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1. Introduction

The theory of formations of soluble groups, developed by Gaschiitz [4],
Carter and Hawkes [1], provides fairly general methods for investigating
canonical full conjugate sets of subgroups in finite, soluble groups. Those
methods, however, cannot be applied to the class of all finite groups, since
strong use was made of the Theorem of Galois on primitive soluble groups.
Nevertheless, there is a possibility to extend the results of the above
mentioned papers to the case of z-soluble groups as defined by Cunihin [2].
A finite group G is called =-soluble, if, for a given set = of primes, the indices
of a composition series of G are either primes belonging to = or they are not
divisible by any prime of @. In this paper, we shall frequently use the follow-
ing result of Cunihin [2]: If # is a non-empty set of primes, ' its complement
in the set of all primes, and G is a =-soluble group, then there always exist
Hall n-subgroups and Hall #’-subgroups, constituting single conjugate sets
of subgroups of G respectively, each m-subgroup of G contained in a Hall
n-subgroup of G where each n’-subgroup of G is contained in a Hall »'-
subgroup of G. All groups considered in this paper are assumed to be finite
and m-soluble. A Hall m-subgroup of a group G will be denoted by G,.

2. The formation §,

Let & be a saturated formation of soluble groups as defined in [4],
& the class of all groups G having a normal z-complement G,., and Hall
a-subgroups G belonging to .

[}

PROPOSITION 2.1. ¥, is a formation.

Proor. (i) Let Ge§,, N <G. Then G,N/IN 2~ G, /N G,e P and
G, -N/N < G|N.

(i) Let N, 9 G, N, <G and G/N,€F,, G/Nye F,. It follows

G, (N;nN,)JN;AnN, < GIN;AN,
and since
G,NJN, 2~ G,IN,nG,e, for i=1,2,
241
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we have G,/N; n Ny n G, € § whence G,(N, n N,)/[N, n N, e §.
LemMA 2.2. If N is a normal n'-subgroup and G|N € §, then G e §,.
PROOF. G/N = (G,N|N) - (G.I[N) € &,

implies G, 4 G and G, ~ G,N/N € F. Hence G € §,.

By the Theorem of Gaschiitz-Lubeseder [8], any saturated formation
& can be locally defined. This means, that to any prime p, there exists a
formation F(p), such that G e § if and only if G/Ce(H/K) € F(p) for all
p-chief factors H/K of G.

PRrROPOSITION 2.3. Let ©, be the class of all soluble m-groups. If the
formation  is locally defined by §(p), p ranging over all primes, then G € §,
if and only if G|Ce(HIK) € F(p) n S,, for all p-chief factors H|K with
P em.

ProoF. Let Ge 5, and H/K be a p-chief factor of G such that
G,,CK <HCG. Since G|G, e, it follows G/Ce(H[K) € F(p) n S,.
But any p-chief factor H/K with p € = is G-isomorphic to one lying between
G, and G.

Conversely, let G/Ce(H|K) € F(p) n &, for all p-chief factors H|K
with p e n. By induction and Lemma 2.2 we may assume, that there is a
minimal normal p-subgroup N of G with G/N e $,, and pen. Then
G, N < G, and G/C¢(N) is a mn-group by assumption. Hence G, C Cg(N)
and therefore G, char G,.N which implies G, < G. Also

G4/Cq,(N) = G,Ce(N)/Ce(N) = G[Ce(N) € F(p)
whence G, € ¥ and G € ¥,

DEeFINITION. Let p € n. Then we denote the formation {(p) n S, by
& (P)-

ProposITION 2.4. If G ¢ F, and N is a minimal normal subgroup of G
such that GIN € &, then N is complemented and any two complements are
conjugate.

Proor. By Lemma 2.2, N is a p-group, pen. If §,(p) =9 then
# 1 |G/N| and the proposition follows by Schur-Zassenhaus. If §,(p) # 9,
then we proceed in a similar manner as in [4]. Let F?(G = N)/N be the
largest normal p-nilpotent subgroup of G/N. If there were an x e N, z # 1,
which is centralized by F?(G -~ N), then N C Z(F?(G =~ N)), since N is a
minimal normal subgroup. Let F?(G) be the largest normal p-nilpotent
subgroup of G. Then F?(G) = F?(G - N)n Cg(N) by [6; VI 5.4.b)]. This
implies F?(G) = F*(G +~ N). Hence G € §, by Proposition 2.3 which is a
contradiction. Let L/N be the largest normal p’-subgroup of G/N. Then L
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splits over N by Schur-Zassenhaus and any two complements of N in L
are conjugate. If there were an # € N which is centralized by L then
N C Z(L), since N is a minimal normal subgroup of G. This would imply
L CCpug-m(N). Then F?(G +N)/Cpog.x(N) would be a non-trivial
group of p-automorphisms of N, since N ¢ Z(F?(G + N)). This is, however,
impossible, as N =N, xXN,Xx -++ XN,, the N,’s being minimal normal
p-subgroups of F?(G = N) and thus

F*(G + N)[Cpueom(N) = F?(G + N)/!j1 Croeam (Vo).

