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1. Introduction. Conrad (10) and Wolfenstein (15; 16) have introduced the 
notion of an archimedean extension (a-extension) of a lattice-ordered group 
(/-group). In this note the class ^V oi /-groups that possess a plenary subset of 
regular subgroups which are normal in the convex /-subgroups that cover them 
are studied. I t is shown in § 3 (Corollary 3.4) that the c l a s s ^ is closed with 
respect to a-extensions and (Corollary 3.7) that each member of the c l a s s a 
has an a-closure. This extends (6, p. 324, Corollary I I ; 10, Theorems 3.2 
and 4.2; 15, Theorem 1) and gives a partial answer to (10, p. 159, Question 1). 
The key to proving both of these results is Theorem 3.3, which asserts that if a 
regular subgroup is normal in the convex /-subgroup that covers it, then this 
property is preserved by a-extensions. 

Theorem 4.1 of § 4 generalizes (8, Theorem 6.3) and (14, Theorem 6.2) by 
showing that the only members of ^¥ which are topological groups in their 
interval topology are the totally ordered groups (o-groups). 

My thanks are due to my advisor, Professor Paul F. Conrad. 

2. Preliminaries. In this section, some definitions and notation are given. 
Throughout this note G will denote an /-group. The reader is referred to (1 ; 12) 
for the standard results concerning /-groups. 

A convex /-subgroup that is maximal with respect to not containing some g 
in G is called a regular subgroup. Let T(G) be an index set for the collection of 
all regular subgroups Gy of G. For each y £ Y (G) there exists a unique convex 
/-subgroup Gy of G that covers Gy. If g belongs to Gy but not Gyy then y (or Gy) 
is said to be a value of g. A regular subgroup Gy is called special if there exists 
an element g in G such that Gy is the unique value of g. If this is the case, then g 
is also called special. For 7, X £ T(G) we define y S X if Gy Ç1 G\. With this 
order, T(G) is a root system (9, Theorem 3.3), that is, a partially ordered set in 
which no two incomparable elements have a common lower bound. A subset A 
of T (G) is said to be plenary if 

(i) each 0 ^ g in G has at least one value in A; 
(ii) if g G G8 (<5 £ A), then there exists X ̂  8 (X £ A) such that X is a value 

for g. 
A0 will denote the set of all values of g which are members of A. 
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If g and h are positive elements in an /-group H such that g ^ nh and h ^ mg 
for some positive integers m and n, then g and A are said to be a-equivalent. 
H is said to be an ^-extension of an /-subgroup G of H if for each 0 < h £ H 
there exists 0 < g G G such that g and & are a-equivalent. G is said to be 
a-dosed if there does not exist a proper a-extension of G. An a-extension of G 
which is itself a-closed is called an ^-closure of G. 

Let G be an /-subgroup of an /-group H and let të (G) (fê(H)) denote the 
lattice of convex /-subgroups of G (H). We define a mapping a from &(G) into 
<if(H) by 

Afer = O U G # ( # ) : I Ç / | (M € W ) ) . 

Then a- is a lattice isomorphism of ^ ( G ) onto të (H) if and only if H" is an 
a-extension of G (10, Theorem 2.1). If this is the case, then 

Ja-i = JC\G ( / G &(H)). 

Suppose that H is an a-extension of G and for y G V (G) let G7cr = Hy and let 
G v = Hy. It was shown (10, p. 137) that {Hy: y G T(G)} is the collection of 
all regular subgroups of H, and hence the same index set may be chosen for the 
regular subgroups of G and H. In particular, a maps a plenary subset onto a 
plenary subset. 

Let A be a root system and for each X in A let R\ be a subgroup of the 
naturally ordered additive group of real numbers. Let II denote the un­
restricted direct sum of the R\s and for v = (. . . , V\, . . .) G II, let 

Sv = {X G A:*;x ^ 0 } . 
LetF(A,i?x) = j^G II: Sv satisfies the maximum condition}. Forain V(A,R\), 
let Av = {X G S„: z>« = 0 for all a > X}. If X G A», then X is said to be a 
maximal component of «/. Then z; G F( A, R\) is defined to be positive if V\ > 0 for 
each X G A». With this order, V(A, R\) is an abelian /-group (11, Theorems 2.1 
and 2.2). The main embedding theorem in (11) asserts that every abelian /-group 
can be embedded as an /-subgroup in an /-group of this form. For each X G A 
let V\ = {v G V(A, Rx): va = 0 for all a ^ X}. Then it is shown in (11) that 
V\ is a regular subgroup of F(A, R\), A is a plenary subset of T(F(A, R\))f 

and if X G Av, then X is a value of v. 
If M G ^ ( G ) , then r(M) will denote the collection of right cosets of M in G. 

