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1. Introduction

We are going to study the problem

-An = a(x)v — di(x)u — C\u{u + v), in i?,

—At> = b{x)u — d2(x)v — C2v(u + v), in fi,
du dv n^
•£- = • £ - = 0, on dQ,av av

(1.1)

where I? is a bounded and regular domain in RN, the functions a, b, d\, c^ belong to

L°?{Q) = {g € L°°(Q), g^O a . e . i n Q } ,

and c\, c<i are positive constants.
The coefficients of problem (1.1) can be interpreted as follows: we suppose that two

subpopulations of the same species live in the domain Q. The function u represents
the concentration of the adult population and v the young population. The function a
describes the young that become adults. In the same way, b is the rate of young produced
by adults.

The functions d\ and d2 can be interpreted as harvesting a portion of the populations
due to fishing. The constants c\ and C2 measure the strength of the crowding effect and
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the competition between u and v. We are interested in finding solutions of system (1.1)
with both components non-negative and non-trivial. For i = 1,2 and Si > 0 we define

C5. = {g 6 L°°(n), Si^g^O a.e. in Q}.

The pair (di, d2) S C^ x C$2 acts as a control on the fishery. For each value of the control
in C«5j x C$2 (see Theorem 2.5 below), system (1.1) has a (weak) unique positive solution

Our cost-benefit functional is defined by J : C^ x Cg2 —> K, as

J(d1,d2)= [ {Xu^^^d^x) - (d^x))2 + ̂ vdl.d2(x)d2(x) - (d2(x))2}dx, (1.2)

and in a certain sense represents the difference between revenues and cost (see [2,8,10,11]
for similar cost functionals). The positive constants A and fj, stand for the ratio of the
selling price of the fish to the cost of harvesting the populations (adults and young).

A control (d\,d2) 6 Cs1 x Cg2 is said to be an optimal control if

J(d1,d2)= sup J(ei,e2).

The main result of this paper (§ 3) is the uniqueness of the optimal control obtained
basically when parameters A, /J, are small enough. Ideas explained here can be used to
study the uniqueness of the optimal control in other problems [8,10,11].

In the scalar case, other types of conditions to obtain uniqueness of the optimal control
can be found in [6].

In the next section, after some preliminary results, we give conditions to obtain unique-
ness of the positive solution of (1.1).

In § 3, we derive optimality conditions and, in particular, under certain hypotheses,
each optimal control will be expressed in terms of the solution of an appropriate system
(the optimality system).

In §4, by using the aforementioned optimality conditions, we get uniqueness of the
optimal control. Also, a simple example is given in order to show that our conditions can
be met.

2. Existence of state solutions

The upper- and lower-solutions method [l], and the uniqueness of positive solution for a
strongly sublinear operator [1,9], are the main tools used in this section (see Theorem 2.4
for a reminder of these notions). Also, it is convenient to use some results about the
regularity of solutions for elliptic PDEs and embeddings of different Sobolev and Holder
spaces [7]. We will use Hl(fl), H2(f2), Wl*{Q) and W2'p(n) with p € (1, oo) to denote
the corresponding Sobolev spaces, and C1'a(fi), a £ (0,1) to represent the Holder spaces.
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We will need to obtain conditions that give us existence and uniqueness for a linear
system of type

= f(x), in Q,

= g(x), in/?, (2.1)

where f,g € L2{Q).
We define p\{q) (€ K), for every q G L°°(Q), as the principal eigenvalue of the corre-

sponding eigenvalue problem

—Au + qu = pit, in Q, "|
a« „ > (2.2)

It is known that pi(<?) is simple and it verifies the variational characterization

,2/ |Vu|2 + / qu-
pl(9)= _,min dn—Jn.

Jn
The function p\ : L°°(J?) —\ K is continuous, p\{q\) ^ pi{q2) if <Zi ̂  92 in /?, and pi(q +
M) = pi{q) + M for M E M. One may define <fii(q) to be the eigenfunction associated to
pi{q) verifying <j>i(q) > 0, Vx e /? and ||0i(g)||oo = 1-

Proposition 2.1. Let an,ai2,a2i,a22 be in L°°(Q) and satisfying

Pi (an) > 0, pi(a22) > 0 and (||a12||oo + I|a2i||oo)2 < 4/9i(an)/3i(a22). (2.3)

Then, Mf,g 6 L2(Q), system (2.1) has a unique solution in ^{Q) x Hl(Q).