Hence F?(G = N)/Cppe.m(IV,) is a non-trivial p-group for at least one
7, contradiction. Now let R be an arbitrary complement of N in L. R is self-
normalizing in L, otherwise there exists an # € N, # £ 1, such that R* = R,
and this #» would be centralized by R which is a contradiction. By applying
a Frattini argument, the proposition is proved.

PropOSITION 2.5. If @(G) is the Frattini subgroup of G and G|D(G) € F,
then G € .

ProoF. Let G¥ be minimal among the normal subgroups N of G with
GIN € ,. Then G C @(G). If G¥ % 1, then there would exist a chief
factor G%+/H of G. By Prop. 2.4, G%/H would be complemented which
contradicts G¥ C @(G).

3. §,-covering subgroups

DEeFINITION ([4]). A subgroup E of a n-soluble group G is called an
T a-covering subgroup if it has the following properties:

(i) EeG,
(i) If ECHCG and H, < H, such that H/H, € §, then EH, = H.

The following theorem extends a result of Gaschiitz [4].

THEOREM 3.1. Every n-soluble group G has $,-covering subgroups and
any two of them are conjugate.

ProoF. We remark that any conjugate and any homomorphic image
of an §,-covering subgroup is an $F,-covering subgroup. We prove the
theorem by induction on |G|. If |G| = 1, then the theorem holds. If G e §,
then G is the only $,-covering subgroup. Assume G ¢ &,.

FirsT CASE. There exists a minimal normal subgroup N, such that
GIN ¢ F,. In this case, we may use Gaschiitz’s argument ([4]) in order
to prove the theorem. We take an {,-covering subgroup E/N of G/N
(by induction) and E < G. E has by induction an §,-covering subgroup
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E whence EN=FE. Let ECFCG, Fy< F and F/F,e$,. Then
NF|NFy€$,, thus NEFy=NF and (NE n F)F,= F. Furthermore

NEANFINEnFy,x~ F|Fye ..
Therefore
F=(NEnF)Fy=E(NEn F)F,= EF,

since E is an $,-covering subgroup of E and so of NE n F. Hence E is an
% .-covering subgroup of G.

If E, and E, are {,-covering subgroups of G then E;N/N and E,N/N
are §,-covering subgroups of G/N. By induction there exists g € G, such
that NE, = NE%, and NE, < G. Hence by induction E, and E} are con-
jugate under NE, as they are $,-covering subgroup of NE,. Therefore E,
and E, are conjugate under G.

SECOND CASE. G/N € §, for every minimal normal subgroup N of G.
Then G has to be monolithic with N as abelian monolith. By Proposition
2.4, N is complemented and any two complements are conjugate. Let M
be a complement of N. Then M is a maximal subgroup of G and therefore
an §,-covering subgroup. If M is another $,-covering subgroup, then
MN = G, as G/N € §, and M A N = 1, since N is abelian. By Proposition
2.4, M and M are conjugate.

4. §.-normalizers

DEeFINITION. A chief factor H[K of G is called $,-central if
G/Ce(H[K) € F,(p) for H|K being a p-chief factor pen, or if HK is a
a’-chief factor. Otherwise H|K is called $,-eccentric.

DEFINITION. A maximal subgroup M of G is called $,-normal if
M [Coreq(M) € F,(p) for M being of p-power index, p e =, or if [G : M] has
only z’-divisors. Otherwise M is called & ,-abnrormal.

REMARK. Since, in a n-soluble group, a maximal subgroup is either of
#’-index or of a p-power index for p € 7, it follows that a maximal subgroup
is either $,-normal or % ,~abnormal.

PropositioN 4.1. G € F, ¢f and only if every maximal subgroup of G is
T a-normal.