This collection is partially ordered by the relation M + x ^ M + y iî and only 
if m + x ^ y for some m G M. With respect to this order, r (M) is a distributive 
lattice in which (M + x) V (ikf + ^ ) = i k f + x V ^ and dually. In particular, 
if i f is a regular subgroup, then r(M) is a totally ordered set (9, Theorem 3.2). 

If T C G, then |T] will denote the subgroup of G that is generated by T and 
if A and 13 are sets, then A\B will denote the set of elements in A but not in B. 

3. Archimedean extensions. Throughout this section we shall assume that 
H is an a-extension of G, that a is defined as in § 2, that T(G) = T(H), 
and that for 7 G r(G) , G7cr = Hy and G v = fl*. If M G # ( G ) , let 
NG(M) (N(Ma)) denote the normalizer of M(Mo-) in G(H). 
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LEMMA 3.1. If M G # ( G ) , then NG(M) = G H iV(Mcr). 

Proo/. If x G NG(M), then M = x + Af - x £ x + M<r - x. Thus, 
ilf ç (x + Ma - x) H G = x + (Ma r\G)-x = x + M-x = M. Since a-1 

is one-to-one, it follows that Ma = x + Ma — x. Conversely, if x G G P\ N(Ma), 
then x + M - x = x + (Mo- H G) - x = (x + Ma - x) H G = Ma Pi G = M. 

LEMMA 3.2. If M is a maximal convex l-subgroup of G, /Âen x G NG(M) if and 
only ifM + x + g = M+x for all g in M. 

Proof. If for each gin M, M + x + g = M + x, then M = M + x -\- g — x 
and it follows that x + M — x C Af. Since x + M — x is also a maximal 
convex /-subgroup oî G, x + M — x = M. The converse is immediate. 

THEOREM 3.3. For each y G T(G), G7 is normal in Gy if and only if Hy is 
normal in Hy. 

Proof. Since Hy is an a-extension of GT (10, p. 135, Corollary I) , it suffices to 
take G7 maximal in G. Assume that G7 is normal in G and suppose (by way of 
contradiction) that there exists 0 < y G H\N(Hy). By Lemma 3.2 there exists 
h G # 7 such that Iï7 + ;y <Hy + y + h^Hy + y + \h\, where |fc| = fc V - / / . 
Hence, it may be assumed that h > 0. By induction it follows that 

Hy<Hy + y<Hy + y + h<Hy + y + 2h<... . 

Now 0<3> + /£ — y £ H, and since jff is an a-extension of G, there exists 
0 < x G G such that 

y -\- h — y < x < n(y + h — y) = y + nh — y < y + nh 

for some positive integer n. Thus, for all positive integers m, 

mx < mn(y + h — y) < y + mnh. 

Since y + h — y € #7, it follows that x $ G7. Again, since H is an a-extension 
oî G, y < z for some s G G. 

Now G/G7 is an archimedean o-group, hence there is a positive integer m 
such that 

G7 + z < m(Gy + x) = G7 + mx. 

Therefore i77 + z ^ iJ7 + mx. Since y < z, it follows that if7 + 3/ ^ if7 + s. 
Thus 

Hy -\- y S Hy -{- mx S Hy + y + mwi 

Since G7 is normal in G, it follows by Lemma 3.1 that mx G N(Hy). If 
Hy + mx = i77 + y + w ^ , then by Lemma 3.2, 

Hy + mx = i?7 + mx + h = Hy + y + (mn + \)h 

> Hy + y + mnh = Hy + mx, 
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a contradiction. Hence 

H7 + y ^ Hy -f mx < Hy + y + mnh. 

But then 

Hy + mx < Hy + 3; + wwi :§ iJ7 + wx + wink — Hy + WJC, 

a contradiction. Therefore N(H7) = iJ. 
Conversely, if i77 is normal in H, then 

G = Gr\H = GC\ N(Hy) = G H N(Gya) = iVG(GT) 
by Lemma 3.1. 

An /-group G is said to be representable if there exists an /-isomorphism of G 
into an unrestricted cardinal sum of o-groups. Let JV = {G: G is an /-group and 
there exists a plenary subset A(G) Ç T(G) such that Gs is normal in G5 for 
each 8 G A}. By (3, Corollary 3.2), if G is a representable /-group, then G G ^T. 

