Bull. Austral. Math. Soc. Vol. 56 (1997) [285–290]

CONVEXITÉ HOLOMORPHE INTERMÉDIAIRE DES REVETEMENTS D'UN DOMAINE PSEUDOCONVEXE

S. Asserda

Let M be a complex manifold and $L \mapsto M$ be a positive holomorphic line bundle over M equipped with a Hermitian metric h of class C^2 . If $D \subset M$ is a pseudoconvex domain which is relatively compact in M then there exists an integer r_0 such that for every $r \geqslant r_0$ and for every connected holomorphic covering $\widetilde{D} \to D$, the covering \widetilde{D} is holomorphically convex with respect to holomorphic sections of $(\pi^*(L_D^r), \pi^*h^r)$.

1. Introduction et énoncé du résultat principal

Un domaine $D \subset\subset \mathbb{C}^n$ est dit localement pseudoconvexe si tout point $x_0 \in \partial D$ admet un voisinage $U_{x_0} \subset \mathbb{C}^n$ tels que $U_{x_0} \cap D$ soit pseudoconvexe. On adopte une definition analogue pour les domaines dans les variétés analytiques complexes.

DÉFINITION 1.1: Un domaine D relativement compacte dans une variété analytique complexe M (dim_c M=n) est localement pseudoconvexe si pour tout point $x_0 \in \partial D$ il existe une carte locale (U_{x_0}, Ψ_{x_0}) passant par x_0 tels que $\Psi_{x_0}(U_{x_0} \cap D)$ soit pseudoconvexe dans \mathbb{C}^n .

Dans [4] Grauert introduit la notion de convexité holomorphe par rapport aux sections holomorphes d'un fibré vectoriel, qui généralise la convexité holomorphe ordinaire.

DÉFINITION 1.2: Soient N une variété analytique complexe, L un fibré vectoriel holomorphe au dessus de N et h une metrique Hermitienne de classe $C^2 \operatorname{sur} L$. La variété N est dite L-convexe si pour toute partie infinie $S \subset N$ sans point d'accumulation dans N, il existe une section holomorphe σ de $L \operatorname{sur} N$ telle que la fonction $\|\sigma(?)\|_h$ soit non bornée sur S.

REMARQUES.

- (i) Si L est de rang un et $D \subset\subset N$ est L-convexe alors D est localement pseudoconvexe.
- (ii) Si $D \subset\subset N$ alors la notion de L-convexité est indépendante du choix de la métrique $h \operatorname{sur} L$.

Received 18th November, 1996.

Research supported by a grant of MES.FC.RS: SC-2.17033 at FSK 1.11.95.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

La restriction de $L \operatorname{sur} D$ est notée par L_D et $\otimes^r L$ désigne le produit tensoriel de L (r fois).

Dans [1] le résultat suivant est démontré :

THÉORÈME 1.1. Soient M une variété analytique complexe et (L,h) un fibré en droites holomorphe positif sur M. Si $D \subset M$ est un domaine localement pseudoconvexe et relativement compact dans M, alors il existe un entier r_0 tel que D soit $\otimes^r L$ -convexe poir tout $r \geqslant r_0$.

Soient M, D, (L,h) comme dans le théorème précédent et \widetilde{D} un revetement holomorphe connexe de D. Il est naturel de se demander si \widetilde{D} est $(\pi^*(L_D^r), \pi^*h^r)$ -convexe pour r assez grand. Dans cette note on démontre le résultat suivant:

Théorème 1.2. Supposons que (L,h) soit positif sur M et que $D \subset M$ est localement pseudoconvex et relativement compact dans M. Alors il existe un entier r_0 tel que pour tout $r \geqslant r_0$ et tout revetement holomorphe connexe $\pi: \widetilde{D} \to D$, le revêtement \widetilde{D} est $(\pi^*(L^r_D), \pi^*(h^r))$ -convexe.

Rappelons qu'un fibré holomorphe en droites L est dit positif sur M si la (1,1)forme de courbure $c(L)_h$ est définie positive sur le fibré tangent holomorphe TM de M. Si (U,Ψ) est une trivialisation de L sur U, $L_U=\pi^{-1}(U)\longmapsto U\times \mathbb{C}$, alors la métrique h de L est donnée par

$$\|\xi\|_{h} = |\xi| e^{-\psi(x)} \quad \forall x \in U, \quad \forall \xi \in L_{x} \simeq \mathbf{C}$$

et $c(L)_h$ s'écrit

$$c(L)_h = i\partial \overline{\partial} \psi \quad \text{sur} \quad U$$

où ψ est une fonction de classe $C^2 \operatorname{sur} U$. Si (V, Φ) est une autre trivialisation alors $\psi = \phi + \log |\Psi \circ \Phi^{-1}| \quad \operatorname{sur} \quad U \cap V$ and $i \partial \overline{\partial} \log |\Psi \circ \Phi^{-1}| = 0$. Donc $c(L)_h$ est définie positif sur U si et seulement si ψ est une fonction strictement plurisousharmonique.

