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1. Introduction 

Let SC an abstract space of points x and let Jl be a o--field of subsets 
of 3C, that is a class of subsets of 2£ such that (i) X e Jl', (ii) if M e Jl 
then 3C—M e Jl and (iii) if {MJ is any sequence of elements of Jl then 
\J,M, e Jl. 

We suppose that a cr-finite measure u(-) is defined on Jl, that is, 
u(M) is a real-valued function defined for each MeJl such that (i) 
u(M) :> 0 (ii) n&jM,) = ^I/J,(MI) for each sequence of mutually disjoint 
elements of Jl, and (iii) there is at least one sequence {Mj} of mutually 
disjoint elements of Jl such that 2,jMj = X and u(Mt) < oo for each /. 

By a partition LT(S) of an element S eJl we mean a finite or countable 
system of mutually disjoint elements of Jl whose union is 5 and such that 
fi(M) < co for each MeLT(S). 

If LT^S) = {Mu}, 77a(S) = {M2j}, i, j ^ 0 are two partitions of S then 
their intersection, denoted by LJX • LT2(S) is the partition of S consisting 
of the elements of the sequence {MuM2j}, i, j 2: 0. This definition extends 
readily to the intersection 77,(S) of a finite system of partitions 
of S. If LT(S), LT^S) are two partitions of S such that each element of 
77(S) which has positive //-measure is a subset of an element of LT^S) 
then we say that 7J(S) is finer than nx (S) and write 77(S) = TTj (S). Evidently 
Oil n,(S) St n,. (5) for each / ' ^ 1, and k > 1. 

For any S e Jl we denote by Jl (S) the cr-field of all elements M € Jl 
such that M C S . 

Let F(L7) be a real-valued function on the partitions /7 = /7(S) ol 
a fixed element S e Jl. We write 

F = (Z7) lim F(Z7) 

if, to every e > 0 there is a partition 77, of S such that 

\F-F(n)\ < e 
for all partitions 77 of S such that 77 = 77,. 

When the 77-limit exists it is unique, that is, if there exists also an F' 
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such that to every E > 0 there is a partition TL'T of S which is not finer 
than 77, and such that 

\F'-F{IT)\ < E 

for all partitions 77' of S such that II' ^ TL'T, then since 

\F-F'\ ^ \F-F(II")\ + \F'-F(II")\ < 2E 

for all 77" ^ 77;' = 77, • 77;, we have F' = F. 

The 77-lirnit introduced above is a limit in the sense of Moore-Smith 
convergence, see, for example Kelley [6]. 

Let /(•) be a real-valued function on the elements of JT. In sections 
2—6 below we construct a theory of integration of /(•) with respect to the 
measure /* by writing 

^ L(S>
/ ( , )<"( - ) = ( / 7 ) U m 2™> / ( M ^ M ) 

where the summation is over all elements of the partition 77(S) of S, whenever 
the 77-limit exists. The need for such a theory arises in a number of contexts 
in the theory of probability, for example Finch [2]. Applications to the 
theory of probability will be discussed in later papers. I am indebted to 
J. E. Moyal for suggesting that Moore-Smith convergence could be an 
appropriate tool in the analysis of the probability problems which gave rise 
to the theory discussed below. The results of this paper are a direct con­
sequence of that suggestion. 

In what follows we restrict attention to integration over the a-field 
of /^-measurable subsets of SC. There is no difficulty, however, in extending 
the results to an arbitrary subset of SC. This extension may be carried out 
by introducing the Caratheodory outer measure 

/T*(X) = inf {/I(M);XCM,ME JT} 

for any subset XC3C. 

Following Carath6odory a subset M* CXIS said to be /^-measurable if 

H*(X) = FT*(XM*)+FI*(X(3IR-M*)) 

for each XC9C. 

If JT* denotes the class of all /**-measurable sets then JT CJT* and 
JT* is a <T-field of subsets of 3B". As is well-known, ¡1* is countably additive 
over the a-field JT*(S) of all sets of the form M*S, M* e JT*. If we define 
a partition of an arbitrary S C ST to be a finite or countable system of 
mutually disjoint elements of JT*(S) whose union is S and such that 
FT*(X) < 00 for each element X, of the partition then the method and 
results below remain valid. 

