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We analyse the small-scale characteristics, such as enstrophy, total strain and
normality/non-normality, in the three-dimensional, separated flow around a NACA 0018
wing using direct numerical simulations. The angle of attack is 10◦ and the Reynolds
number (based on the chord length) is Rec = 5000. The role of non-normality is
investigated by performing Schur decomposition of the velocity gradient tensor. We also
apply the Schur decomposition to derive new expressions for the production of enstrophy
and total strain arising from the mean flow inhomogeneity. We focus on two sections of
the flow, across the recirculating zone and along the transitioning shear layer, and compare
our results with homogeneous isotropic turbulence (HIT). Within the recirculating region,
the non-normality index is approximately 0 (and close to the HIT value), indicating
almost equal normal and non-normal contributions. However, in the separating layer non-
normal effects strongly dominate, especially in the region of kinetic energy growth. Only
in the decay region do the values of the non-normality index gradually approximate
HIT values. The production of enstrophy due to vortex stretching is dominated by
the mixed (interaction) term, where normal strain stretches non-normal vorticity. The
same component also dominates the strain self-amplification term. The contributions of
different QR regions to the production terms are also examined. Production due to mean
strain rate is triggered upstream compared with production due to fluctuating strain fields.

Key words: shear layer turbulence, turbulence theory, separated flows

1. Introduction
The components of the velocity gradient tensor (VGT) A are defined as Aij = ∂ui/∂x j ,
where ui is the fluctuating velocity in the i th direction, and it provides fundamental
information about the properties of small-scale structures (Sreenivasan & Antonia 1997;
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Meneveau 2011; Davidson 2015). The tensor appears in the Taylor expansion of the
velocity field around an arbitrary point in a flow, and therefore encapsulates local
information around the point. The tensor is sensitive to the non-Gaussian characteristics
of turbulent fields due to internal intermittency (Tsinober 2009). Furthermore, utilising
critical point theory, local topological properties can be analysed using the VGT (Perry &
Chong 1987; Ooi et al. 1999).

Extensive research on the VGT and its invariants has been conducted in a number of
canonical flows, such as homogeneous isotropic turbulence (HIT) (Kerr 1985; Ashurst
et al. 1987; Cantwell 1993), channel flow (Blackburn et al. 1996; Wallace 2009; Wu
et al. 2020), boundary layers (Ganapathisubramani et al. 2005; Bechlars & Sandberg
2017a), jet flows (Buxton & Ganapathisubramani 2010; Hao et al. 2021) and mixing layers
(Soria et al. 1994; Buxton et al. 2013), as well as in more complex flows, for example
around single or fractal square grids (Gomes-Fernandes et al. 2014; Zhou et al. 2014b;
Paul et al. 2017).

Traditionally, the VGT A is decomposed into a strain rate tensor SA and a
vorticity (or rotation rate) tensor Ω A, which are symmetric and skew-symmetric,
respectively. However, this decomposition has important flaws. The vorticity tensor cannot
disambiguate between pure shear and rigid-body motion (see Kolář (2007) and Das &
Girimaji (2020) for a visualisation of these motions). The strain rate tensor also cannot
disambiguate between irrotational normal strain and pure shear.

These limitations have prompted efforts to formulate a triple decomposition of A
in terms of irrotational normal-strain rate, pure shear and rigid-body rotation. Kolář
(2007) proposed such a triple decomposition that requires an orthogonal transformation
matrix, which is obtained from the solution of an optimisation problem. When A has one
real and two complex conjugate eigenvalues, Gao & Liu (2019) developed the ‘Rortex’
decomposition method, effectively splitting the rotation rate tensor into solid-body rotation
and pure shear. The magnitudes of the two components were visualised in a transitional
boundary layer in a flat plate. The work of Liu et al. (2022) is in the same direction.

Another decomposition was proposed by Keylock (2018), which splits A into two
tensors, a normal and a non-normal tensor, using the complex form of the Schur
decomposition. Das & Girimaji (2020) also derived a triple decomposition by combining
the approaches of Keylock (2018) and Gao & Liu (2019). They applied the former when A
has two complex and one real eigenvalue, and the latter when it has three real eigenvalues.
Kronborg & Hoffman (2023) proved that the standardised real Schur form is a solution to
the optimisation problem posed by Kolář (2007). In the non-rotational case (all eigenvalues
are real), the normal tensor of Keylock (2018) represents irrotational straining motions,
and the non-normal tensor represents pure shear at three mutually perpendicular planes
(see details in § 2).

The triple decomposition has provided new physical insights. For example, in forced
isotropic turbulence, Das & Girimaji (2020) found that at all Reynolds numbers, pure
shear contributes the most and rigid-body rotation the least in the Frobenius norm of the
VGT. They also noticed that enstrophy intermittency is due to the pure shear component of
vorticity (rather than solid-body motion). Recently, Arun & Colonius (2024) applied the
triple decomposition to head-on collision between vortex rings. They found that during
the turbulent decay phase, the contributions of the different components of deformation
to the velocity gradient strength (which is not stationary) are roughly invariant in time,
suggesting an equilibrium partitioning of the VGT.

The complex Schur decomposition of Keylock (2018) has also been applied to different
flows. Beaumard et al. (2019) studied the characteristics of the VGT in a near wake, two
axisymmetric jets and a planar mixing layer. They noticed that the effect of non-normality

1010 A41-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

30
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.309


Journal of Fluid Mechanics

on the turbulent dynamics is more pronounced than what is typically observed in HIT,
attributing this to the role of the pressure Hessian. Yu & Lu (2020) analysed the filtered
VGT in compressible mixing layers and identified the normal effect as the primary factor
influencing compressibility, whereas the behaviour of subgrid-scale energy dissipation
was found to be primarily linked to the non-normal part. Yu et al. (2021) found that the
non-normal component has a substantial impact on the behaviour of the VGT in wall-
bounded compressible turbulent flows, where non-normal effects influence both enstrophy
and total strain. Keylock (2022) studied the connection between the dynamics of the VGT
and ejection-sweep events in a channel flow. The study revealed that the non-normal terms
above the viscous sublayer had a significantly diminished impact on the dynamics of the
sweeps.

The aforementioned decompositions of the VGT can also be used to study the
relative contributions of the components of the production terms of enstrophy and
turbulent dissipation. The two main production terms are due to vortex stretching and
strain self-amplification. The relevant expressions were derived in Keylock (2018) for
the normal/non-normal decomposition of the fluctuating VGT. However, mean flow
inhomogeneity, i.e. mean strain and vorticity, also contributes to the generation of
enstrophy and dissipation. Currently, it is not known how the normal/non-normal
decompositions of mean and fluctuating VGTs interact to contribute to the production
of these two quantities.

The properties of the normal/non-normal decomposition of the VGT allow us to gain
additional insight into the production terms, especially vortex stretching. More specifically,
as is shown in § 2, the normal part carries the eigenvalues of the VGT. When all
eigenvalues are real, which occurs in regions 4 and 6 of the QR diagram (where Q and R
are the second and third invariants of the VGT, respectively), the normal part contains only
irrotational strain along the three perpendicular eigendirections, and the normal vorticity
component vanishes. In this case, production due to vortex stretching is only due to the
non-normal vorticity. Region 6, however, is the most populated region, but only the non-
normal vorticity produces stretching. This motivates the investigation of the contributions
of different QR regions (and the normal and non-normal strain and vorticity components
within each region) to the production of enstrophy and turbulent dissipation.

Within the aforementioned context, in the present work, we investigate the properties
of small-scale statistics (enstrophy and dissipation), as well as the VGT and its Schur
decomposition in a three-dimensional, separated and transitioning shear flow. Our
motivation stems from a lack of understanding regarding the effect of strong flow
inhomogeneity on the dynamics of inertial and dissipative ranges.

The velocity field is obtained from a direct numerical simulation of the flow around a
NACA 0018 wing with a square wingtip profile at 10◦ angle of attack. This is the same
configuration as that examined in Bilbao-Ludena & Papadakis (2023), but in the present
work, the Reynolds number is lower (Rec = 5000) and the resolution is finer. Under these
conditions, the flow separates from the leading edge, forming a transitioning shear layer
that does not reattach to the wing surface.