Si u et v sont des (p;q)-formes sur M à valeurs dans L, la quantité $\langle u,v\rangle_h$ désigne leur produit par rapport à h et une metrique donnée g sur M. L' adjoint formel de l'operateur $\overline{\partial}$ sur L est noté $\overline{\partial}^*$ et Ricci(g) désigne la courbure de Ricci de g. Pour de plus amples détails voir $[\mathbf{3},\mathbf{5}]$

2. Démonstration du théorème 1.2.

Soit S une partie infinie de \widetilde{D} sans point d'accumulation. On construit une section holomorphe σ de $\pi^*(L^r_D)$ au dessus de \widetilde{D} telle que $\|\sigma(?)\|_{\pi^*h^r}$ soit non bornée sur S. Puisqu'il suffit de considérer chaque partie infinie de S, on peut supposer que S est égale à une suite de points $\{z_\nu\}$. On pose $x_\nu := \pi(z_\nu)$.

Si la suite $\{x_{\nu}\}$ n'admet pas de point d'accumulation dans D, d'après le Théorème 1.1, pour $r \geqslant r_0$ assez grand $(r_0$ ne depend que de D), il existe une section holomorphe

s de $L^r \operatorname{sur} D$ telle que $||s||_{h^r}$ soit non bornée $\operatorname{sur} \{x_{\nu}\}$. La section holomorphe $\sigma := \pi^* s$ de $(\pi^*(L^r_D), \pi^*(h^r)) \operatorname{sur} \widetilde{D}$ est donc non bornée $\operatorname{sur} \{z_{\nu}\}$.

Si $\{x_{\nu}\}$ admet un point d'accumulation w dans D, alors on peut supposer que $x_{\nu} \to w \in D$. Soit g une métrique kählérienne complète sur D [1, Proposition 1.2] et $\tilde{g} = \pi^* g$ l'image réciproque de g. Puisque π est un revetement holomorphe, \tilde{g} est une metrique kählérienne complète sur \tilde{D} . Soit $(V, \Psi) \simeq B(0, 2R)$ une carte locale centrée en w et de rayon 2R telle que L_V soit trivial. Soit t une section holomorphe de L^r sur M telle que $t(w) \neq 0$. Quitte à prendre R assez petit, il existe un voisinage \mathcal{O} de $Y = \{x \in D; t(x) = 0\}$ dans (D, g) telle que $\overline{V} \cap \overline{\mathcal{O}} = \emptyset$.

On pose $U:=\Psi^{-1}(\mathcal{B}(0,R))$. Puisque π est un revetement, quitte à prendre R assez petit, on peut écrire $\pi^{-1}(U)=\bigcup_{\nu}U_{\nu}$ avec $x_{\nu}\in U_{\nu}$ pour ν assez grand et les voisinages U_{ν} sont disjoints deux à deux et $\pi:U_{\nu}\to U$ est biholomorphe. Soit $\Psi_{\nu}:U_{\nu}\to B(0,2R)\subset \mathbb{C}^n$ définie par

$$\widetilde{\Psi}_
u(z) := \Psi(\pi(z)) - \Psi(\pi(z_
u)) \qquad z \in U_
u.$$

L'application $\widetilde{\Psi}_{\nu}$ vérifie les propriétés suivantes:

- (1) $\widetilde{\Psi}_{\nu}(z_{\nu}) = 0$ pour chaque ν
- (2) Il existe des constantes a et b indépendantes de ν telles que: $a\widetilde{\Psi}_{\nu}^{*}g_{e} \leqslant \widetilde{\Psi}_{\nu}^{*}g \leqslant b\widetilde{\Psi}_{\nu}^{*}g_{e} \operatorname{sur} U_{\nu}$, où g_{e} est la métrique euclidienne.

Soit λ une fonction test à support dans B(0,R) telle que $\lambda=1$ dans un voisinage de 0 et $0 \le \lambda \le 1$. La fonction $\Phi: \widetilde{D} \to [-\infty, +\infty[$ définie par:

$$\Phi(z) = \begin{cases} 2n\lambda(z)\log\left|\widetilde{\Psi}_{\nu}(z)\right| & \text{si} \quad z \in \bigcup_{\nu} U_{\nu} \\ 0 & \text{ailleurs,} \end{cases}$$

est $C^{\infty} \operatorname{sur} \widetilde{D} \setminus \{z_{\nu}\}_{\nu=1}^{\infty}$ et d'après (2)