The integration theory below may be extended also to signed measures 
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in an obvious way by means of the Hahn-decomposition theorem. 
The theory of this paper is similar to a modification of the theory 

of Birkhoff [1] suggested by Hildebrandt [5] and derives from an early 
work paper of Frechet [4] which uses ideas due to W. H. Young. For an 
account of these and other theories of integration we refer to the review 
paper of Hildebrandt [6]. 

The theory below is, of course, much less general than that of Birkhoff 
since we consider only real-valued functions whereas Birkhoff considers 
functions taking values in a Banach space. However, the emphasis of this 
paper is rather different from that of other authors whose main interest 
has been the integration of point functions. In this paper the interest 
centres on the integration of set functions. However, in section 8, we show 
how the present theory may be applied to integrate measurable point 
functions. 

In a later paper we examine the extent to which the methods of this 
paper can be used when the set functions take values in a metric vector 
space. Finally we remark that the theory of this paper could have been 
developed by replacing the cf-field JT by a Boolean cr-algebra containing 
a null and an all element. However, with specific applications to probability 
theory in mind it seemed preferable to pursue the method adopted below. 

By a set function /(•) on JC we mean a real-valued function F(M) 
defined for each M e JL. However, we consider as equivalent two set 
functions FX, / 2 such that FX{M) / 2 (M) implies /X(M) = 0. Two equivalent 
set functions will be said to be equal almost everywhere with respect to 
H or in abbreviation, equal a.e.//. Instead of talking of an equivalence class 
of set functions we adopt the convention that a set function can be defined 
arbitrarily on the elements of JT with zero //-measure. 

LI S EJK has positive //-measure, a set function /(•) is said to be es­
sentially bounded on JK(S) if there is a partition IJ, of S such that /(•) 
is bounded on the family of all elements with positive //-measure of all 
partitions of S which are finer than LTF. 

For each element M EJV with //(Af) > 0 we define 

When MEJK and U(M) = 0 it is convenient to adopt the convention 

2. Set functions on JF 

/<+>(M) = sup {F(MX); MXCM, MXE J(, /I{MX) > 0} 
/<->(M) = - i n f {F(MX); MXCM, MXEJ/, /X(MX) > 0 } . 

(2.2) /<->(M) = F{M) = /<+>(M) = 0. 
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The set functions / < + , ( - ) . / < - ) ( ' ) a r e called the upper and lower variations, 
respectively, of /(•) on JT with respect to FT. We write 

(2.3) \F\(M) =/«+)(M)+/«->(M). 

The set function |/| (•) is called the total variation of /(•) on JL with respect 
to JJL. If MX, M%EJ(, MXCMZ and /X{MX) > 0 then 

(2.4) -/«">(Af,) ^ - / ' " ' (J fJ £ /(Mj) F<^(MX) S /<+>(M2) 

and hence 

(2-5) \F\{MX) ^\F\(M2). 

Wte prove now 

LEMMA (2.1). 7/ M EJK, FI(M) > 0 awa" |/<+>(M)| < oo to every 
(5 > 0 £Aere «'s a M , e u^, ,M(M,) > 0 AND MS C M SMCA THAT 

0^F™(ME)-F(MT)<D. 

PROOF. By the definition of / ( + l ( M ) there is an MS CM, /I(MT) > 0 
MT e JL such that 

F™(M)-6 ^ / (M,) ^ / ( + , ( M , ) ^ /<+>(Af). 