COROLLARY 3.4. ^ is c/tfsed w/& respect to ^-extensions. 

Let A be a plenary subset of T (G) such that G5 is normal in G5 for each 5 in A. 
I t is well known that G8/Gs is o-isomorphic to a subgroup of the real numbers. 
Form V(A, G8/Gs). If v and w are elements of V(A, G8/Gs), then w is said to be 
a fith head of v if 0 G A, and w = 0, the identity of F(A, G8/G8), or if: 

(i) /3 < 8 for some <5 G A», 
(ii) z>a ^ G« for some a ^ 0, a G A, 

(iii) Ï£/7 = z/r for all 7 > /3, 
(iv) my = G7 for all y ^ 13. 

Thus y has a/3th head if and only if 0 G Ap or (i) and (ii) hold. A mapping ir of G 
into F(A, G8/Gs) is said to be value-preserving if whenever 5 G A ,̂ then <5 G A^ 
and (g7r)a = G5 + g. 

The proof of the next theorem, which is patterned after the proof of 
(6, Lemma 1.1), is exceedingly long and will be omitted. The proof may be 
found in (2, pp. 65-71). 

THEOREM 3.5. If G G ^ and if A is a plenary subset of T(G) such that Gs is 
normal in G8 for each 8 in A, then there exists a one-to-one order and value-
preserving mapping IT of the set G into F(A, G8/Gs) such that for each g in G: 

(a) A, = Ag7r and (g7r)5 = G5 + g if 8 G A,. OTT = 6; 
(b) If gn has a /3th head, then there exists k in G such that kir is a 13th head 

of gw and (gir)p = Gp + g - k; 
(c) If kir is a /3th head of gir, k G G, then (gir)p = Gp + g — k; 
(d) If a G Aç-jc, k G G, then (gir — kir)a = G« + g — k. 

COROLLARY 3.6. Let G G ^ and let Abe a plenary subset of T(G) such that Ga 
is normal in G8 for each 8 G A. Then an upper bound for the number of elements in 
any ^-extension of G is cd, where c and d are the cardinal numbers of the set of real 
numbers and the set A, respectively. 
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Proof. If H is any a-extension of G, then as observed earlier, A is a plenary 
subset of T(H) = T(G). By Theorem 3.3, H s is normal in H8 for each ô in A. 
By Theorem 3.5, there exists a one-to-one mapping of H into V( A, H8/Hè) and 
by (10, Theorem 4.1) there exists an isomorphism of F(A, Hô/Hd) into 
V(A, Rs), where Rs is the group of real numbers for each ô G A. The cardinality 
of V(A, Rs) is less than or equal to cd. 

COROLLARY 3.7. If G G ^ , then G has an ^-closure and this ^-closure belongs 
to J/. 

Proof. By Corollary 3.4, any a-extension of G belongs tojV. That G has an 
a-closure follows from the preceding corollary and (10, Lemma 2.1). 

The proof of the next theorem is similar to that of (7, Theorem 4.1). 

THEOREM 3.8. For an l-group G and for y G r(G), the following are equivalent: 
(1) G7 is normal in Gy; 
(2) / / 0 < x, y G Gy\Gy, then there exists a positive integer n such that 

Gy + y < Gy + nx; 
(3) If 0 < x G Gy\Gy and 0 ^ g G Gy, then there exists h G Gy and a positive 

integer n such that h -\- nx — g > x. 

Proof. (1) implies (2) as Gy/G7 is an archimedean o-group. 
(2) implies (3). Let 0 < x G Gy\G7 and let 0 ^ g G G7. Then 

g + x - g G Gy\Gy, 

and hence by (2) there exists a positive integer n such that 

Gy + x < Gy + n(g + x - g) = Gy + g + nx - g = Gy + nx - g. 

Thus x < h + nx — g for some & G G7. 
(3) implies (1). The proof is divided into three parts. Let 0 < x G Gy\Gy. 
(i) If 0 < a, & G G such that G7 + a ^ G7 + rax and Gy + b S Gy -\- nx 

for some positive integer m and ^, then there exists a positive integer p such 
that G7 + a + b S Gy + px. 