Proof. It is enough to observe that the functional A : Hl(Q) x Hl(Q) —> K, defined
as

[ f f
n Jn Jn

f an(x)S<p+ f
Jn Jn

/ a22(x)r)ip+ / a12(x)rnp+ /
Jn Jn Jn

is coercive, i.e. 3a > 0 : A((£,r)), (£,T])) ^ a(|£&i(fi) + \v\%nn))- I n f a c t ' by ^ ^ t h e

variational characterization of pi(q), q € L°°(Q), and the Holder inequality, we deduce
that

Pi (an) ! ¥ +Pi(a22) / r?2 - (||ai2||oo + ||a2i||oo) /
Jn Jn Jnn

- (||a12||

https://doi.org/10.1017/S0013091500020897 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020897


228 O. Arino and J. A. Montero

The left-hand side, in the above inequality, is a quadratic form in the variables
and ||?7||L2(fi)> and it will be positive defined if and only if (2.3) holds. Hence, there exists
ct\ > 0 such that

\j \ (2-4)

(2.5)

0.

On the other hand, from (2.3), one infers that 3a2 > 0 satisfying

[(1 - a2)Pi(an) - a2||aii||oo][(l - a2)pi(a22) -

and, therefore,

[(1 - a 2 )pi (a n ) -

+

\\a21\\oo)

By virtue of the Holder inequality, we have

(1 - o2)pi(au) f e + (1 - a2)Pl(a22) f rf - f
Jn Jn JQ

Now, the variational characterization of pi(aii),/3i(a22) again implies

- a2) - a2) (J \VV\2 J
n

-a2

021)

n
or, equivalently,

, V), (C, V)) > <x2 [ ^ IV^|2 +

From (2.4), (2.6) and taking a = | min{aj,a2}, we deduce that A is coercive.
The proof can be concluded by using the Lax-Milgram Lemma (for a similar

see [4]).

For each e € L°°(Q), we denote e = ess infQ e and, accordingly, e = esssupfi e.
In the next theorem we give conditions to obtain a coexistence state.

Theorem 2.2. Let us assume that

qb > 8\52,

(2.6)

proof
D

a -a a,

c2g_

(2.7)
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Then, \/(di,d,2) G C^ x Cs2, there exists a coexistence state (u,v) of system (1.1), i.e.
(u,v) verifies system (1.1) with u > 0 and v > 0 in CI.

Proof. Firstly, let us consider system (1.1) with a, b, c\ and c^ positive constants and
d\, d^ non-negative constants. It is easy to check that system (1.1) has a unique constant
solution (u,v) such that 0 < u < (a/ci), 0 < v < (6/C2) in i?, if and only if ah > d\d2.
In fact, (u, v) is a solution, with positive constant components, of the system

0 = av — d\U — C\u{u + v),

0 = bu — d2V — C2v(u + v).

Now, turning back to the general case, let (u*,vt) be the unique positive constant
solution of the problem

—Au = av — 5\u — C\u{u + v), in J?,

—Av = bu — 62V — C2v(u + v), in i?,

du dv
— = — = 0, on dfi.
av dv

(2.8)

Then (ur,v*) is a subsolution of problem (1.1). In fact, (u»,w*) satisfies the following
inequalities:

—Au* = 0 ^ avt — d\u* — ciu»(u» + vt), in i?,

—Av* = 0 ^ bu* — d2U* — C2V*(u* + v*), in Q,

du* dv*
"5~ = - 5 - = 0 ̂  0, on dQ.
dv dv

Let us define u* = (a/ci) and v* = (&/C2), which, by virtue of hypotheses of equa-
tion (2.7), satisfy

-Au* = 0 > av* - diu* - cxu*{u* + v*), in Q,

-Av* = 0 > bu* - d2v* - c2v*(u* + v*), in Q,

du* dv*

^ - = ̂ - = 0^0, on an,
dv dv

and u* ^ u*, v* ^ v* in Q. As an illustration, we will show the first inequality. In fact,
the hypotheses of the theorem imply that

— (a-a) < di— +a( — ), Vx € J?,
c2 ci Vci/

and, consequently,

b , a a (a b\ . _
0 > C T — - d i — - c i — — + — , in Q.