$$i\partial\overline{\partial}\Phi\geqslant -Kg$$
 au sens des courants

où K est une constante positive. De plus $e^{-\Phi}$ n'est pas sommable au voisinage de z_{ν} . Soit ξ une section holomorphe de $L \operatorname{sur} V$ telle que $t(w) \neq 0$. On considère la section s de $\pi^*(L_D) \operatorname{sur} \tilde{D}$ définie par

$$s(z) = \begin{cases} \chi(\widetilde{\Psi}_{\nu}(z))e^{r(z_{\nu})}\xi(\pi(z)) & \text{si } z \in \bigcup_{\nu} U_{\nu} \\ 0 & \text{ailleurs.} \end{cases}$$

où $r(z) := d_{\widetilde{g}}(z_0, z)$ est la distance par rapport à la métrique \widetilde{g} entre z et un point fixé z_0 de \widetilde{D} . On peut choisir la fonction test χ de sorte que la (0, 1)-forme lisse

 $\alpha:=\overline{\partial}s$ à valeurs dans $\pi^*(L_D)$ dont le support est contenu dans $\bigcup_{\nu}U_{\nu}$, s'annule dans un voisinage $\{(z_{\nu})\}\cup\mathcal{O}$. D'après (2) on a $\left|\overline{\partial}(\chi o\Psi_{\nu})\right|_{\widetilde{g}}\leqslant C \operatorname{sur} U_{\nu}$, où la constante C est indépendante de ν . D'où

$$\|\alpha\|_{h^r}^2 e^{-\Phi} \leqslant C' e^{2r(z_{\nu})}.$$

LEMMA 2.2. [7, Lemma 1.1]. Il existe une fonction $\rho: \widetilde{D} \to \mathbf{R}$ de classe C^{∞} et exhaustive vérifiant

- (a) $C_1 r \leqslant \rho \leqslant C_2 r$
- (b) $|i\partial \overline{\partial} \rho|_{\tilde{q}} \leqslant C_3$

dans $\pi^{-1}(U)$, où les constantes dépendent de U.

Soit $\left(\pi^*L_D, \pi^*h'\right)$ le fibré en droites $\pi^*(L_D)$ muni de la métrique singulière $h':=e^{-\kappa}\pi^*h$ où $\kappa=3C_1^{-1}\rho+\Phi+\tau-\log\|\pi^*t\|_{\pi^*h^r}$ et $\tau:=\pi^*\log V_g/V_M$ (V_M est la forme volume associée à la métrique kählérienne c(L) sur M). Puisque $\tau\geqslant C_5$ sur $\pi^{-1}(U)$ et $\|\xi\|_h$ (resp $\|t\|_{h^r}$) est bornée sur U, on a d'après (**)

$$\int_{\widetilde{D}} \|\alpha\|_{h'}^2 dV_{\widetilde{g}} \leqslant C' \sum_{\nu} \int_{U_{\nu}} e^{2r(z_{\nu}) - 3C_1^{-1}\rho} dV_{\widetilde{g}}.$$

On peut choisir R suffisamment petit de sorte que $U_{\nu} \subset B_{\widetilde{g}}(z_{\nu},R)$ pour tout ν et que les volumes des boules $B_{\widetilde{g}}(z_{\nu},R)$ soient uniformément bornés en ν . Pour $z \in U_{\nu}$ on a $r(z_{\nu}) - R \leqslant r(z) \leqslant C_1^{-1}\rho(z)$. D'où

$$\int_{\widetilde{D}} \|\alpha\|_{h'}^2 dV_{\widetilde{g}} \leqslant C'' \sum_{\nu} e^{-r(z_{\nu})} < \infty$$

car on peut supposer que $r(z_{\nu}) \geqslant \nu$ pour ν assez grand.

Soit f une (0,1)-forme lisse sur \widetilde{D} à valeurs dans $\pi^*(L_D)$. D'après l'inégalité de Cauchy-Schwarz, on a

$$\left(\int_{\widetilde{D}}\left|\left\langle f,\alpha\right\rangle _{h^{'}}\right|dV_{\widetilde{g}}\right)^{2}\leqslant\int_{\widetilde{D}}\left\|\alpha\right\|_{h^{'}}^{2}dV_{\widetilde{g}}\int_{\pi^{-1}(U)}\left\|f\right\|_{h^{'}}^{2}dV_{\widetilde{g}}.$$

Il existe des constantes c > 0 and d telles que $c(L) \ge c.g$ et $Ricci(c(L)) \ge d.g$ sur U. Puisque $-i\partial \overline{\partial} \log ||t|| = rc(L)$ sur U, pour r assez grand on a

$$Ricci(\widetilde{g}) + i\partial\overline{\partial}\Phi + i3C_1^{-1}\partial\overline{\partial}\rho + r\pi^*c(L_D) + \pi^*c(L_D) + i\partial\overline{\partial}\tau \geqslant c\widetilde{g} \quad \text{sur} \quad \pi^{-1}(U).$$