It follows from the definition of the order in r(Gy) that a ^ gi + mx and 
6 ^ g2 + we ^ \g21 + wx, where gi, g2 G G7, and it may be assumed that 
gi ^ 0. Thus, a + b ^ gi + mx + g2 + nx. Now 0 < mx G Gy\Gy and 
0 ^ g2 G G7, and hence by (3), there exists h in Gy and a positive integer q 
such that mx ^ h + gmx — g2, and therefore mx + g2 ^ h + grax. Therefore 
a + & ^ gi + & + gmx + wx. 

(ii) Next we show that (2) is true. 
Let 0 < y G Gy\Gy and suppose (by way of contradiction) that 

Gy + nx ^ G7 + y 

for all positive integers n. Since x G Gy\Gy, it follows that G7 + nx < G7 + y 
for all w. Let S = {z £ G: z ^ 0 and G7 + 2 ^ G7 + wx for some positive 
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integer m\. Clearly, S is a convex set that contains 0, and by (i), S is a semi­
group. Moreover, x G [S]\Gy, y G &\[S], and Gy C [S]. By (8, Theorem 2.1), 
[S] is a convex /-subgroup of G. Thus [S] properly contains Gy and is properly 
contained in G7, which is a contradiction. Therefore (ii) holds. 

(iii) Gy is normal in Gy. 
Suppose (by way of contradiction) that there exists 0 < y G G7\Gy such that 

—j + Gy + ;y ^ £7. Thus there exists 0 < h G Gy such that Gy<Gy — y-\-h + y. 
By (2), it follows that there exists a positive integer n such that 

£7 + y < Gy + n(—y + h + y) = Gy — y + nh + y. 
Therefore Gy < Gy — y + rih or Gy = Gy — nh < Gy — y < Gy, a contradiction. 

For g in G let G(g) denote the convex /-subgroup of G generated by g. Then, 
as well as the conditions given in Lemma 3.2 and Theorem 3.3, it is shown in 
(2, Theorem 2.7) that Theorem 3.8 (1) is equivalent to each of the following. 

(4) Gy C\ G(g) is normal in G(g) for each 0 < g G Gy\Gy. 
(5) Gy Pi G(g) is normal in G(g) for some 0 < g G Gy\Gy. 

A convex /-subgroup M of G is said to be closed if whenever {ga\ a G A) Ç M 
and V« ÇA &* exists, then Va^i ga G -M. The next theorem and its corollary were 
proven by J. T. Lloyd and me. 

THEOREM 3.9. If M £ ^ ( G ) , then M is a closed subgroup of G if and only if 
Ma is a closed subgroup of H. 

Proof. If M G ^ ( G ) and if J = {g G G: g = V<? g« (a G ̂ 4) for some subset 
[ga\a G 4̂} Q M+\, then [J] is the smallest closed subgroup of G that contains 
M (4, Lemma 3.2). We shall denote the subgroup [/] by M*. 

Assume that M is closed and let 0 ^ h G ikfcr*. Since i7 is an a-extension of G, 
there exists g in G such that h ^ g ^ nh ior some positive integer ^. Then 
g G Mo-*, and hence g = V # ^ (a Ç i ) , where {ha: a G A} Q Ma+. For each 
am A pick ga in G so that ha ^ ga ^ naha for some positive integer na. Then 
g A g« G -M and ha ^ g A ga for each a. Since g = V# ha (a £ A), it follows 
that g = V G fe A g«) (a ë i ) . Thus g Ç ¥ , and hence h G Afc. Therefore 
Ma = Ma*. 

Conversely, suppose that Ma is a closed subgroup of H and let 

g = Voga (a G 4 ) , 

where {g«: a f i ) Ç M+. Suppose (by way of contradiction) that g & M. 
Then g g Ma, and hence Mo- < Ma + g. Let T = {x G # + : x G Mo- + g}. By 
(4, Lemma 3.1) there exists 0 < hi G H such that hi ^ x for all # in T. In 
particular, &i ^ — ga + g for all a in A Let 0 < gi G G such that &i ^ gi ^ w/h 
for some positive integer #. If &i A &* = 0 for all a in A, then 

0 = nhi A g« ^ gi A g« ^ 0 

for all a, but then 0 = VG (gi A g«) = gi A ( V<? g«) = gi A g è Ai > 0, a 
contradiction. Thus there exists /3 in A such that h2 = hi A gp > 0. Clearly, 
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h2 G Ma and h2 < x for ail x in T. Let 0 < g2 G G such that A2 S gi S wih2 

for some positive integer m. Then g2 G M. For each a in 4̂ we have that 
— h2 — ga + g G r , and thus — ft2 — g« + g > h2. Hence — ga + g > 2h2. I t 
follows by induction that — ga + g > qh2 for all a in A and all positive integers q. 
In particular, — ga + g > mh2 ^ g2 for all a, but then g > g — g2 ^ V G g* = g, 
a contradiction. 