C2 C\ C\ \C\ C2J

Now, the upper-lower-solutions method and the regularity of the coefficients ensure
the existence of a strictly positive solution (u, v) 6 (W2:P{Q))2 for p 6 (l,oo).
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In fact, the system (1.1) can be rewritten in this way

—Aw = f(x,u(x),v(x)), in /?,

-Av = g(x,u(x),v(x)), in/?,
du _ dv _
~du~"dv~ ' ° n

where f(x,u,v) = v(a(x) — c\u) — d\(x)u — c\u2 and g(x, u,v) = u(b(x) —c^v) — d2(x)v —
C2V2, for all x £ /?.

Observe that function / is increasing in v in the interval v* ^ v ^ v* (= 6/c2)> f°r

all x £ /?, u* ^ u ^ w* (= o_/c\). Accordingly, function g is increasing in the interval
u* ^ w ^ u*, for all x £ /?, u* ^ t; ^ u*. So we have

—Aw* ^ f(x,u*,v*), in /?, —— ^ 0, on dQ,

—Avt ^ g(x,u*, v*), in/?, -—^ < 0, ondQ,
du

and

—Ait* ^ f(x,u*,v*), in /?, —— ^ 0, on 5/?,

—Aw* ^ 5(a;,u*,u*), in /?, ^ 0, on 5/?.

Choose F > 0 such that the expression /(a;, w, v) + Fu is also increasing in u £ [u*,u*],
for all x £ /?, u € [u*,w*], and g(x,u,v) + Ff is increasing in v £ [v*,v*], for all x £ /?,
w S [u*,u*]. Now, by using 'maximum principle' arguments for the operator —A + F
with Neumann boundary conditions and the monotonicity properties of / + F and g + F
mentioned above, standard upper-lower-solutions type arguments complete the proof
(see [13] for details). •

Now we need to prove the uniqueness of positive solution for system (1.1). For this
purpose, the next operator is defined.

Definition 2.3. For every v £ C{Q)(M^(/?), we will denote P(v), P(v) £ C1'Q(J?) C
C(/?), the unique non-negative solution of the problem

—Au = <J{X)V — d\{x)u — Ciw(w + v), in /?,

^ = 0, on dQ.
du

Theorem 2.4. The main properties of the operator P are

(1) P is well defined;

(2) ifv £ C{Q) n L°£{Q), v ^ 0 => P(v) > 0, in Q;
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(3) P is strongly sublinear, i.e. \ft 6 (0,1), v ^ 0, v ± 0 =>• P(tv) > tP(v); and

(4) under hypothesis (2.7), P is monotone from the order-interval [0, (6/C2)] C C(O)
into the order-interval [0, (CT/CI)] C C(Q), i.e. 0 ^ u ^ v => P(u) < P(v), and

0 < v ^ u and u^v ^ P(u) < P{v) in Q.

Proof. (1) Let us show that, for each v £ C((2)nL°£(Q), problem (2.10) has one and
only one solution u, which is such that

t i e C ^ f l ) , Voe(0 , i ) .

In fact, if v = 0, and u ^ 0, by the maximum principle, then u ^ 0, and, therefore,
u = 0. If v ^ 0, v ^ 0 in Q, observe that u* = 0 and u* = a/cj are a lower solution and
upper-solution (respectively) for (2.10). Now, let w*,w* S W2'P(Q) be, for p S (l,oo),
the corresponding maximal and minimal solutions obtained by the upper-lower-solution
method of (2.10) (see [1, Corollary 6.2]); consequently, 0 ^ w, ^ w* ^ u* in i?. From
the following inequality

-A(w* - wt) + av(w* - w*) < 0,

and in view of the maximum principle, we obtain w* ^ w*. Observe that the solution
u = iv* = w* satisfies u ^ 0 in Q, since u = 0 is not a solution of problem (2.10).