Proor. Let G € &, and M be a maximal subgroup of z-index. Then
G, CCoreg(M)C M, G|G, € F implies M is §,normal. Conversely, let
every maximal subgroup of G be $,-normal. By induction and Lemma 2.2,
we may assume G/N € ¥, for a minimal normal z-subgroup N of G, N being
the unique minimal normal subgroup of G. Furthermore, Prop. 2.5 allows
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us to assume @ (G) = 1. Hence N has a maximal subgroup M as a comple-
ment, M being of n-index with Coreq(M) = 1. Thus

G[Ce(N) = GIN = M € Fa(p),
if M is of p-power index. This implies G € %,.

DerFINITION. C?(G) =[] Cq(H|K), the intersection taken over all
Fa-central p-chief factors of G, p e . Additionally, we put C?(G) = G if
G has no $,-central p-chief factors for p e =.

DEFINITION. A Sylow n-system is a [)-closed set of subgroups of G,
generated by a complete set of Hall p’-subgroups of G for p e .

The following result is analogous to Ph. Hall’'s theorem on Sylow
systems ([5]).

PROPOSITION 4.2. Any two Sylow n-systems of a m-soluble group G are
conjugate in G.

Proor. Let R : K, -, K,, ®*:K¥, -+, K} be two complete sets of
Hall p;-subgroups of G, p, en, and let K; = K¥ for 1 <s. Let K; # K¥.
Consider Q; = ();.;K;. This is a Hall {p,, #'}-subgroup of G whence
K,Q, = G (both statements follow from [7; 1.5.5]). Therefore there exists
z € Q; with K = KT and Kj = K,, for ¢ # j. Thus & and ®* have s+1
elements in common, and induction proves the proposition.

DEerFiNITION. Let T = T?(G) = G, n C?(G), where G, is a Hall
p'-subgroup of G and C?(G) is as defined above. A subgroup D of G is called
an F,-normalizer if D = (e . Ne(T?).

REMARK. Prop. 4.2 implies that all §,-normalizers of a n-soluble group
G are conjugate in G.
For the remainder of the paper, we assume, that {(p) # @ for all

pem.

ProposITION 4.3. If G € §,, then G is its own F,-normalizer.

ProoF. By Prop. 2.3, any chief factor is {,-central. Hence, for p e =,
C*(G) = F?(G) ([6; VI, 5.4.6]) which implies T? char C?(G). Thus 7 < G
and Ng(T?) = G for all p e .

ProrosiTION 4.4. Let M be an §,-abnormal maximal subgroup of G.
Then M contains an F,-normalizer of G.

Proor. Since M is §,-abnormal, it is of p-power index in G, for some
pen, and M[Coreq(M) ¢ F.(p). Let &, be a Sylow zm-system, G, € R,
such that G,, C M. Then T? = C?(G) n G, C M. We will show: N¢(T?) C M.
Let K = Coreg(M). Then M|K ¢ %,(p). By definition of K, there is no
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normal subgroup of G between K and M, hence if H/K is a minimal
normal subgroup of G/K, we have MH = G. But |G| = [M||H|/|M ~ H|
whence p/|H|K| and H|K is an elementary abelian p-group since G is
m-soluble. Furthermore M n H = K and G/H ~ M|K ¢ §.(p). HIK is
the only minimal normal subgroup of G/K and is self-centralizing by
the theorem of Galois ([9; Th. 11.5]). Therefore H < KC?(G), otherwise
G/H € F,(p). Let L/H be a minimal normal subgroup of G/H, lying in
KC?(G). Since H = Cq(H|K), certainly p{ |L/H|. Hence L n M|K is
a p-complement of L/K. Now TI? is a p-complement of C?(G) whence
KT?|K is a p-complement of KC?/K. But KC?D L, therefore KT? n LK
is also a p-complement of L/K. Moreover KT? CKG, CM, thus
KI*"nLCM~n L. Hence KI*"nL=MnL. Let geNg(T?), then
(KT*n LY =KT?nL and geNg(KIT?nL) =Ne¢M n L) = M. Thus
Ne(T?) C M.

DEeFINITION. Denote by O,.(G) the largest normal z’-subgroup of a
m-soluble group G. Then F7(G)/0,.(G) shall be defined to be the Fitting
subgroup of G/0,(G) and @7(G)/0,.(G) to be the Frattini subgroup of
G/0,(G).

LEMMA 4.5. If G s n-soluble, then G|®7(G) has no non-trivial normal
7'-subgroup.

ProoF. Assume A/®7(G) is a normal n’-subgroup of G/@7(G). Since
P7(G)[0,.(G) is a m-group, by Schur-Zassenhaus there exists a subgroup
B of A such that B&®"(G) = 4 and B n 97(G) = 0,.(G). B is then a Hall
n’-subgroup of 4 and a Frattini argument yields

G = ANg(B) = B®7(G)N¢(B) = @7(G)N¢(B) = N¢(B).
Thus B < G which implies B = 0,.(G). Hence 4 = &7 (G).