En utilisant l'identité de Bochner-Kodaira-Nakano en géomètrie Kählerienne [2] et (***), on déduit

$$\left(\int_{\widetilde{D}}\left|\left\langle f,\alpha\right\rangle _{h^{'}}\right|^{2}dV_{\widetilde{g}}\right)^{2}\leqslant\frac{1}{c}\int_{\widetilde{D}}\left\|\alpha\right\|_{h^{'}}^{2}dV_{\widetilde{g}}\Big(\int_{\widetilde{D}}\left\|\overline{\partial}^{*}f\right\|_{h^{'}}^{2}dV_{\widetilde{g}}+\int_{\widetilde{D}}\left\|\overline{\partial}f\right\|_{h^{'}}^{2}dV_{\widetilde{g}}\Big).$$

Puisque $\overline{\partial}\alpha=0$, il suffit de considérer les formes f $\overline{\partial}$ -fermées. Donc pour tout $f\in \mathrm{Dom}\left(\overline{\partial}^*\right)$, on a

$$\int_{\widetilde{D}} \left| \left\langle f, \alpha \right\rangle_{h'} \right|^2 dV_{\widetilde{g}} \leqslant \frac{1}{c} \Big(\int_{\widetilde{D}} \left\| \alpha \right\|_{h'}^2 dV_{\widetilde{g}} \Big)^{1/2} \Big(\int_{\widetilde{D}} \left\| \overline{\partial}^* f \right\|_{h'}^2 dV_{\widetilde{D}} \Big)^{1/2}.$$

La métrique \tilde{g} est kählérienne complète sur \tilde{D} , d'après la théorie de Hörmander [5] (version singulière [2]). Il existe une section localement intégrable β de $\pi^*(L_D)$ sur \tilde{D} telle que

$$\overline{\partial}\beta = \overline{\partial}s \qquad \text{et} \quad \int_{\widetilde{D}} \left\|\beta\right\|_{h'}^2 dV_{\widetilde{g}} \leqslant \int_{\widetilde{D}} \left\|\alpha\right\|_{h'}^2 dV_{\widetilde{g}}.$$

Puisque $e^{-\Phi}$ n'est pas sommable au voisinage de z_{ν} on a $\beta(z_{\nu})=0$. La section holomorphe $\sigma:=s-\beta$ de $\pi^*(L_D)$ sur \widetilde{D} vérifie $\|\sigma(z_{\nu})\|=e^{r(z_{\nu})}\longrightarrow \infty$. Ce qui achève la démonstration du théorème.

En utilisant les techniques précedentes et l'identité de Bochner-Kodaira-Nakano en géométrie Hermitienne [3], on peut démontrer le théorème suivant qui généralise celui de Stein [8] sur les revetement des variétés de Stein.

Théorème 2.3. Soient (X,g) une variété Hermitienne complète et (L,h) un fibré holomorphe en droites positif au dessus de X. Si X est L-convexe alors il existe un entier r_0 tel que pour tout $r\geqslant r_0$ et tout revetement holomorphe connexe $\pi:\widetilde{X}\to X$, le revetement \widetilde{X} est (π^*L^r,π^*h^r) -convexe.

REMARQUE. Le Théorème 1.2 a été démontré par Napier [6] en supposant que la frontière de D est de classe C^4 .

BIBLIOGRAPHIE

- [1] S. Asserda, 'The Levi problem on projective manifolds', Math. Z. 219 (1995), 631-636.
- [2] J.P. Demailly, 'Estimations L^2 pour l'opérateur $\overline{\partial}$ d'un fibré holomorphe semi-positif au dessus d'une variété kählérienne complète', Ann. Sci. Écol. Norm. Sup. 15 (1982), 457–511.
- [3] J.P. Demailly, Analytic geomety, (to appear).
- [4] H. Grauert, 'Bemerkenswerte pseudokonvexe mannifaltigkeiten', Math. Z. 81 (1963), 377–392.
- [5] L. Hörmander, An introduction to complex analysis in several variables, North-Holland Mathematical Library, (Third Edition revised), 1990.
- [6] T. Napier, 'Convexity properties of coverings of smooth projective varieties', Math. Ann. 286 (1990), 433-479.
- [7] T. Napier, 'Covering spaces of families of compact Riemann surfaces', Math. Ann. 294 (1992), 523-549.

[8] K.Stein, 'Uberlayerungen holomorph-vollstandiger komplexer Râume', Arch. Math. 7 (1956), 354–361.

Université Ibn Tofail Departement de Mathématiques BP 133 Kénitra Maroc