As mentioned above, the mean flow inhomogeneity introduces production terms in
the transport equations of enstrophy and total strain (proportional to dissipation) that
involve both fluctuating and mean strain and vorticity. We derive new expressions for
the decomposition of these terms into normal, non-normal and mixed (interaction)
components. Production terms, conditionally averaged on the QR regions with the largest
contributions, are also shown.

Our work considers the following questions. (i) How does the presence of mean
shear alter the generation of enstrophy and total strain compared with HIT across the
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recirculation zone and along the transitioning shear layer? (ii) What is the contribution of
each region of the QR plane to the production of enstrophy and total strain? (iii) What is
the effect of non-normality in the VGT on vortex stretching and strain self-amplification in
this flow? What are the dominant components in the Schur decomposition of these terms
in areas of the flow that deviate strongly from HIT? (iv) What is the role of non-normality
in the production terms of enstrophy and total strain due to mean flow inhomogeneity?

This paper is organised as follows. The traditional and Schur decompositions of the
VGT are detailed in § 2. The decomposition of the production terms of the enstrophy
and total strain transport equations for inhomogeneous flows into normal, non-normal
and mixed components is derived in § 3. Section 4 briefly describes the flow setting and
computational aspects of the simulation. Results are presented and discussed in § 5, and
we conclude in § 6.

2. Decompositions of the VGT
In the following, the velocity components in the three directions (x1, x2, x3) are denoted by
the vector U = (U1, U2, U3). Time averages are designated with angle brackets, and fluc-
tuations are represented with lowercase variables. For example, 〈Ui 〉 and ui are the mean
and fluctuating velocities, respectively, in the i th direction xi , and Ui = 〈Ui 〉 + ui . The
Reynolds decomposition is also applied to all other variables; for example, P = 〈P〉 + p
for static pressure.

For incompressible flow, the Navier–Stokes equations take the form

∂Ui

∂t
+ ∂UiU j

∂x j
= − 1

ρ

∂ P

∂xi
+ ν

∂2Ui

∂2x j
, (2.1a)

∂Ui

∂xi
= 0, (2.1b)

where ρ is the fluid density and ν is its kinematic viscosity. Taking the time average and
subtracting it from set (2.1), we get the governing equations for the fluctuating velocity
field that read

∂ui

∂t
+ ∂〈Ui 〉u j

∂x j
+ ∂ui 〈U j 〉

∂x j
= − 1

ρ

∂p

∂xi
+ ν

∂2ui

∂2x j
− ∂

(
ui u j − 〈ui u j 〉

)
∂x j

, (2.2a)

∂ui

∂xi
= 0. (2.2b)

We consider first the VGT of the fluctuating velocity field, A, with components Aij =
∂ui/∂x j . The characteristic equation of A is

λ3
i + PAλ

2
i + Q Aλi + RA = 0, (2.3)

where λi are the eigenvalues, and the tensor invariants PA, Q A and RA are defined as

PA = Tr(A) = λ1 + λ2 + λ3 = 0, (2.4)

due to the incompressibility condition (2.2b), and

Q A = 1
2

(Tr(A))2︸ ︷︷ ︸
=0

− 1
2

Tr(A2) = −1
2

Tr(A2) = λ1λ2 + λ2λ3 + λ3λ1, (2.5)

RA = −1
3

Tr(A3) = −(λ1λ2λ3). (2.6)
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Region (I) Definition F(I) (%) for HIT Flow topology (Ooi et al. 1999)

1 Q A > 0, RA > 0 11.1 Unstable-focus/contracting (UF/C)
2 Q A > 0, RA < 0 26.5 Stable-focus/stretching (SF/S)
3 Q A < 0, ΔA > 0, RA < 0 9.9 Stable-focus/stretching (SF/S)
4 Q A < 0, ΔA < 0, RA < 0 9.0 Stable-node/saddle/saddle (SN/S/S)
5 Q A < 0, ΔA > 0, RA > 0 13.0 Unstable-focus/contracting (UF/C)
6 Q A < 0, ΔA < 0, RA > 0 30.5 Unstable-node/saddle/saddle (UN/S/S)

Table 1. Occupancy fractions F(I) of the six QR regions for HIT at Reζi = 433 (data from Keylock (2018)).

The discriminant

ΔA = Q3
A + 27

4
R2

A (2.7)

characterises the eigenvalues. For ΔA < 0, all eigenvalues are real, whereas for ΔA > 0,
there is one real and two complex eigenvalues (that come in a conjugate pair). Depending
on the signs of Q A, RA and ΔA, six regions can be defined in the Q A RA plane
(traditionally known as the Q R diagram); see table 1 discussed later in § 5.3.

Traditionally, the VGT is decomposed into a symmetric tensor SA = 1/2(A + A�) and
a skew-symmetric tensor Ω A = 1/2(A − A�). That is, A = SA + Ω A, where SA and Ω A
are known as the strain rate and rotation rate tensors, respectively. Recently, Keylock (2018)
proposed an alternative decomposition of A into a normal tensor, B, and a non-normal
tensor, C:

A = B + C . (2.8)

This is accomplished by performing the complex Schur transform of the VGT:

A = UTU ∗, (2.9)

where U is a unitary matrix, i.e. UU ∗ = U ∗U = I, and the asterisk denotes conjugate
transpose (we employ complex variables because the eigenvalues of A can be complex).
Matrix T is upper triangular and has the form

T =
⎡
⎣λ1 N1,2 N1,3

0 λ2 N2,3
0 0 λ3

⎤
⎦ =

⎡
⎣λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦

︸ ︷︷ ︸
≡L

+
⎡
⎣0 N1,2 N1,3

0 0 N2,3
0 0 0

⎤
⎦

︸ ︷︷ ︸
≡N

= L + N, (2.10)

where L is a diagonal matrix that contains the eigenvalues of A and N is strictly upper
triangular. Using this decomposition of T, B is defined as

B = ULU ∗, (2.11)

and is clearly a normal tensor, i.e. BB∗ = B∗B. Tensor C is defined as

C = UNU ∗, (2.12)

and it is non-normal.
The normal tensor B carries the eigenvalues of A and can (exclusively) determine

the isotropic part of the pressure Hessian tensor Hij = ∂2 p/∂xi∂x j , H iso = (1/3)Tr(H )I,
where I is the identity matrix. Indeed, it can be easily shown (see Meneveau 2011) that

H iso = 1
3

Tr(H )I = 1
3
∇2 pI = −1

3
Tr

(
A2)I = 2

3
Q AI. (2.13)
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On the other hand, the deviatoric part of the pressure Hessian H dev requires knowledge
of the velocity field in the whole domain (in order to extract pressure from the Poisson
equation from which H dev is computed; see also Ohkitani & Kishiba 1995). Keeping the
isotropic part of the pressure Hessian (and ignoring H dev) in the exact transport equation
of the VGT leads to the restricted Euler equations, which can be written in terms of the
two invariants Q A and RA. Since these can be computed directly from the eigenvalues,
matrix B is sufficient to describe the restricted Euler equations.

When all the eigenvalues λi are real, there is a straightforward geometrical interpretation
of the tensors B and C. Tensor B is diagonal in the directions defined by the columns of
matrix U; see (2.11). Because U is unitary, these directions are perpendicular to each other.
So, B describes normal straining in these directions, and C represents pure shear (see also
Das & Girimaji 2020). Note that N is strictly upper triangular and its eigenvalues are 0
(as are the eigenvalues of C). On the other hand, in the eigenvalue decomposition of the
VGT, A = ΦLΦ−1, the columns of Φ (i.e. the eigenvectors) are not perpendicular to each
other, so the non-normal effects are included multiplicatively in the (skewed) eigenvectors.
The benefit of the Schur transform is that it decomposes the normal and non-normal
effects additively. When there are two complex eigenvalues, the decomposition cannot
be interpreted in terms of pure shear, rigid-body rotation and irrotational strain because
the transformation involves complex numbers.

A ratio can be defined to quantify the degree of non-normality of the VGT:

kBC = ‖B‖−‖C‖
‖B‖+‖C‖ , (2.14)

where ‖·‖ denotes the Frobenius norm of a tensor, for example, ‖B‖= √
Tr(BB∗). Positive

values of kBC indicate that the dynamics is dominated by normal effects, whereas negative
values indicate enhanced non-normal dynamics.