In (4, p. 126) a distributive radical for an /-group G was defined and was 
denoted by D(G). The main result in (4) was that for an /-group G, D(G) = 0 
if and only if G is completely distributive. The following corollary shows that an 
a-extension of a completely distributive /-group is completely distributive. 

COROLLARY 3.10. D(G) = G C\ D(H). 

Proof. I t was shown in (4, Theorem 3.4) that D(G) is the intersection of all 
closed regular subgroups {G\: X G A} of G. Thus 

D(G) = PI Gx= n (GHGxcr) = G H O GW) = GC\D(H). 
XÇ A XÇ A \ X€ A / 

4. Interval topology. The interval topology of an /-group is defined by 
taking as a sub-basis for the closed sets the sets of the form {g Ç G: g ^ a} and 
{g ê G: g ^ a} (a 6 G). I t is well known that: 

(i) if G is an o-group, then G is a topological group in its interval topology, 
and 

(ii) if G is a topological group in its interval topology, then this topology is 
Hausdorff. 

Choe (5), Conrad (8), and Wolk (17) found classes of /-groups such that if 
an /-group belonged to the class and was Hausdorff in its interval topology, then 
it was an o-group. Jakubik (14, Theorem 6.2) showed that a representable 
/-group which was Hausdorff in its interval topology must be an o-group. The 
class of represen table /-groups contains the class of abelian /-groups, and hence 
the classes of Choe and Wolk. As observed in § 3, if G is a represen table /-group, 
then G G J/. Holland (13) has given an example of anon-ordered /-group that 
is a topological group and a topological lattice in its interval topology. 

Conrad's class was the class of /-groups G that satisfy the following property: 
(F) each strictly positive element of G exceeds at most a finite number of disjoint 

elements. 
I t can be deduced from the material in (8; 9) that an /-group that satisfies 

property (F) is generated by its special elements, and hence there is a plenary 
subset A Ç T(G) such that G$ is special for each ô G A. A regular subgroup 
which is special is normal in the convex /-subgroup that covers it (10, 
Proposition 2.4). Therefore, if G is an /-group that satisfies property (F), then 

An element g in G is said to be a non-unit if g > 0 and if g A h = 0 for some 
0 < h G G. A strictly positive element of G which is not a non-unit is said to be 

https://doi.org/10.4153/CJM-1969-111-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-111-6


LATTICE-ORDERED GROUPS 1011 

a unit. Let N be the set of all non-units of G. In (14, p. 68) Jakubik gave the 
following condition: 

(vn) there exists b i, . . . , bn G N such that for any c G N the relation 

cûh + ... + bn 
holds. 

Clearly, b\ + . . . + bn is a unit. I t is shown in (14, Proposition 3.3) that if G 
is a non-ordered /-group which is Hausdorfr in its interval topology, then there 
exists a positive integer n (n ^ 2) such that the condition (vn) is fulfilled. 

Let $~ be the class of all /-groups G that possess a plenary subset A of T (G) 
such that if ô is a value of a unit in G, then G s is normal in G8 (ô G A). Then 
JSŒ 3T. 

THEOREM 4.1. If G G ^~ and if G is Hausdorff in its interval topology, then G 
is an o-group. 

Proof. Suppose (by way of contradiction) that G is not an o-group. Then 
there exists a positive integer n such that the condition (vn) is satisfied. Let 
b = b\ + . . . + bn be the element given in the condition (vn). Since N is not 
void, we may choose g G N. Then b ^ g. If ô G A ,̂ then GÔ < Gg + g ^ Gg + b. 
Thus there exists an i such that 6* G G$. Let X = maxjy G A: 7 ^ ô and 7 is a 
value of some bj (1 ^ 7 ^ #)}. Then X is a value of some bj, say ôA, and X is a 
value of b. Hence G\ < G\ + bk and Gx is normal in Gx. By Theorem 3.8, there 
exists a positive integer m such that G\ + bt < G\ + m&fc for i = 1,. . . , n. Since 
G\ is normal in Gx, it follows that G\ + b = G\ + bi + . . . + bn < G\ + nmbk. 
This implies that b ^ nmbk (9, p. 114), but this is contradictory, as nmbk G N. 
Therefore G must be an o-group. 
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