We have shown the uniqueness of the solution in the strip [0, u*], but if we observe
that any positive constant M > u* is an upper solution for problem (2.10), then the
same arguments as above give us the uniqueness in the general case.

(2) This is a consequence of the maximum principle, the regularity of u (u 6 C1'a(i?),
Va € (0,1)), and the Neumann boundary condition satisfied by u (see [7,12]).

(3) Let us show that P is a strongly sublinear map. Let t 6 (0,1), v € C(J?) n L^{Q),
v^0. Then

-A{tP{v)) = t(-AP{v)) = t(av - diPiv) - Cx{P{v)f - c^vP^))

= utv - ditP(y) - dt(P(v))2 - cxtvPiv)

< otv - dxtP{v) - Cit2{P{v))2 - cxtvP{v) (2.11)

and condition dtP{v)/dv = 0 holds on dQ. From (2.11) we conclude that tP(v) is a
subsolution of problem (2.10) for tv. From the uniqueness of the non-negative solution
of (2.10), tP(v) ^ P(tv) in Q. Property (2) satisfied by P yields the other part of (3).

(4) By virtue of (2.7) and u satisfying the inequality 0 < u < (b/c2), we can take
u_/c\ as a supersolution. Therefore, 0 ^ P{u) ^ {Q_/C\). NOW, observe that inequality
0 ^ u ^ v ^ {b/c-2.) implies that P(u) is a subsolution for the problem of P(v). In fact,
we have

-AP(u) = u(o- - ciP(u)) - diP(u) -

s$ v(a - ciP{u)) - diP{u) - ciP(u)2.

The proof is completed by using the maximum principle. •

https://doi.org/10.1017/S0013091500020897 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020897


232 O. Anno and J. A. Montero

The main result of this section is the following theorem.

Theorem 2.5. Under hypothesis (2.7), problem (1.1) has a unique coexistence state
in[0,(a/Cl)]x{0,(b/c2)}.

Proof. One may consider the operator Q analogous to P such that Q(u) = v is defined
as the unique non-negative solution of

—Av = b{x)u — d,2{x)v - c2v(u + v), in fl,

-£- =0, ondJ?.
ov

Now let us define F : K c C{Q) -+KasF = QoP, here K = {w G C(Q) : w ^
0 in J?}. The operator F has at least a non-trivial fixed point in [0, (o_/cij\ x [0, (&/c2)]
via the coexistence state for the system (1.1), proved in Theorem 2.2. Conversely, any
fixed point for the operator F gives a coexistence state for system (1.1). By virtue of the
above properties of operators P and Q, the uniqueness of the positive fixed point of F is
given by the following theorem.

Theorem 2.6 (see [1, Theorem 24.2]). Let (E,K) be an ordered Banach space
whose positive cone has a non-empty interior. Suppose that D is a star-shaped subset of
K containing 0, and let f : D —> E be a strongly sublinear and strongly increasing map.
Then f has at most one positive fixed point. Moreover, if f(y) > y for some y, then f
has no positive fixed point in the order interval [0, y\.

•
3. Existence of optimal control and optimality conditions

In this section we show, under certain additional conditions, the existence of an optimal
control and we describe some of the properties that such an optimal control verifies.

Theorem 3.1. Assume (2.7). Then the optimal-control problem has a solution, i.e.
3(di,d,2) £ Cil x Cs2 such that J(di,d2) = supC6 xCg J{e\,e2).

Proof. Observe that the functional J is bounded from above. Let s = sup J and
(d^jd^) a maximizing sequence in Cs± x Cs2- Then there exists a subsequence, again
denoted by (d™,^), such that

(<%,<%) ->• (<%,(%) e CSl x CS2 weakly in L2{Q) x L2{Q)

and
(un,vn) = (iid?i(i~,«,,»,«£») -»• («*,«*) strongly in W^2{Q) x W1-2^).