We can decompose B and C into strain and rotation rate tensors, i.e.

B = SB + Ω B, C = SC + ΩC , (2.15)

and since A = B + C, we have

SA = SB + SC , Ω A = Ω B + ΩC . (2.16)

Note that since B carries the eigenvalues of A, when all λi are real (in regions 4 and 6
of the Q A RA plane), the normal tensor B contains only irrotational strain and the vorticity
component Ω B vanishes.

It can be easily shown that

‖SA‖2= ‖SB + SC‖2= ‖SB‖2+‖SC‖2, (2.17)

‖Ω A‖2= ‖Ω B + ΩC‖2= ‖Ω B‖2+‖ΩC‖2, (2.18)

and ‖SC‖2= ‖ΩC‖2 (see Appendix A for the proof).
The second invariant Q A can be written as

Q A = −1
2

Tr
(
A2) = −1

2
Tr

((
SA + Ω A

)2
)

= −1
2

[
Tr

(
S2

A

)
+ Tr

(
Ω2

A

)]
, (2.19)

because Tr(SAΩ A) = Tr(Ω ASA) = 0. For the third invariant RA, we have

RA = −1
3

Tr
(
A3) = −1

3
Tr

(
B3) = RB, (2.20)
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because A and B have the same eigenvalues. Thus,

RA = −1
3

Tr
(
S3

A

) − Tr
(
Ω2

ASA
) = RB = −1

3
Tr

(
S2

B

) − Tr
(
Ω2

BSB
)
. (2.21)

Also RC = −1/3Tr(C3) = −1/3Tr(UN3U ∗) = −1/3Tr(N3) = 0, because N3 has 0
entries in the main diagonal and the trace is invariant under a similarity transformation.
Therefore we have

RC = −1
3

Tr
(
S3

C

) − Tr
(
Ω2

CSC
) = 0 ⇒ Tr

(
S3

C

) = −3Tr
(
Ω2

CSC
) ⇒ det(SC )

= −Tr
(
Ω2

CSC
)
, (2.22)

because Tr(S3
C ) = 3 det(SC ).

We can also define the VGT of the time-average velocity field, 〈Aij〉 = ∂〈Ui 〉/∂x j , which
can be also decomposed into normal and non-normal tensors, 〈A〉 = 〈B〉 + 〈C〉. As before,
these tensors can be further decomposed into the strain and vorticity rate tensors, i.e.
〈B〉 = SM

B + ΩM
B and 〈C〉 = SM

C + Ω M
C , where the superscript M indicates mean flow.

3. Production terms of enstrophy and dissipation and their Schur decomposition in
inhomogeneous flows

The transport equation for enstrophy 〈ωiωi 〉 is (Tennekes & Lumley 1972)

1
2

∂〈ωiωi 〉
∂t

= −〈U j 〉 ∂

∂x j

1
2
〈ωiωi 〉︸ ︷︷ ︸

Cω

−〈u jωi 〉∂〈Ωi 〉
∂x j︸ ︷︷ ︸

Pω

−1
2

∂

∂x j
〈u jωiωi 〉︸ ︷︷ ︸
Tω

+〈ωiω j sij〉︸ ︷︷ ︸
EFω

+〈ωiω j 〉〈Sij〉︸ ︷︷ ︸
EMω

+〈ωi sij〉〈Ω j 〉︸ ︷︷ ︸
Mω

+ν
∂2

∂x j∂x j

〈
1
2
ωiωi

〉
︸ ︷︷ ︸

Dω

−ν

〈
∂ωi

∂x j

∂ωi

∂x j

〉
︸ ︷︷ ︸

εω

, (3.1)

where Cω is convection by mean flow, Pω represents production by mean vorticity field,
Tω is transport by turbulent fluctuations, EFω is production via vortex stretching due
to fluctuating strain field, EMω is production due to mean strain rate field, Mω is the
mixed production term and Dω and εω represent the viscous diffusion and dissipation,
respectively. We assume steady state, so the transient term on the left-hand side of the
equation is taken to be 0.

All the production terms can be expressed using the normal and non-normal strain and
rotation tensors SB, SC and Ω B, ΩC , respectively. Starting with EFω, it can easily shown
that EFω = 4Tr〈Ω2

ASA〉, so we have

Tr
(
Ω2

ASA
) = Tr

(
(Ω B + ΩC )2(SB + SC )

)
= Tr

(
Ω BΩ BSB

) + 2Tr
(
ΩCΩ BSB

) + Tr
(
ΩCΩCSB

)
+ Tr

(
Ω BΩ BSC

) + 2Tr
(
ΩCΩ BSC

) + Tr
(
ΩCΩCSC

)
, (3.2)

but Tr(ΩCΩ BSB) = Tr(Ω BΩ BSC ) = Tr(ΩCΩ BSB) = 0 (see Appendix B) and using
(2.22) we get

Tr
(
Ω2

ASA
) = Tr(Ω BΩ BSB) − det(SC ) + Tr(ΩCΩCSB). (3.3)
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Keylock (2018) proved this expression ((2.21) in his paper) from the transport equations
of the invariants QS

B , QΩ
B , QS

C and QΩ
C , but here we have adopted a derivation from first

principles, i.e. starting from the decompositions (2.16) of SA and Ω A and substituting
directly into Tr(Ω2

ASA). This approach allows us to decompose also the mixed terms,
such as EMω = 〈ωiω j 〉〈Sij〉, that represent enstrophy production due to vortex stretching
from the mean strain rate field. To this end, we have EMω = 4Tr(〈Ω2

A〉SM
A ), where the

superscript M denotes the mean field, as already mentioned. Similarly to (3.2), we get

Tr
(
Ω2

ASM
A

)
= Tr

(
Ω BΩ BSM

B

)
+ 2Tr

(
ΩCΩ BSM

B

)
+ Tr

(
ΩCΩCSM

B

)
+ Tr

(
Ω BΩ BSM

C

)
+ 2Tr

(
ΩCΩ BSM

C

)
+ Tr

(
ΩCΩCSM

C

)
, (3.4)

but now none of the terms is identically zero. The reason for this is explained in
Appendix B and is due to the fact that the unitary matrices arising from the Schur
decomposition of the VGT for the mean and fluctuating fields, UM and U, respectively,
are not equal. Therefore, U ∗UM �= I. To the best of our knowledge, (3.4) has not appeared
in the literature before. A similar expression can be easily derived for the other mixed
production term, Mω = 〈ωi sij〉〈Ω j 〉.

Next we examine the transport equation of total strain 〈sijsij〉 that reads (Tsinober 2009)

1
2

∂〈sijsij〉
∂t

= −〈Uk〉 ∂

∂xk

1
2
〈sijsij〉︸ ︷︷ ︸

Cs

−〈uksij〉∂〈Sij〉
∂xk︸ ︷︷ ︸

Ps

−1
2

∂

∂xk
〈uksijsij〉︸ ︷︷ ︸
Ts

−1
4
〈ωiω j sij〉︸ ︷︷ ︸
EF s

−〈sijs jkski 〉︸ ︷︷ ︸
SF s

−2〈sijsik〉〈Skj 〉︸ ︷︷ ︸
SMs

+1
2
〈ωi sij〉〈Ω j 〉︸ ︷︷ ︸

Ms

−
〈
sij

∂2 p

∂xi∂x j

〉
︸ ︷︷ ︸

Hs

+ν
〈
sij∇2sij

〉
︸ ︷︷ ︸

Ds

, (3.5)

where Cs is convection by mean flow, Ps represents production by mean strain rate
gradient, Ts is transport by turbulent fluctuations, EF s is production via vortex stretching
due to fluctuating strain rate, SF s is strain self-amplification, SMs is strain amplification
by mean strain rate, Ms denotes mixed production and HS and Ds are the pressure Hessian
and viscous dissipation terms, respectively. Again, we assume steady state, so the transient
term is assumed to be 0. It can be easily shown that (EF s + SF s) − 1/2EFω = 3〈RA〉,
and thus the sign of 〈RA〉 physically expresses the excess (or deficit) of the production
of 1/2〈sijsij〉 with respect to the production of 1/4〈ωiωi 〉. The previous equation is
also valid in the instantaneous sense; thus 3RA represents the production of 1/2sijsij −
1/4ωiωi .