LEMMA 4.6. If G is m-soluble, O, = 0,.(G), D@"|0,. is the Frattini
subgroup of G|O,., and F7|0,., is the Fitting subgroup of G|O,., then
Fr = Cqo(Fr[@m).

Proor. Put C = Cg(F7[@7). Certainly F7 CC. Assume F7 < C. By
Gaschiitz ([3]), there exists a subgroup K of G, such that F7K =G,
FrnK = ®7. Let H|O, be the largest normal n-subgroup of G/O,..
Then F7/0,.is also the Fitting subgroup of H/0O,, which is a soluble z-group.
Since H < G, the Frattini subgroup of H/® is trivial. Thus [6; III, 4.2b]
implies that C n H = Cyx(Fn|®7) = F7. Let L|F™ be a minimal normal
subgroup of G/F7 in C/F~. Since

L|F" ~nH|F*CC|F" n H|F7 = Fn|Fn,
the chief factor L/F~ of G is a a'-group. Now F7(K nL) =L and
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Frn(KnL)y=¢®" But L CC implies L/®7 = F7|{@"xX (K n L)/®7. It
follows that F* C Ng(K n L). Furthermore K n L < K whence K n L < G.
As (Kn L)/@m ~ L[F7, K n L|®" is a non-trivial normal z’-subgroup of
G/F7. This contradicts Lemma 4.5.

CororLrary. If R/O,. is the Frattini subgroup of F7/O,., then
Fm = Ce(F"|R).

Proor. Certainly F7 C Ce(F7[R), as F7[R is abelian. But also R C &~
since F7 < G. Hence F7 C Co(F7|R) CCq(F7[@7) = F7 by Lemma 4.6.

LEMMA 4.7. F7 is the intersection of the centralizers of all m-chief factors
of G.

ProoF. Let N be the intersection of the centralizers of all m-chief
factors of G, O0,.(N) the largest normal n’-subgroup of N, N,/0,.(N) the
Fitting subgroup of N/0,.(N) and K/O,.(N) the Frattini subgroup of
N,;/0..(N). By the corollary of Lemma 4.6, Cy(N,/K) = N,. If N; <N,
then there exists x e N, x ¢ N,. N,/K is a direct product of elementary
abelian p-groups for certain primes p in z. Therefore there exists a chief
factor L/M of N/K, such that KCM < L CN, and = ¢ Ce(L/M). This is
a contradiction since N centralizes every n-chief factor of N. Hence Ny = N
and N C F7. Conversely F7 centralizes every m-chief factor of G, thus
N = Fr.

PRrROPOSITION 4.8. G € ¥, if and only if every minimal normal subgroup
of G|D7 is F,-central.

Proor. If G € §, then any chief-factor of G is §,-central, particularly
the minimal normal subgroups of G/®7. Conversely, let @ = G/®7, then
F = Fr|®r is the Fitting subgroup of G. F is direct sum of certain minimal
normal subgroups N, of G. Let C, = C¢(N,), then G/C; e F.(p), if N, is a
p-chief factor. One can choose the $F(p)’s in such a way that F(p) C F.
Then G/C,e .. But NC,=Ce(F)=FCNC, by Lemma 4.6 and
Lemma 4.7. Hence G/F e §, and also G/0,. = G € §,. By Lemma 2.2,
GeF,.

CorOLLARY. If G ¢ §,, then there exists an F,-abnormal maximal
subgroup M of G with G = M F.

ProorF. Since G ¢ §¥,, there exists an §,-eccentric chief factor N/®7
of G and N C F7. Therefore there exists a maximal subgroup M of G with
G = MN and hence G = M Fn, Furthermore M n N = @7 as N/®7 is an
abelian p-group, p € n. But M[Coreg(M) =~ G[Ca(N|DP™) ¢ T (D).

LEMMA 4.9. Let G be a m-soluble group, M a maximal subgroup of G
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with G = MF" and H|K a n-chief factor of G. If M covers H|K, then
H ~ M|K n M is a chief factor of M.

Proor. M covers H/K whence HK ¥ H n M|K n M and
Cyu(HIK) = Cy(H n M|K ~ M).

Furthermore G/C¢(H|K) = G|Cpp=(H|K). But F7" C Ce(H[/K) by Lemma
4.7, thus
G|Ce(H|K) = G[F"Cy(H|K)

=F"M|F"Cy(HIK) @ M|Cy(HIK) @ M|Cyy(HM|K n M).