In order to obtain the latter result, observe that the sequences un,vn are bounded
in W2'2(f2), and, by virtue of the Rellich-Kondrachov Theorem, W2'2{Q) is compactly
imbedded in W^2{Q).

By a limit procedure in system (1.1), we obtain u* = Udj.d
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Hence, by using the weakly lower semi-continuous property of the norm, we have

s = I lmJK, dj) = BE

= f Xu*d{ + MU*^ + lim /" -(d?)2 - (da)2 ^ J(d*lyd*2).
Jn Jn

a

The next lemma gives a more precise upper bound for the optimal control.

Lemma 3.2. Suppose (2.7) and let X,/j.eM.+ in (1.2) such that

^ < « 1 > ^<62. (3.1)

If(di,d2) is an optimal control, then

0 ^ d i < — , 0^d2^—, in Q. (3.2)

c\ c2

Proof. Define F = min{di, (ACT/CJ)}, G = min{d2> (MVC2)}- We need to prove that

d2). (3.3)

By taking UF.G and I>F,G
 as upper solution and u* and i>* as lower solution, the uniqueness

of the positive solution of (1.1) implies uptG ^ Udi,d2i
 VF,G ^ vdi,d2

 m i^-
From the above inequalities we deduce that

J(F, G)= f \uF GF-F2 + y.vF.GG - G2

Jn

^ [ Xudl.d2F -F2 + tivdud2G - G2.
Jn

We need to prove that

/ Xudud2F - F2 > / Xudlid,di - d\.
Jn Jn

In fact, in Qi = {x £ Q : di > (Xa/ci)} we get Xudltd2 ^ (Xg_/c\) ^ d\ + F, and,
therefore,

-Xudl42(-F + di) + ( - F + di)(di + F) > 0 =*• Xudud2F - F2 > Xudlt<hdi - d\.

On the other hand, in Q — Q\ we have Xudl.d2F — F2 = Xudl.d2d\ - d2.
Analogously,

fj.vdud2G-G2 > ixvdx,did2 ~dh i n ^>

and the proof is complete. •
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To obtain the optimality conditions, we need to differentiate the functional with respect
to the controls. Since the state solutions are explicitly in the functional and do depend
on the controls, we must differentiate the state solutions with respect to the controls.

Proposi t ion 3.3. Suppose (2.7). Let (u*,v*) be the solution of system (2.8) and
assume that the following inequality holds

(cr - b - c2v*)2 v*))pi(d2 + c2(u* (3-4)

where (di,d2) G C$1 x Cs2 is an admissible control and f,g G L°°(Q) are such that
(di + /? / , d2 + fig) 6 Csl x Cg2, for (3 > 0 small enough. Let us denote (udi,d2!

 vd1,d2) ^
(u,v) and (ud1+/g/,d2+/39)'Wdi+/3/,d2+/3s) as {up,vp). Then the functions

as fi \ 0, where (£, 77) is the unique solution of the following system:

- A f + [di + ci (2u + v)]£ - (a - ciu)?7 = - / u in J?,

-A77 + [d2 + c2(u + 2v)]r) - (b - c2v)£ = -gv, in fi,

5£ dn
~K~ = -K~ = 0, on oil.

Proof. One may check that the pair (ip,rjp) defined by

Up — U Vp — V

(3.5)

is the unique solution of the following system:

+ [di + d(u + up + v)]£p - (a -

-Arjp + \d2 + c2(u + v + vp)]r}p - (b -

= -fup, in Q,

= -gvp, in Q,

^ = ^ = 0, ondfl.

(3.6)

By Proposition 2.1, 3M > 0 such tha t l^l / / 1 , \VP\H1 ^ M independently on /?. Using
elliptic estimates one can see tha t boundedness actually extends to H2(Q). For any
sequence f3n \ 0, there exists a subsequence (again denoted by f3n) such that ^n -» £,
and T}n —>• 77 in Hl(Q), with (^,77) the unique solution of the above system (3.5). The
uniqueness of (£, 77) assures the convergence of the whole sequence. •

R e m a r k 3.4. Using the properties of p\, the above proposition holds true by replacing
(3.4) with

(a — b — (3.7)
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We will now derive optimality conditions. Also, we will use here the notation w+(x) =
sup{iu(:r),0} for x € fi.