This proves the lemma. 
Using Lemma (2.1) and a result of Finch [3] we prove the important 

THEOREM (2.1). IF M EJV, 0 < FX(M) < oo AND IF /(•) IS BOUNDED ON 

JF{M) THEN TO EVERY D > 0 THERE IS A SEQUENCE {ML}, N ^ 0 OF MUTUALLY DISJOINT 

SUBSETS OF M, EACH OF WHICH BELONGS TO JT AND SUCH THAT 

(i) FI(M°S) = 0, FX(M"T) > 0, » > 0, 

(ii) 0 ^ /<+>(MJ)-/(A7J) < 6, N > 0, 

PROOF. Denote by ^ 4 the family of all /^-measurable subsets of M 
which have positive /i-measure and which satisfy condition (ii) of the 
theorem. By lemma (2.1) this family is not empty. For any element F e !FS 

we define the i?-class of F to consist of F and all the elements of which 
are disjoint to F. By a result of Finch [3] the family & s has a maximal 
7?-section, that is, a maximal set of mutually disjoint elements of 3PT. 
Since FI{M) < oo, /X(F) > 0 for each FE&T and /J. is countably additive 
there can be at most a countable number of elements of FG in a maximal 
7?-section. Let these elements be MN

T, N 2> 1. Then the maximality of the 
sequence {M^}, N ^> 1 implies that M% = M — M N

T has /^-measure 
zero, for otherwise lemma (2.1) implies the existence of an M T E ^ T 
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FI{MT) > 0 and MS C MJ thus contradicting the maximality of the sequence 
{MG}, N 2g 1. This completes the proof of the theorem. 

The following corollary is important. 

COROLLARY. (2.1). IF SEJC, /(•) IS ESSENTIALLY BOUNDED ON uf(S) THEN 
THERE IS A PARTITION FTF OF S SUCH THAT TO EVERY PARTITION II OF S WHICH IS FINER 
THAN LTF AND TO EVERY 6 > 0 THERE IS A PARTITION LTT OF S SUCH THAT 77, ^ /7 AND 

FOR EACH ELEMENT MS E LTS WHICH HAS POSITIVE P-MEASURE. 

The corollary is proved easily by taking 77, to be the partition occurring 
in the definition of essential boundedness and by applying theorem (2.1) 
to each element of the partition 77 l> 77, which has positive //-measure. 

In exactly the same way we can prove 

COROLLARY (2.2). IF S e J?, /(•) IS ESSENTIALLY BOUNDED ON JK(S) THEN 

THERE IS A PARTITION II, OF S SUCH THAT TO EVERY PARTITION II OF S WHICH IS FINER 

THAN LTF AND TO EVERY D > 0 THERE IS A PARTITION 77, OF S SUCH THAT IIS—TI AND 

FOR EVERY ELEMENT ME e IIT WHICH HAS POSITIVE [X-MEASURE. 

3. Integration of essentially bounded non-negative set functions 
Throughout this section S is an element of JT such that 0 < FT(S) < co, 

/(•) is a set function which is non-negative and essentially bounded on 
JK{S). All the partitions 77(5) of S which occur in this section will be as­
sumed to be finer than the partition 77, which occurs in the definition of 
essential boundedness. We write 

whenever the 77-limit on the right exists. When the 77-limit (3.1) exists 
we say that /(•) is 77-integrable on JK(S) with respect to FI. The summation 
occurring in (3.1) is over all elements of the partition 77(S) of S and in (3.1) 
and in similar summations below we adopt the convention (2.2). 

In order to obtain conditions under which the 77-integral exists it is 
convenient to introduce a Riemann type integral which we define in terms 
of upper and lower Darboux Sums. Thus we write 

0^ /<+>(Af , ) - / (M 4 )<<5 

0 ^ / ( M , ) + / < - > ( M , ) < < 5 

(3.1) 

(3.2) 
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( 3 ' 4 ) 1 F 5 = sup {-F<T> (77)} 

are finite. It follows at once from the monoticity implied by (3.3) 
that 

(3.5) Fs ^ F S 

and 

( F S = (77) f / < + ! ( > ( - ) 
(3.6) J - * ( S ) 

If F S = Fs = Fs we say that /(•) is 7?-integrable on JK(S) with respect to 
u and write 

(3-7) F s = ( 7 ? ) Í /(•)/*(•)• 

The following theorems estabhsh the equivalence of the R and 77 integrals 
and lead to a necessary and sufficient condition that the integral exists. 