Since H/K is a chief factor of G, this isomorphism shows H n M/K n M
to be a chief factor of M.

COROLLARY. If p em, then C*(M) = M n C?(G).
REMARK. M is of p-power index in G for some p e x.

PROPOSITION 4.10. Let M be defined as in Lemma 4.9. Let |G : M| = p*
for some pen and & ={G,,G,, -+, G} be a Sylow n-system of G with
G, CM. If & = Q& n M which is a Sylow n-system of M, then

T°(G), TYG), -+, and T*(M), T*(M),---
are determined by § and R respectively. They are related by
TYM) =M n TYG),
particularly T*(M) = T*(G).

Proor. By the corollary of Lemma 4.9, C¢(M) = M n C%(G) for all
g € . Then

T'M)=Gy "M nC (M) =G, M n CYG) = M n TYG).
Since G, C M, we have in particular T°(M) = G, n C?(G) = T?(G).
PRrOPOSITION 4.11. Under the assumption of Prop. 4.10,

NM(TQ(M)) = NM(T"(G))
for all q e m.
Proor. If ¢ = p, the result follows from Prop. 4.10. Assume g # p.
By Lemma 4.7, F7 C C%(G). Let F7,/O,, be the g-complement of F7/0,..
Then FrCT%G) and is normal in G. Furthermore F7 ¢ M whence
F, M = G. Thus
T9(G) = F1.(TY(G) n M) = F,TY(M)

by Prop. 4.10. Now choose m € N, (T%(G)). Then
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(TYM))™ = (TG) n M)™ =TYG)™ n M = T4M).
Hence m € Ny (T%(M)). Choose z € Ny ((T%(M)). Then
Te(G)* = FL.To(M)* = T9(G)
which proves the proposition.

ProPOSITION 4.12. Let M of index p* in G be defined as in Lemma 4.9
for some p € x where M is F,-abnormal, Dg an F,-normalizer obtained from
a Sylow n-system K of G whose p-complement is contained in M and Dy, the
& ~normalizer of M obtained from the Sylow m-system ® n M of M. Then

D¢ = Dy,.
Proor.
Dy =NNy(TY(M)) =N Ny(T%G)) =M nNg(T%G)) = M n Deg,

by Proposition 4.11. By the proof of Prop. 4.4, D¢ C M whence Dy, = Dg.

THEOREM 4.13. An {,-normalizer of G covers every §,~cemtral chief
factor and avoids every ,-eccentric chief factor.

Proor. If G € §,, then the theorem is true by Prop. 4.3. Assume
G ¢ .. Then, by the corollary of Prop. 4.8, there exists an $,-abnormal
maximal subgroup M with G = M F7 and M is of #-index in G. Let H/K
be an §,-central chief factor of G. If H|K is a n'-chief factor, then D¢ covers
H|K, since G,.C D¢ (by induction, using Prop. 4.12) and G,.K D H. Now
let H/K be a n-chief factor. M covers H|K, otherwise M avoids H/K and
M[Coreg(M) ~ G|Ce(H|K) which would imply that M is §,-normal. By
Lemma 4.9, Hn M/K n M ~ H|K and is $,-central. Choose D¢ as in
Prop. 4.12. Then D¢ = Dy, and by induction De(K n M) D H n M. Thus
DeKD(Hn M)K = H.

If H|K is §,-eccentric, then H/K is a n-chief factor. Either M avoids
H|K, then also D¢ avoids H|K, since D¢ C M, or M covers H|K, then by
Lemma 4.9, H/K ~ H n M|/K n M which is also not g,-central. Hence,
by induction, Dy = Dg avoids HnM/KnM. Thus HAnMnDgCKnM
which implies H n Dg C K.

The theorem has been proved for a special §,-normalizer, but, since
all §,-normalizer are conjugate in G, the theorem is valid for any {,-
normalizer of G.

COROLLARY. The order of an $,-normalizer of a n-soluble group G equals
the product of all F,-central chief-factors in a chief series of G.

Several other theorems which hold in soluble groups can be easily
generalized to the z-soluble case. Particularly, one can show, that the
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% .-normalizers of a m-soluble group belong to %,, and that they are just
the minimal members of descending chains of successively $,-abnormal
subgroups. Also, any $,-covering subgroup contains an {,-normalizer and
any §,-normalizer is contained in an ,-covering subgroup.

The author is indebted to Dr L. G. Kovacs for helpful conversations.
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