Production term EF s = −1/4EFω = −Tr〈Ω2
ASA〉 and its decomposition are given by

(3.3). Term SF s = −〈sijs jkski 〉 = −Tr(SASASA) = −3 det(SA), and we have

Tr(SASASA) = Tr
(
(SB + SC )3) = Tr

(
S3

B

) + 3Tr
(
S2

BSC
) + 3Tr

(
SBS2

C

) + Tr
(
S3

C

)
.

(3.6)
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However, Tr(S3
B) = 3 det(SB), Tr(S2

BSC ) = 0 (see Appendix B), Tr(SBS2
C ) =

−Tr(ΩCΩCSB) (see Appendix A) and Tr(S3
C ) = 3 det(SC ). Substituting in (3.6),

and dividing by (−3), we get

− det(SA) = − det(SB) − det(SC ) + Tr(ΩCΩCSB). (3.7)

This is equation (2.20) in Keylock (2018) proved again through direct substitution of the
first of (2.16) into Tr(SASASA).

We now turn our attention to SMs = −2〈sijsik〉〈Skj 〉, which involves the mean
strain rate field. We have SMs = −2Tr(〈SASA〉SM

A ), and applying derivation from first
principles, we get the following expression:

Tr
(
SASASM

A

)
= Tr

(
SBSBSM

B

)
+ 2Tr

(
SCSBSM

B

)
+ Tr

(
SCSCSM

B

)
+ Tr

(
SBSBSM

C

)
+ 2Tr

(
SCSBSM

C

)
+ Tr

(
SCSCSM

C

)
, (3.8)

which is similar to (3.4) and again none of the terms is identically 0. This equation
has not appeared before in the literature either. The other mixed production term Ms =
1/2〈ωi sij〉〈Ω j 〉 = 1/2Tr(〈Ω ASA〉ΩM

A ) can also be decomposed in the same way. In the
following, we apply the previously derived decompositions into normal and non-normal
components to the three-dimensional field around a finite wing.

4. Flow configuration and computational details
We consider the flow around a finite NACA 0018 wing with a square wingtip profile at
10◦ angle of attack. The aspect ratio of the wing is equal to 2, and in order to reduce the
computational cost, only half of the wing is simulated. The geometry is the same as in
Bilbao-Ludena & Papadakis (2023), but in the present work, the Reynolds number, based
on the chord C and the free-stream velocity U∞, is Rec = 5000 (in the aforementioned
reference, it was 104).

The number of finite volume cells is approximately 80 million, and the flow was
simulated using 1024 cores. It took about 60 time units (defined as C/U∞) for the flow
to reach a statistically steady state. The simulation was then restarted and continued for
another 200 time units to collect statistics. Details about the code, validation against
reference data from the literature and grid convergence tests for Rec = 104 are provided in
Bilbao-Ludena & Papadakis (2023). In the following, x, y and z represent the streamwise,
cross-stream and spanwise directions, respectively. The wingtip is located at z/C = −1
and the symmetry plane at z/C = 0. The velocity components in the three directions
(normalised with U∞) are denoted as U1, U2, U3, respectively. In the present and
following sections, the analysis focuses on the x−y plane, z/C = −0.2, which is close
to the symmetry plane.

Figure 1 shows contours of the ratio of the grid size (defined as the cubic root of the cell
volume, V 1/3) to the Kolmogorov length scale; the maximum value is approximately 1.2
at the tip of the recirculation zone. Such fine resolution and long-running time are required
to balance the enstrophy and total strain transport equations, (3.1) and (3.5), which contain
third-order correlations that can take positive and negative values. Two lines are shown
in figure 1: line A crosses the recirculation zone while line B marks the separated and
transitioning shear layer. Figure 2(a) indicates sub-Kolmogorov resolution along line A,
while figure 2(b) shows that along line B; for x/C ≈ 1.3−1.8, the resolution is very close
to Kolmogorov.
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Figure 1. Contours of the ratio of the grid size to Kolmogorov length scale, V 1/3/η, in the x−y plane at
z/C = −0.2. The dashed line A (located at x/C = 1.2) goes through the recirculating zone and line B (located
at y/C = 0.28) marks the separated, transitioning shear layer.
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Figure 2. Variation of the ratio of the grid size to the Kolmogorov length scale, V 1/3/η along (a) line A and
(b) line B. The vertical dashed lines in (a) denote the boundaries of the recirculation zone.

We are interested in the small-scale dynamics in the recirculating and transitional flow
regions. A total of 30 and 90 probes were placed along lines A and B, respectively, to
obtain velocity and pressure data for further processing.

5. Results and discussion

5.1. Mean flow characteristics
We first present and discuss the characteristics of the time-averaged flow. Figure 3(a)
shows contours of mean streamwise velocity, 〈U1〉. The flow separates from the leading
edge but does not reattach on the suction side due to the high angle of attack. The boundary
of the recirculation bubble is marked with a solid white line (contour value 〈U1〉 = 0), and
it extends up to approximately 1.4C from the leading edge. Downstream of the bubble,
figure 4(b) shows that the free-stream velocity is slowly recovered.

Figure 3(b) shows contours of the turbulent kinetic energy (TKE), k. Inside the
recirculating bubble, the values of k are finite despite the fact that production is negligible
(as evidenced by figure 3c). Instead, turbulence is sustained by turbulent diffusion from the
top and bottom shear layers. Higher values of k are found outside the bubble and extend
over a wider region compared with production. In the transitional region, k values peak
at x/C ≈ 1.4 (see also figure 4b), which is an indication that the transition process at this
point has completed. Figure 3(c) shows contours of the TKE production rate, −〈ui u j 〉〈Sij〉.
Regions of strong production are found above and below the recirculation zone due to
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Figure 3. Contours of (a) streamwise velocity 〈U1〉, (b) TKE k and (c) TKE production rate −〈ui u j 〉〈Sij〉, in
the x−y plane at z/C = −0.2.
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Figure 4. Distribution of 〈U1〉 (black line) and k (blue line) along (a) line A and (b) line B. The dashed
vertical lines in (a) indicate the boundaries of the recirculation zone.

the presence of the separating and attached shear layers emanating from the suction and
pressure sides, respectively.

The Taylor microscale in the i th direction is defined as

ζi =
√√√√ 〈ui ui 〉〈

∂ui
∂xi

〉2 , (5.1)
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Figure 5. Reynolds number based on the Taylor microscale (a) along line A and (b) along line B. Dashed
lines indicate the region upstream of transition.

and the corresponding Reynolds number is

Reζi =
√

ui uiζi

ν
. (5.2)

On average, the Taylor microscales are about 5 % of the chord length. Figure 5 shows the
variation of Reζi along lines A and B, with maximum values of approximately 80 reached.
This range corresponds to the lower end of HIT studies (Iyer et al. 2022), but is higher
compared with other direct numerical simulation studies of complex, three-dimensional
flows that focus on small scales; for example, in the wake of square grid elements where
Reζi = 30−40 (Zhou et al. 2014a, 2016; Paul et al. 2017). In the present case, there are
no homogeneous directions, and very fine resolution as well as long integration times
are needed in order to balance the transport equations of enstrophy and total strain; this
necessitates smaller values of Reζi compared with HIT. Figure 5(a) shows the largest
deviations between the three Reynolds numbers are outside the recirculation zone. Note
that the high values of Reζ1 upstream of transition are unrealistic, as k values are close to
zero (see figure 4b); we mark this region with dashed lines.

Figure 6 shows contours of 0.5〈ωiωi 〉 and 〈sijsij〉. The two quantities are maximised at
the tip of the recirculation zone and have similar values. Figure 7 shows their distribution
along lines A and B, and it can be seen that 0.5〈ωiωi 〉 has two peaks above and
below the boundary of the recirculation zone. Using (2.19), it can be easily shown
that the time average of the second invariant of the VGT is 〈Q A〉 = 0.5(0.5〈ωiωi 〉 −
〈sijsij〉). For homogeneous (but not necessarily isotropic) turbulence (HT), Q A can be
written in divergence form (see Davidson 2015); thus, 〈Q H T

A 〉 = 0, so 0.5〈ωiωi 〉H T =
〈sijsij〉H T . This is one of the Betchov (1956) relations that requires only homogeneity and
incompressibility. Therefore, figure 7(a) is the first indication that deviations from HT
appear close to the boundaries of the recirculation zone. In figure 7(b), three sections
are demarcated along line B, namely growth, peak and decay. The largest deviation
from HIT (albeit small) is between the growth and peak sections. In the decay section,
0.5〈ωiωi 〉 ≈ 〈sijsij〉, which agrees well with HT.