THEOREM (3.1). If /(•) is R-integrable on JK(S) with respect to u then 
it is also LT-integrable on JV(S) with respect to u and 

(3-8) 

A necessary and sufficient condition that /(•) be R-integrable on JK(S) with 
respect to ¡J, is that the LT-integral of the total variation of /(•) on JK(S) with 
respect to u is zero, that is, 

(3-9) WL(S)W>(-) = 0. 
PROOF. If /(•) is J?-integrable then Fs = F S = Fs. From (3.3) it 

follows that (77) lim Fs(77) exists and is equal to Fs. This proves (3.8). 
When /(•) is J?-integrable it follows from (3.6) and the additivity of the 
77-limit that (3.9) is true. Conversely when (3.9) is true it follows from 
(3.6) that Fs = F S and so /(•) is ¿i-integrable. 

The next theorem in conjunction with theorem (3.1) establishes the 
equality of the 77 and 7?-integrals. 

Since /(•) is non-negative and essentially bounded on u^(S), u is completely 
additive and u(S) < oo the series in (3.2) all converge. 

From (2.4) we deduce that if TI^S) = 772(S) 

(3.3) ^ ^ Fsinj g F w p j <; F ^ » ( / / 2 ) 

Since - ^ - ' ( / 7 ) = u(S) sup {/(•)} and F^+»(77) = /*(S) inf {/(•)} 

^ 5 = inf{F<+>(77)} 
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THEOREM (3.2). / / /(•) IS IJ-INTEGRABLE ON J/(S) WITH RESPECT TO P THEN 

IT IS ALSO R-INTEGRABLE AND THE TWO INTEGRALS HAVE THE SAME VALUE 

PROOF. If /(•) is /7-integrable on JK(S) then it follows from (3.6) and 
the additivity of the //-limit that (/<+>(•)-/(•)) is //-integrable. Let FS 

be the value of the //-integral of /(•) . Then given E > 0 there is a partition 
LTE(S) such that 

\(FS-FA)-(F£>(N)-FS(N))\ < E 

for all IJ(S) S: LTE(S). But it follows from Corollary (2.1) that given any 
D > 0 there is a partition IJS(S) ^ LT,(S) such that 

0£FP(II)-F8(N)<OP(S). 

It follows at once that FS = F S . A similar argument shows that FS = F S . 
This proves the theorem. 

Finally we prove 

THEOREM (3.3). A NECESSARY AND SUFFICIENT CONDITION THAT /(•) BE II-

INTEGRABLE ON JK(S) WITH RESPECT TO FI IS THAT TO EVERY D > 0 THERE EXISTS A PARTITION 

IIS(S) SUCH THAT \F\(M) < <5 FOR EVERY ELEMENT M ELTG(S) WITH POSITIVE /I-

MEASURE. 

In order to prove the theorem we require the following 

LEMMA (3.1). / / /(•) IS LT-INTEGRABLE ON ~£(S) WITH RESPECT TO ¡I AND IF 

M„ e JK (S) HAS POSITIVE AND FINITE ¡I-MEASURE THEN 

(3.10) inf {\F\{M); MCM0, MEJZ(S), FI(M) > 0} = 0. 

PROOF. Suppose to the contrary that the infimum in (3.10) takes the 
value D > 0. Since /(•) is //-integrable it is also 2?-integrable and (3.9) is 
true. Thus there is a partition /Z,(S) such that 

(3.11) 2\FI(M)FI(M)<DFI(M0) 

for aU /J(S) ^ LTT(S). 

Let NT(S) = {M2}, N ̂  0, MN

S e JK{S) and let N^S) be the partition 
{M0, S-M0}. Writing LTLT(S) = NX -NS{S) we have 

2 \F\(M)M(M) = 1 | / [(M?M 0 )MM?M 0 ) 
ilu(S) n-0 

2i «/T(M0). 

But H^IS) ^>L7T(S) and the inequality above contradicts (3.11). Thus 
(3.10) is true and the lemma is proved. 

PROOF OF THEOREM (3.3). (a) SUFFICIENCY. Under the hypothesis 

https://doi.org/10.1017/S1446788700023405 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023405


[8] Integration of real-valued set functions in abstract spaces 209 

of the theorem it follows from (2.5) that |/ |(M) < ó for all elements 
M e 77(S) St 77, S with positive //-measure. Thus 

Z\f\(M)u(M)^du(S) ms) 
for all JJ(S) St LTS(S). Thus (3.9) is true and /(•) is 7?-integrable, hence 
also 77-integrable. 

