed subgroup of G if and only if
Mo is a closed subgroup of H.

Proof. If M € € (G)andif J = {g € G: g = Vg ga (@ € A) for some subset
{ga| @ € A} € M+}, then [J] is the smallest closed subgroup of G that contains
M (4, Lemma 3.2). We shall denote the subgroup [J] by M*.

Assume that M isclosed andlet0 < k& € Mo*. Since H is an a-extension of G,
there exists g in G such that 2 = g < nh for some positive integer #. Then
g € Mo*, and hence g = Vg hy (@ € A), where {h,: o € A} C Mo+. For each
a in A pick g, in G so that &, < g, = n.h, for some positive integer #,. Then
g A 2. € Mand hy £ g A g for each a. Since g = Vg hy (a € A), it follows
that g = V¢ (g A g) (@ € 4). Thus g € M, and hence & € Mo. Therefore
Mo = Md*.

Conversely, suppose that M¢ is a closed subgroup of H and let

g': \/Gga (aEA),

where {g.: a € A} © M*. Suppose (by way of contradiction) that g ¢ M.
Then g ¢ Mo, and hence Mo < Mo + g. LetT = {x € H*: x € Mo + g}. By
(4, Lemma 3.1) there exists 0 < k; € H such that #; < x for all x in 7. In
particular, 2; £ —g,+ gforallain 4. Let 0 < g1 € Gsuchthat b £ g1 < nhy
for some positive integer #. If k1 A g, = 0 for all @ in 4, then

O=nhi AN gaZ=Zg1ANg=0

for all , but then 0 = Vg (@1 A g) =21 A (Veg) =21 AgZh >0,a
contradiction. Thus there exists 8 in A such that ks = &y A gg > 0. Clearly,
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he € Mo and hy < x for all x in 7. Let 0 < go € G such that & = g2 < mh.
for some positive integer m. Then g, € M. For each « in 4 we have that
—hy — ga+ g € T, and thus —hs — go + g > ho. Hence —g, + g > 2h,. It
follows by induction that —g, + g > gh.for allain 4 and all positive integers g.
In particular, —g, + g > mhy = gy foralla, buttheng > g — g, = Vg ga = g,
a contradiction.

In (4, p. 126) a distributive radical for an l-group G was defined and was
denoted by D(G). The main result in (4) was that for an I-group G, D(G) = 0
if and only if G is completely distributive. The following corollary shows that an
a-extension of a completely distributive /-group is completely distributive.

COROLLARY 3.10. D(G) = G M D(H).

Proof. It was shown in (4, Theorem 3.4) that D(G) is the intersection of all
closed regular subgroups {Gx: A € A} of G. Thus

DG) = N G= N (GN Gro) =Gm( N Gw>=Gf\D(H).
e A e A e A

4. Interval topology. The interval topology of an Il-group is defined by
taking as a sub-basis for the closed sets the sets of the form {g € G: g = a} and
{g € G: g =a} (¢ €G). Itis well known that:

(i) if G is an o-group, then G is a topological group in its interval topology,
and

(ii) if G is a topological group in its interval topology, then this topology is
Hausdorff. :

Choe (5), Conrad (8), and Wolk (17) found classes of /-groups such that if
an /-group belonged to the class and was Hausdorff in its interval topology, then
it was an o-group. Jakubik (14, Theorem 6.2) showed that a representable
l-group which was Hausdorff in its interval topology must be an o-group. The
class of representable /-groups contains the class of abelian /-groups, and hence
the classes of Choe and Wolk. As observed in § 3, if G is a representable [-group,
then G € 4. Holland (13) has given an example of a non-ordered I-group that
is a topological group and a topological lattice in its interval topology.

Conrad’s class was the class of I-groups G that satisfy the following property:

(F) each strictly positive element of G exceeds at most a finite number of disjoint
elements.

It can be deduced from the material in (8; 9) that an /-group that satisfies
property (F) is generated by its special elements, and hence there is a plenary
subset A C TI'(G) such that G; is special for each 8 € A. A regular subgroup
which is special is normal in the convex I-subgroup that covers it (10,
Proposition 2.4). Therefore, if G is an I-group that satisfies property (F), then
GeN.

An element g in G is said to be a non-unitif g > Oandif g A & = 0 for some
0 < & € G. A strictly positive element of G which is not a non-unit is said to be
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a unit. Let N be the set of all non-units of G. In (14, p. 68) Jakubik gave the
following condition:
(vy) there exists by, . . ., b, € N such that for any ¢ € N the relation

c=2hi+ ...+ b,
holds.

Clearly, b1 + ... + b, is a unit. It is shown in (14, Proposition 3.3) thatif G
is a non-ordered I-group which is Hausdorff in its interval topology, then there
exists a positive integer # (# = 2) such that the condition (v,) is fulfilled.

Let.7 be the class of all I-groups G that possess a plenary subset A of I'(G)
such that if § is a value of a unit in G, then G; is normal in G?® (6 € A). Then
N CT.

TueorREM 4.1. If G € I and if G is Hausdorff in its interval topology, then G
1S an o-group.

Proof. Suppose (by way of contradiction) that G is not an o-group. Then
there exists a positive integer # such that the condition (v,) is satisfied. Let
b =01+ ...+ b, be the element given in the condition (v,). Since NV is not
void, we may choose g € N. Thenbd = g. 1f6 € A, thenGs; < G5+ g < G5+ b.
Thus there exists an ¢ such that b; ¢ Gs. Let A\ = max{y € A:y = dandvyisa
value of some b; (1 £ j =< n)}. Then \ is a value of some b;, say by, and N is a
value of b. Hence G\ < G\ + b; and G, is normal in G*. By Theorem 3.8, there
exists a positive integer m such that G\ 4+ b; < G + mb,for< =1, ..., n.Since
Gyisnormal in G*, it follows that Gy + b = G\ + b1 + . . . + b, < G\ + nmb;.
This implies that b & nmb, (9, p. 114), but this is contradictory, as nmb, € N.
Therefore G must be an o-group.
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