Figure 8 presents instantaneous snapshots of 0.5ωiωi and sijsij, and visualises why the
time averages peak at the tip of the recirculation zone. The vortical structures identified
by Q A = 2 are marked with green contour lines. In figure 8(a,c,e), 0.5ωiωi is pronounced
inside the vortical structures; see, for example, E1, E2 and E3. The dense areas of 0.5ωiωi
generally overlap with high values of sijsij, as seen in figure 8(b,d,f ). However, this is
not always the case; see vortex E4, for example. At t = 194, E1 and E2 are Kelvin–
Helmholtz vortices and are clustered around the downstream end of the bubble. As these
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Figure 6. Contours of (a) 0.5〈ωi ωi 〉 and (b) 〈sijsij〉 in the x−y plane at z/C = −0.2.
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Figure 7. Plot of 0.5〈ωiωi 〉 (blue line) and 〈sijsij〉 (black line) distribution (a) along line A and (b) along line B.

eddies are advected downstream, they are strained and interact with vortical structures that
originate from the trailing edge, like E3, generating complex vorticity and strain fields
(t = 194−194.4) that peak around the tip of the recirculation zone. These large structures
break up into smaller structures with a wide range of sizes, as is the case for E3 during
t = 194.2−194.4. Vortex E4 is an isolated spiky blob of vorticity with a high value of
0.5ωiωi . Further downstream, the observed structures are more randomly aligned and less
densely packed, as exemplified by E5 in figure 8(a).

5.2. Budgets of enstrophy and total strain transport equations
We now turn our attention to the enstrophy transport (3.1). Figure 9 shows isosurfaces
of the two production terms arising from vortex stretching due to mean strain, EMω =
〈ωiω j 〉〈Sij〉, and fluctuating strain, EFω = 〈ωiω j sij〉 (light green and pink colour,
respectively). In the background, vortical structures (with Q A = 2) are shown. Enstrophy
production starts right after transition occurs. It can be observed that EMω appears
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Figure 8. Sequence of instantaneous contours of (a,c,e) 0.5ωi ωi at (a) t = 194, (c) t = 194.2, (e) t = 194.4
and (b,d,f ) sijsij at (b) t = 194, (d) t = 194.2, (f ) t = 194.4. The light green lines mark vortical structures with
Q A = 2, while the white line marks the recirculation zone boundary.

upstream of EFω. The two production terms overlap at x/C ≈ 1.4, i.e. around the tip
of the recirculation zone.

Balancing the enstrophy equation is challenging for the flow examined due to the lack of
homogeneous directions. In order to increase the sample size, we include data over a small
spanwise distance, 0.08C , around z/C = −0.2. The budgets of the transport equation for
enstrophy along lines A and B are shown in figure 10. Outside the recirculation zone
(see figure 10a), there are two peaks of production due to vortex stretching by the mean
flow, EMω, but within the bubble, vortex stretching due to small-scale strain, EFω,
becomes dominant, and it is balanced by dissipation. The turbulent transport term, Tω,
changes sign outside the recirculation zone, while inside this zone it has negligible values.
The convection term, Cω, also plays a crucial role in balancing the equation outside the
recirculation zone.

In the transition region (see figure 10b), the primary contributor to the rapid increase in
enstrophy in the growth section is the mixed production term, EMω. This term reaches its
maximum before the peak of enstrophy, while EFω continues to grow at a much slower
pace, reaching its peak further downstream. Term EMω reaches values slightly higher
than the maximum of EFω. This picture is consistent with the instantaneous snapshot of
figure 9. In the decay section, EMω is reduced smoothly due to the lack of mean shear, and

1010 A41-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

30
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.309


Journal of Fluid Mechanics

1.0

y
x

z
1.2 1.4 1.6 1.8 2.0

0

–0.2

–0.4

–0.6

–0.8

–1

z/C

x/C

Figure 9. Isosurfaces of enstrophy production due to vortex stretching by the mean strain rate EMω =
〈ωiω j 〉〈Sij〉 and strain rate fluctuations EFω = 〈ωiω j sij〉 (light green and pink colour, respectively, with a
value of 300). Vortical structures are represented by the background grey isosurface with Q A = 2.
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Figure 10. Budgets of the transport equation of 0.5〈ωi ωi 〉 along (a) line A and (b) line B. The dashed vertical
lines in (a) denote the boundaries of the recirculation zone and in (b) demarcate the growth, peak and decay
sections (see also figure 7b).
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Figure 11. Budgets of the transport equation of 〈sijsij〉 along (a) line A and (b) line B. The dashed vertical
lines in (a) denote the boundaries of the recirculation zone and in (b) demarcate the growth, peak and decay

regions.

EFω also decays, but at a slower rate. The balancing error (indicated by the solid black
line) along line A is approximately 2 %−4 % and reaches approximately 13 %−14 % with
respect to the production peak along B. This is not perfect, but it is within acceptable
limits. Our choices of low Reynolds number, fine resolution and long integration time
have all been instrumental in achieving this.

We now focus on the transport equation for 〈sijsij〉, (3.5). Again we average over a small
spanwise distance 0.08C around z/C = −0.2 to increase the sample size. The budgets
along lines A and B are shown in figure 11. Inside the recirculation bubble (see figure 11a),
production is sustained by the fluctuating strain self-amplification term SF s and balanced
mainly by dissipation (and with vortex stretching EF s having smaller contribution). There
are two peaks of SMs (production by mean strain) outside the recirculation zone that
bracket the peaks of SF s close to the recirculation boundary. The convection term Cs
plays an important role outside the recirculation zone. Along line B (see figure 11b) SF s
and SMs are the main production terms. The peak of SF s is delayed with respect to that
of SMs but the value is significantly higher. Vortex stretching EF s and dissipation Ds
act as the main sink terms. The other terms, such as pressure Hessian Hs and convection
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Figure 12. The QR diagram for the segment x/C = 2.46−3.43 of the decay section of the transitional flow.
The six QR regions are marked. The dashed line indicates the locus of points where ΔA = 0. Contours are in
logarithmic scale.

Cs play a secondary role. The balancing error along line A is ≈ 8 %, and along line B the
maximum value is ≈ 11 % of the peak value of SF s . Again the balancing is not perfect,
yet the percentage error is small, which makes the results acceptable.

5.3. The QR regions and their contributions to vorticity stretching and strain
self-amplification

In this section, we turn our attention to the production terms, EFω = 〈ωiω j sij〉 and SF s =
−〈sijs jkski 〉, and consider the contributions of the six regions of the QR diagram to these
terms. To simplify the notation, we refer to the joint probability density function of the Q A
and RA invariants as the QR diagram, instead of the Q A RA diagram. As a reference, the
flow topology of the six regions and their occupancy fractions (defined as the percentage
of realisations) for HIT at Reζi = 433 are shown in table 1 (data from Keylock (2018),
who processed the results stored in the John Hopkins database (Li et al. 2008)). The Q R
diagram is traditionally divided into four regions based on the signs of the discriminant
ΔA and of RA. However, in the present study, we divide it into six regions, based on the
signs of three parameters (Q A, RA and ΔA), in order to compare directly with the HIT
results of table 1.

Figure 12 shows the joint probability density function in the decay section (segment
x/C = 2.46−3.43) of line B. At this spatial location, the flow is acquiring a quasi-HIT
behaviour, and contours resemble the universal teardrop shape. Similar shapes have been
reported in mixing layers (Soria et al. 1994), boundary layers (Chacin & Cantwell 2000;
Bechlars & Sandberg 2017b), turbulent jets (Beaumard et al. 2019) and single-square grid-
generated turbulence (Paul et al. 2017).