(b) Necessity. If /(•) is 77-integrable on JK(S) with respect to u then 
it follows from lemma (3.1) that to each ó > 0 and each element M eJ/(S) 
with u(M) > 0 there is an element Ms e Jl, n(Mt) > 0, and Mt C M such 
that l/l (M,) < d. An argument similar to that used to prove corollary 
(2.1) establishes that to every 6 > 0 and every partition 77(5) of 5 there 
is a partition 774(S) Sr 77(S) such that |/|(Af) <<5 for each MeIIS{S) 
with positive //-measure. This completes the proof of the theorem. 

A set function which satisfies the conditions of theorem (3.3) will be 
said to be regular on JK(S) with respect to //. 

4. Integration unbounded non-negative set functions 

In this section S is again an element of JK such that 0 < u(S) < oo, 
/(•) is a set function which is non-negative but unbounded on ^#(S). We 
write 

(4.1) <«V(M) = ( / ( M ) " f { M ) ^ n  K 1 \ n if f(M)>n 
and define 

(4.2) (77) f /(•)//(•) = lim f <»>/(>(•) 

J JUS) n-.ooJut(S) 

whenever < M ) /(") is regular on (S) with respect to // for each n > 0 and 
the limit on the right of (4.2) exists. 

When /(•) is unbounded but essentially bounded on JK(S) it is clear 
that (4.2) yields the same integral as the last section. 

5. Integration of unrestricted set functions 

Let SeuC, 0 < /z(S) < oo and let /(•) be a set function on J/(S) 
which is not restricted to non-negative values and is not necessarily es­
sentially bounded. We write 

f(M) if f(M) Si 0 
if f(M) < 0 

(5.1) U№ = [ /(

0 

0 

-f(M) if f(M) > 0 
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so that 

(5.3) F(M) = / + ( M ) - / _ ( M ) . 

We define the i7-integral of /(•) on J / ( S ) with respect to FT by 

whenever the //-integrals on the right exist, in which case we say that 
/(•) is //-integrable on JH{S) with respect to FT. 

It follows at once that if /(•) is //-integrable then |/(-) | is also 
//-integrable and 

Finally if /I(S) = 0 we define 

(5-6) P ) L « ' ' " ( ' ) = 0 ' 

6. Integration on sets with infinite /̂ -measure 

Let {S,}, J = I B E & sequence of mutually disjoint elements of J L such 
that for each > 1, 0 < FI{ST) < co and write S = We do not 
assume that '£JLIFT(SI) < 0 0 a n ( * s o

 $
 m a y ^ a v e m n m t e /"-measure. For 

each / ^ 1 let / /(S,) = {M"}, N = 0 be a partition of S,, we define the 
sum of the partitions I I ( S T ) , 

/ / (S) = f / / (S , ) 
I - 1 

to be the partition of S consisting of the double sequence { M * } of elements 
of J H { S ) . 

Let S be an arbitrary element of J L . Since (I is o--finite on J L there 
exists a sequence of mutually disjoint elements of J T , { S , } , J ^ 0 such 
that /U(S0) = 0, 0 < /t(S,) < oo, j > 0 and S = 2^o5i- L e t /(") b e a 

//-integrable set function on J / ( S J ) for each / 2: 1, then we define 

(6-1) {II) \ / ( > ( • ) = 1 (^) f /(>(•) 

whenever the series on the right converges. 
We show now that this definition does not depend on the particular 

partition { S I } , J ^ 0 of 5 which occurs in (6.1). Explicitly we prove 

THEOREM (6.1). LET S E J I . IF / ( • ) IS A SET FUNCTION ON J ( WHICH IS I I -

INTEGRABLE ON EACH ELEMENT OF J F ( S ) WITH FINITE JU-MEASURE THEN 
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(6.2) (77) f /(•)/«(•) = (77) lim I" 2 f(M)u(M)L 

in the sense that if either side exists then so does the other and the two are equal. 

PROOF. Since /i is a-finite there is a partition {5 ,} , / _ 0 of 5 such 
that n(S0) = 0, 0 < uiS,) < oo, / > 0. Write 

F№ = 2 /(•)/*(•), / > 0 
17(S,) 

for any partition 77(Ss) of S}. By the hypothesis of the theorem 
Fs = (77) lim Ft (77) exists. Thus to each 7' S: 1 and each e > 0 there is a 
partition n,(Sf) such that 

|F , -F,(77) | < el2f 

for all 77 = 77(5#) 77, (5,). Let 

77„(S) = 2 7 7 . ( 5 , ) 

be the sum of the partitions LJt(Ss). Then 

(6.3) ?.\F,-F,(n)\<e 
i-i 

for all partitions 77 = 77(5) =• 77,(5). 
The statement of the theorem follows from (6.3) by a standard argument. 

Note that the uniqueness of the 77-limit, when it exists, established in 
section 1, ensures that the definition (6.1) does not depend on the particular 
defining sequence {5 ,} . 

Note also that (6.1) is valid when 2 u ( ^ i ) <
 0 0 • We can express the 

results of this section therefore by the remark that the 77-integral is a 
completely additive set function on J(. 

7. INTEGRATION OF POINT FUNCTIONS 

By a choice function on Jt we mean a relation which associates to each 
element M e i a point f(M) e3C. If £(M) e M for each M e J w e say 
that £(•) is a restricted choice function. The existence of a choice function 
is ensured by the axiom of choice. 

If f(x) is a real-valued point function on 3C and if £(•) is a choice func­
tion on <Jl then we can associate a set function on JK to the point function 
by means of the equation 

(7.1) ft(M) = f(S(M)). 
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If 

(7.2) ( 
S(M) = sup {/(as) :xeM} 

*(Af) = inf {/(*) r s e M } 

then for any restricted choice function £(•) we have 

(7.3) » ( J l f ) g / £ ( M ) g S ( M ) . 

The set function S(M) is monotonic non-decreasing, that is, S(MX) ^ S(M 2 ) 
when Mi C M , . It follows that for p(M) > 0, S'+>(Af) = S(M) and hence 
that \S\(M) = S(M)+S<->(M). Thus, by corollary (2.2) and theorem (3.3), 
S(M) is //-integrable on any set S of finite //-measure such that S(-) is 
essentially bounded on Jt(S). Similarly i(M) is //-integrable. 

Suppose, for simplicity, that /i{2E) < oo, 0^/ (a : ) < 1, xe8£. If f(x) 
is measurable with respect to J( that is if the sets Fa= {x : f{x) > a] 
belong to J( for each real a it follows that the sets 

are elements of J( and that for each » s£ 1, {MUn}, 1 ^ j ^ n is a partition 
of 3C. From (7.3) the total variation of / e ( -) does not exceed 1/» on any 
element of this partition whatever the restricted choice function £(•). It 
follows from theorem (3.3) that fs(-) is /7-integrable on Jl. From (7.3) we 
obtain 

Since f(x) is measurable JÍ the extreme expressions in the above inequality 
are just the lower and upper Lebesque integrals of f(x) with respect to the 
measure u, they are therefore equal. Thus the //-integral on ~M of the 
set function associated to the bounded measurable point function f{x), by 
an arbitrary restricted choice function is just the Lebesque integral of f{x) 
with respect to the measure ft. 

Conversely if the extreme expressions in the inequalities (7.4) are equal 
fs(-) is //-integrable for any restricted choice function £(•) and the value 
of the integral does not depend on £ (•). Further to any d > 0 there is a 
partition IIt of SC such that 

for all xlt x2 belonging to an element M e / / , with fi{M) > 0. It follows 
that f(x) is measurable (Jl). 

I am indebted to Mr. J. E. Moyal for suggesting some improvements 
in the presentation of the results of this paper. 

Mi,u = {* : &'-!)/« = /(*) < i In), 1 ^ J ^ 7Í, 

(7.4) 
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