Figure 13 shows the occupancy fractions of each QR region along lines A and B.
The results were obtained by processing the signals of the instantaneous Q A and RA
invariants at each point and computing the fraction of time the VGT spends in each region.
The horizontal dashed lines indicate the HIT values reported in table 1. In figure 13(a),
the occupancy of region 2 has two clear peaks at y/C ≈ 0.05 and y/C ≈ 0.25, which
correspond to the peaks of k, 0.5〈ωiωi 〉 and 〈sijsij〉, while region 6 has a clear peak in
the middle of the bubble, matching the HIT value. Away from the recirculation zone,
enstrophy is zero; as a result, only regions 4 and 6 are occupied. In figure 13(b), the
dominant region 2 in the growth section gives way to region 6 in the peak section. The
latter dominates over half of the decay section. At the end of the domain, the occupancy
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Figure 13. Occupancy fractions of QR regions I = 1−6 along (a) line A and (b) line B. The horizontal
dashed lines correspond to HIT for Reζi = 433 (see table 1).

0 0.1 0.2 0.3

0

500

1000

(a) (b)

(c) (d )

1.0 1.5 2.0 2.5 3.0 3.5

0

500

1000

0 0.1 0.2 0.3

0

200

400

600

1.0 1.5 2.0 2.5 3.0 3.5

0

200

400

600

Recirculating flow Transitional flow

(1)
(2)
(3)

(4)
(5)
(6)

�
〈ωiωjsij〉

(1)
(2)
(3)
(4)

(5)
(6)

�
–〈sijsjk ski〉

y/C x/C

Figure 14. Contributions of different QR regions to (a,b) 〈ωiω j sij〉 and (c,d) −〈sijs jkski 〉 along lines
A and B.

of region 2 increases, closely matching the value for HIT. However, region 6 has lower
occupancy than HIT, and there are also small differences in the other regions. This may be
due to the flow inhomogeneity, and also the fact that the local Reζi is much smaller than
the HIT value.

The contributions of each QR region to the time-average values of vortex stretching,
〈ωiω j sij〉, and strain self-amplification, −〈sijs jkski 〉, are shown in figure 14. For 〈ωiω j sij〉,
regions 1 and 2 are the leading contributors across the recirculation zone, while the other
regions play a secondary role. The dominance of region 2 can be partly explained by the
higher occupancy, as indicated in figure 13. Region 1, where Q A > 0, RA > 0, acts as
a sink. The contribution of the rest of the regions is very small, even though they have

1010 A41-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

30
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.309


Journal of Fluid Mechanics

–0.1 0 0.1 0.2 0.3
0

0.5

1.0

1.0 1.5 2.0 2.5 3.0 3.5
0

0.5

1.0

–0.1 0 0.1 0.2 0.3
–0.5

0

0.5

1.0

(a) (b)

(c) (d )

1.0 1.5 2.0 2.5 3.0 3.5

–0.4

–0.2

0

0.2

Recirculating flow Transitional flow

y/C

y/C

x/C

x/C

All QR regions

kBC

F
(I

)|
k<

0

Figure 15. Variation of the non-normality index kBC along (a) line A and (b) line B, and occupancy fraction
F(I ) of non-normality (kBC < 0) across all QR regions (I = 1−6) along (c) line A and (d) line B. The dashed
pink lines correspond to HIT values for Reζ i = 433 (see Keylock 2018).

similar occupancy to region 1. In figure 14(b), region 2 is also dominant. Chu et al. (2014)
discovered that the small-scale structures belonging to the SF/S topology (regions 2 and 3)
in the outer layer of compressible turbulent boundary layers play the most important role
in enstrophy production. At the peak section, there is a mild contribution also from the
other regions, especially regions 1 and 6. For −〈sijs jkski 〉 (see figure 14c,d), region 6 is
the main contributor (approximately one half) along both lines A and B. The rest of the
regions collectively make up approximately the other half of the time-average value.

5.4. The normal and non-normal components of the VGT and their contribution to the
production of enstrophy and dissipation

The spatial variation of the non-normality index, kBC , defined in (2.14), is shown in
figure 15(a,b). Inside the recirculation zone, and for x/C ≈ 3−3.5 in the transitional
flow section, the values of kBC match approximately those of HIT. In the growth area
(x/C = 1.2−1.3), velocity gradients are highly non-normal, whereas downstream of the
peak (x/C = 1.8−2.5), they smoothly return to normal (kBC > 0); see figure 15(b). In
the growth section, Kelvin–Helmholtz instabilities grow by extracting energy from the
separated shear-layer velocity profile; this process is absent in HIT. In figure 15(c,d), the
profiles of the occupancy fraction of non-normality (across all QR regions) are shown.
Inside the recirculation zone, at y/C ≈ 0.1−0.2, and at the end of the decay regions,
x/C ≈ 3−3.5, the occupancy fraction of non-normality is ≈ 50 %, close to the HIT
value. The areas with the most frequent non-normality are found outside the recirculating
bubble and in the growth section. Notice the inverse trend between kBC and F(I )|k<0 in
figure 15(b,d); the highest kBC is correlated with the smallest occupancy fraction.

Figure 16 shows the variation of 〈‖Ω A‖2〉 (figure 16a,b) and 〈‖SA‖2〉 (figure 16c,d),
along with their normal and non-normal components in the two sections of the flow; refer
to (2.17) and (2.18). Inside the recirculating region, 〈‖Ω B‖2〉 ≈ 〈‖ΩC‖2〉 (see figure 16a),
but the non-normal component, 〈‖ΩC‖2〉, is slightly higher outside of the bubble. In
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Figure 16. Distribution of the different components of 〈‖Ω A‖2〉 (a,b) and 〈‖SA‖2〉 (c,d) along line A (a,c)
and line B (b,d).

the transitional zone (see figure 16b), the two components are of similar magnitude.
Figure 16(c,d) shows 〈‖SB‖2〉 ≈ 〈‖SC‖2〉 in the middle of the recirculating bubble,
whereas in the transitional region, the two components are equal from x/C ≈ 1.6 until the
end of the domain. The results are consistent with the kBC profiles shown in figure 15(a,b),
where kBC ≈ 0. Outside the recirculating zone, however, there is a clear dominance of
the non-normal component, 〈‖SC‖2〉. In the transitional region, as turbulence starts to
develop, 〈‖SC‖2〉 grows faster than 〈‖SB‖2〉, again in agreement with figure 15.

We proceed now with the analysis of the Schur decomposition of the production
terms due to strain self-amplification, SF s = −〈sijs jkski 〉, and vortex stretching, EFω =
〈ωiω j sij〉, (3.7) and (3.3), respectively. Figure 17 shows the decomposition of −〈det(SA)〉
(equal to −1/3〈sijs jkski 〉). When all QR regions are considered (figure 17a,b), the
interaction (mixed) term, 〈Tr(ΩCΩCSB)〉, is the main contributor to −〈det(SA)〉,
followed by the normal, −〈det(SB)〉, component. We also compute the terms conditioned
on QR region 6, the dominant region for SF s , as shown in figure 14(c,d). The
results are shown in figure 17(c,d). Now, −〈det(SB)〉 is the dominant term, followed
by 〈Tr(ΩCΩCSB)〉. The component −〈det(SC )〉 has small values in both averaging
approaches (it is close to zero when conditionally averaging on region 6). It has been
reported that the median values of this term are close to zero for other flow cases (see
Beaumard et al. 2019). This indicates that when averaging in region 6, almost all the strain
is carried by SB , while vorticity is carried by ΩC only, as already mentioned. Since in
region 6 Q A < 0, strain is in excess of vorticity, and this explains why the term −〈det(SB)〉
dominates over 〈Tr(ΩCΩCSB)〉 in this region (for both the recirculating as well as the
transitional sections of the flow).
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Figure 17. Distribution of −〈det(SA)〉 (a,b) and conditionally averaged −〈det(SA)|I=6〉 (c,d) and their
components along line A (a,c) and line B (b,d).

The variation of 〈Tr(Ω2
ASA)〉 (equal to 1/4〈ωiω j sij〉) and its Schur components, given

by (3.3), is shown in figure 18. Figure 18(a,b) shows the results from averaging over
all QR regions, while figures 18(c,d) and 18(e,f ) show conditionally averaged results
over QR regions 1 and 2, respectively; these are the two dominant regions for this
quantity (see figure 14a,b). When considering all regions (figure 18a,b), the mixed term,
〈Tr(ΩCΩCSB)〉, is dominant, followed by the normal term, 〈Tr(Ω BΩ BSB)〉, for both
flow sections. When results are conditioned on QR regions 1 and 2 (figure 18c–f ), the
normal term, Tr(Ω BΩ BSB)〉, is dominant, but the values in these two regions have
opposite signs and tend to cancel out when performing standard time averaging over all
QR regions. Term −〈det(SC )〉 remains mostly positive in all panels, but with significantly
lower values compared to the other terms, as in figure 17.

We now explore the Schur decomposition of the mean VGT. First, we analyse the spatial
footprint of the norms ‖SM

B ‖2 and ‖SM
C ‖2. Recall that ‖SM

A ‖2= ‖SM
B ‖2+‖SM

C ‖2; this is
the equivalent of (2.17) for the time-average strain rate (denoted by the superscript M).
Figure 19 shows contours of ‖SM

B ‖2 and ‖SM
C ‖2. It is observed that the peak values of the

normal component, ‖SM
B ‖2, are clustered at the leading edge of the wing and are an order

of magnitude smaller than the non-normal component, ‖SM
C ‖2. The latter is maximised

in the separated shear layers at the suction side and the attached boundary layer at the
pressure side. Term ‖SM

B ‖2 captures the normal strain at the leading edge (compression
along the stagnation streamline), while ‖SM

C ‖2 has a much higher footprint in the shear
layers (recall that it is equal to ‖ΩM

C ‖2; see Appendix A).
We can now turn our attention to the mixed production term EMω = 〈ωiω j 〉〈Sij〉, which

represents the generation of enstrophy due to mean strain. Figure 20 shows the distribution
of Tr(〈Ω2

A〉SM
A ) (equal to 1/4EMω) and its Schur components; see (3.4). A clear trend

is visible: the terms that involve the non-normal tensor SM
C – i.e. Tr(〈Ω BΩ B〉SM

C ),
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ASA)|I=2〉 (e,f ) and their Schur
components along line A (a,c,e) and line B (b,d,f ).

Tr(〈ΩCΩC 〉SM
C ) and Tr(〈ΩCΩ B〉SM

C ) – are the main contributors at the peaks for
both flow sections, whereas the terms involving the normal strain rate tensor, SM

B , have
significantly lower values. The fact that these components are weak is consistent with
figure 19, where negligible values of SM

B are found across the recirculating and transitional
regions.

Finally, we examine the mixed production term SMs = −2〈sijsik〉〈Skj 〉, which
represents the generation of strain square due to the mean strain rate field. Figure 21
presents the distribution of −Tr(〈SASA〉SM

A ) (equal to 1/2SMs) and its Schur
components (see (3.8)) along lines A and B. A similar pattern to that of Tr(〈Ω2

A〉SM
A )
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is observed. The three main contributors are −2Tr(〈SCSB〉SM
C ), −Tr(〈SCSC 〉SM

C ) and
−Tr(〈SBSB〉SM

C ); they all involve the non-normal strain rate, SM
C .

We conclude that both mixed production terms are maximised outside the recirculation
zone and between the growth and peak regions of the transition section. Both terms
involve the mean strain rate, SM , and the Schur decomposition showed that the dominant
contributions arise from the non-normal component, SM

C .
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6. Conclusions
We performed direct numerical simulation of the recirculating shear flow around a NACA
0018 wing with a square wingtip profile and investigated the dynamics of the small-scale
statistics. The simulation was carried out at a Reynolds number of 5000 and 10◦ angle of
attack. The low Reynolds number allowed us to reach Kolmogorov grid resolution and, in
certain areas of the flow, sub-Kolmogorov grid resolution. Such fine resolution is required
to balance the transport equations of enstrophy and dissipation. Statistical analysis was
conducted along two sections of the flow, one that crosses the recirculation zone (line A)
and the other along the transitioning shear layer (line B).

We characterised the role of mean shear in the generation of enstrophy and dissipation,
a mechanism absent in HIT. Vortex stretching by mean shear (EMω) grows fast in the
separated shear layer and peaks earlier than vortex stretching by fluctuating shear (EFω).
We computed the occupancy fractions of the six regions of the Q R plane along lines A
and B. Areas that approximate HIT were found in the middle of the recirculating flow.
Similarly, in the turbulent shear flow along line B, the results (partially) match HIT in the
decay section.

In order to investigate the impact of non-normality, we also performed Schur
decomposition of the VGT. Within the recirculation zone, the value of the non-normality
index kBC is close to 0, similar to HIT. Outside the recirculation zone, however, the
values are (weakly) negative, indicating the presence of non-normal effects. The strongest
deviation from HIT, with strong negative kBC , was detected in the growth section of the
separating shear layer.

We also identified the role of normal and non-normal effects on the production of
enstrophy and total strain. The dominant component of enstrophy production due to vortex
stretching from fluctuating strain is the interaction (mixed) term 〈Tr(ΩCΩCSB)〉. For
strain self-amplification, the leading term is also 〈Tr(ΩCΩCSB)〉, followed closely by the
normal term −〈det(SB)〉. We also applied the Schur decomposition to the mean VGT and
derived new decompositions for the mixed production terms that arise due to mean flow
inhomogeneity (and thus are absent in HIT). The decomposition has led to the emergence
of new terms compared with the fluctuating counterparts. It was found that generation of
enstrophy due to vortex stretching from mean strain is mainly due to Tr(〈Ω BΩ B〉SM

C ),
Tr(〈ΩCΩC 〉SM

C ) and Tr(〈ΩCΩ B〉SM
C ).
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We close the paper with some thoughts on possible future research directions. The
incorporation of mean flow inhomogeneity into the Schur decomposition opens up the
application to many other inhomogeneous turbulent flows, such as channel flow, boundary
layers, impinging jets, forward-facing steps, etc. In the present paper we focused on the
analysis of the two production terms, vortex stretching and strain self-amplification. It is
well known that vortex stretching always involves a change in length scale (see Tennekes &
Lumley 1972) and thus is one of the mechanisms that mediates the cascade of energy from
large to small scales. This motives the analysis of the energy cascade through the lens
of Schur decomposition. What is the role of the normal/non-normal parts of the VGT in
the interscale energy transfer? A mathematically rigorous approach to analyse this process
in inhomogeneous flows is the transport equation of the second-order structure function,
known as the Karman–Howarth equation (see Hill (2002) for the derivation and Yao et al.
(2022) and Yao & Papadakis (2023) for application to a transitioning boundary layer). One
can write the nonlinear interscale transfer term (that involves derivatives of triple products
of velocity differences) as a function of the non/non-normal tensors at the two points that
define the structure function and analyse the different contributions. That would provide a
fresh, and hopefully useful, perspective to study this energy transfer process.
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Appendix A. Proof that ‖SC‖2= ‖ΩC‖2 and Tr(SCSCSB) = −Tr(ΩCΩCSB)

We have

SCS ∗
C = 1

2
(C + C ∗)1

2
(C ∗ + C) = 1

4
(CC ∗ + CC + C ∗C ∗ + C ∗C)

= 1
4
(UNN ∗U ∗ + UNNU ∗ + UN ∗N ∗U ∗ + UN ∗NU ∗). (A1)

The products of two strictly upper (lower) triangular matrices, denoted as NN and
N ∗N ∗, have zero entries on their main diagonal; therefore, Tr(NN) = Tr(N ∗N ∗) = 0.
Since the trace remains invariant under a similarity transformation, Tr(UNNU ∗) =
Tr(UN ∗N ∗U ∗) = 0. However, the matrices NN ∗ and N ∗N have non-zero trace; therefore,

‖SC‖2= Tr(SCS ∗
C ) = 1

4
Tr(UNN ∗U ∗ + UN ∗NU ∗). (A2)

Tensor ΩC is a skew-Hermitian tensor, i.e. −ΩC = Ω∗
C . Thus,

ΩCΩ∗
C = 1

2
(C − C ∗)(−1

2
(C − C ∗)) = 1

4
(−CC + CC ∗ + C ∗C − C ∗C ∗)

= 1
4
(−UNNU ∗ + UNN ∗U ∗ + UN ∗NU ∗ − UN ∗N ∗U ∗). (A3)
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Since Tr(UNNU ∗) = Tr(UN ∗N ∗U ∗) = 0, we get

‖ΩC‖2= Tr(ΩCΩ∗
C ) = 1

4
Tr(UNN ∗U ∗ + UN ∗NU ∗) = ‖SC‖2. (A4)

Since SC = S∗
C and −ΩC = Ω∗

C , from (A1) and (A3), we have

SCSC + ΩCΩC = SCS ∗
C − ΩCΩ∗

C = 1
2

U(NN + N ∗N ∗)U ∗ = 1
2

UDU ∗, (A5)

where D = NN + N ∗N ∗, and therefore

(SCSC + ΩCΩC )SB = 1
2

UDU ∗ 1
2
(B + B∗) = 1

4
U(DL + DL∗)U ∗. (A6)

Tensor NN (N ∗N ∗) is strictly upper (lower) diagonal, and L is a diagonal
matrix. Therefore the products DL = NNL + N ∗N ∗L and DL∗ = NNL∗ + N ∗N ∗L∗
have 0 diagonal entries, thus Tr(DL) = Tr(DL∗) = 0. This means that Tr((SCSC +
ΩCΩC )SB) = 0, because trace remains invariant under a similarity transformation; so,
Tr(SCSCSB) = −Tr(ΩCΩCSB).

Appendix B. Triple product traces (with or without mean flow)
We now consider the triple products of two normal tensors and one non-normal tensor.
If the tensors involve only the fluctuating field, the traces are identically zero. As an
example, let us consider Tr(SBSBSC ). We can write

SBSB = 1
2
(B + B∗)1

2
(B + B∗) = 1

4
(BB + BB∗ + B∗B + B∗B∗)

= 1
4
(ULLU ∗ + ULL∗U ∗ + UL∗LU ∗ + UL∗L∗U ∗) = 1

4
UDU ∗, (B1)

where D = LL + LL∗ + L∗L + L∗L∗ is a diagonal matrix. Then SC can be written as

SC = 1
2
(C + C ∗) = 1

2
(UNU ∗ + UN ∗U ∗). (B2)

Multiplying (B1) with (B2) we obtain

SBSBSC = 1
4
(UDU ∗)1

2
(UNU ∗ + UN ∗U ∗) = 1

8
U(DN + DN ∗)U ∗. (B3)

Products DN and DN ∗ have zero diagonal entries, thus Tr(DN) = Tr(DN ∗) = 0, and since
the trace remains invariant under a similarity transformation, Tr(SBSBSC ) = 0. Similarly,
we can prove that Tr(SBSBSC ) = 0, Tr(Ω BΩ BSC ) = 0 and Tr(SBΩ BSC ) = 0.

On the other hand, Tr(SBSBSM
C ) �= 0. This is the same product as before, but the non-

normal tensor is now obtained from the mean velocity field (thus the superscript M). The
product SBSB is given by (B1), but SM

C is written as

SM
C = 1

2

(
CM + CM∗) = 1

2

(
UMNMUM∗ + UMNM∗UM∗)

, (B4)

where NM and NM∗
are the strictly upper and lower triangular tensors corresponding to

the time-average velocity field, and likewise for the unitary tensor UM . Multiplying (B1)
with (B4) we obtain
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SBSBSM
C = 1

8
(UDU ∗)

(
UMNUM∗ + UMNM∗UM∗)

= 1
8

(
UDU ∗UMNUM∗ + UDU ∗UMNM∗UM∗)

. (B5)

The unitary matrices of the fluctuating and mean velocity fields are different, U �= UM ;
thus U ∗UM �= I, and therefore Tr(SBSBSM

C ) �= 0. This also applies for products that
involve the vorticity tensor.
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KOLÁŘ, V. 2007 Vortex identification: new requirements and limitations. Intl J. Heat Fluid Flow 28 (4),
638–652.

KRONBORG, J. & HOFFMAN, J. 2023 The triple decomposition of the velocity gradient tensor as a standardized
real schur form. Phys. Fluids 35 (3), 031703.

LI, Y., PERLMAN, E., WAN, M., YANG, Y., MENEVEAU, C., BURNS, R., CHEN, S., SZALAY, A. & EYINK,
G. 2008 A public turbulence database cluster and applications to study lagrangian evolution of velocity
increments in turbulence. J. Turbul. 9, N31.

LIU, C., YU, Y. & GAO, Y.-S. 2022 Liutex based new fluid kinematics. J. Hydrodyn. 34 (3), 355–371.
MENEVEAU, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu.

Rev. Fluid Mech. 43 (1), 219–245.
OHKITANI, K. & KISHIBA, S. 1995 Nonlocal nature of vortex stretching in an inviscid fluid. Phys. Fluids

7 (2), 411–421.
OOI, A., MARTIN, J., SORIA, J. & CHONG, M.S. 1999 A study of the evolution and characteristics of the

invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141–174.
PAUL, I., PAPADAKIS, G. & VASSILICOS, J.C. 2017 Genesis and evolution of velocity gradients in near-field

spatially developing turbulence. J. Fluid Mech. 815, 295–332.
PERRY, A.E. & CHONG, M.S. 1987 A description of eddying motions and flow patterns using critical-point

concepts. Annu. Rev. Fluid Mech. 19, 125–155.
SORIA, J., SONDERGAARD, R., CANTWELL, B.J., CHONG, M.S. & PERRY, A.E. 1994 A study of the fine-

scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (2), 871–884.
SREENIVASAN, K.R. & ANTONIA, R.A. 1997 The phenomenology of small-scale turbulence. Annu. Rev.

Fluid Mech. 29 (1), 435–472.
TENNEKES, H. & LUMLEY, J.L. 1972 A First Course in Turbulence. MIT press.
TSINOBER, A. 2009 An Informal Conceptual Introduction to Turbulence. Springer Dordrecht.
WALLACE, J.M. 2009 Twenty years of experimental and direct numerical simulation access to the velocity

gradient tensor: what have we learned about turbulence? Phys. Fluids 21 (2), 021301.
WU, Y., ZHANG, W., WANG, Y., ZOU, Z. & CHEN, J. 2020 Energy dissipation analysis based on velocity

gradient tensor decomposition. Phys. Fluids 32 (3), 035114.
YAO, H., MOLLICONE, J.-P. & PAPADAKIS, G. 2022 Analysis of interscale energy transfer in a boundary

layer undergoing bypass transition. J. Fluid Mech. 941, A14.
YAO, H. & PAPADAKIS, G. 2023 On the role of the laminar/turbulent interface in energy transfer between

scales in bypass transition. J. Fluid Mech. 960, A24.
YU, J.-L. & LU, X.-Y. 2020 Subgrid effects on the filtered velocity gradient dynamics in compressible

turbulence. J. Fluid Mech. 892, A24.
YU, J.-L., ZHAO, Z. & LU, X.-Y. 2021 Non-normal effect of the velocity gradient tensor and the relevant

subgrid-scale model in compressible turbulent boundary layer. Phys. Fluids 33 (2), 025103.
ZHOU, Y., NAGATA, K., SAKAI, Y., ITO, Y. & HAYASE, T. 2016 Enstrophy production and dissipation in

developing grid-generated turbulence. Phys. Fluids 28 (2), 025113.
ZHOU, Y., NAGATA, K., SAKAI, Y., SUZUKI, H., ITO, Y., TERASHIMA, O. & HAYASE, T. 2014a

Development of turbulence behind the single square grid. Phys. Fluids 26 (4), 045102.
ZHOU, Y., NAGATA, K., SAKAI, Y., SUZUKI, H., ITO, Y., TERASHIMA, O. & HAYASE, T. 2014b Relevance

of turbulence behind the single square grid to turbulence generated by regular-and multiscale-grids. Phys.
Fluids 26 (7), 075105.

1010 A41-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

30
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.309

	1. Introduction
	2. Decompositions of the VGT
	3. Production terms of enstrophy and dissipation and their Schur decomposition in inhomogeneous flows
	4. Flow configuration and computational details
	5. Results and discussion
	5.1. Mean flow characteristics
	5.2. Budgets of enstrophy and total strain transport equations
	5.3. The QR regions and their contributions to vorticity stretching and strain self-amplification
	5.4. The normal and non-normal components of the VGT and their contribution to the production of enstrophy and dissipation

	6. Conclusions
	References