Theorem 3.5. Assume (2.7) and (3.1). If(di,d2) £ C&y x Cs2 is an optimal control
satisfying (3.4), then

* = |A«(l-r)+, infiA
)+ ifij

where (u,v) is the solution of (1.1) and (r,s) is the solution of the adjoint system

-Ar + [di + ci(2u + v)]r — -(b — c2v)s = d\, in fi,

—As + [d2 + c2(u + 2v)]s (a — c\u)r = d2, in fi,
A*

-5- = -5- = 0, on dfi.

(3.9)

Proof. Note that, under the hypotheses of the theorem, system (3.9) has a unique
solution (observe that the system verified by (R,S) = (Ar, /us) is of type (3.5)). Let
f,g 6 L^ifi) be such that {dx + /3f,d2 + fig) G CSl x Cs2 as /? \ 0. By using that
(di,d2) is an optimal control, we have

if and only if

/ X(up - u)(di + 0f) + n(vp - v)(d2 + (3g) + \{3uf
Jn

+ fipvg + I -213d! f - 20d2g - 01 f - (32g2 ^ 0.
Jn

Dividing by /3 > 0 and taking /9 \ 0,

/ A£c*i + iir]d2 + Xuf + fxvg -2dif- 2d2g < 0. (3.10)
Jn

Multiplying in (3.9) the first equation by A£, the second by fir], and integrating on fi

/ AVrV£ + [di + ci{2u + v)]Xr£ - (6 - C2V)£/J.S
Jn

+ / fiVsVi]+[d2 + c2(2v+ u)]fj,sr] — (a — Ciu)Xrr] = / Xdi£ + /
Jn Jn Jn

By similar arguments with Ar and us in (3.5), we obtain

/ AVrV£ + [di + ci(2u + v)]Xr£ - (6 - c2v)£fj,s
Jn

+ / /iVsV77 + [d2 + c2(2v + U)]/J.ST] — (<r — c\u)Xrri = — / fuXr— /
Jn Jn Jn
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J Xdit; + / fid2r] + / fuXr + / gvfis = 0.
Jn Jn Jn Jn

Now, from (3.10) we have

/ —fuXr — gv/j,s + Xuf + /ivg — 2d\f — Id^g ^ 0.
Jn

(3-11)

Taking g = 0, (3.11) implies

/ / [ -
Jn

Aw + Xu- 0.

If / € L f̂ (i?), from (3.1) (which implies l̂ iloo < 5\) one deduces that there exists
Po > 0 such that di + /3f e CSl, for 0 < /? < /?0- For this reason, 2dx ̂  Au(l - r) and,
equivalently,

di > iAu(l - r), inJ?. (3.12)

Now, by taking / = — d\ and /3 < 1, one infers that

Hence, we have

In conclusion,

and, analogously,

/ di(Au(l-r)-2di) ^ 0.
Jn

= \Xu(l-r), in/?n{di>

^ iAu(l - r), in I?.

di = |Au(l -r)+, in f?,

d2 = \ in J7.

— Av = u(b — c2v) — v2[^fj,(l — s)+ + C2), in Q,

in

-As + c2(u + 2v)s (a - au)r = \iiv[(l - s)+]2, in Q,
M

du dv dr ds
-^- = ^ - = ^ - = ^ - = 0 , on OU,
av av av av

•
Corollary 3.6. Under the hypotheses of the previous theorem, if (di, d2) € Cs1 x Cs7

is an optimal control, then

di = iAu(l-r)+, in Q,

d2 = \piv(l — s)+, in Q,

where (u, v, r, s) is a solution of the optimahty system

-Au = v(a - ciu) - u2[|A(l - r ) + + cx], in Q,

(3.13)
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and

0 < u < -=, 0 < u < —. (3.14)

4. Uniqueness of the optimal control

In order to prove the uniqueness of the optimal control, we need to deduce some additional
properties of optimal controls.

Observe that, as a consequence of Proposition 3.3 and Theorem 3.5, in the previous
section the Gateaux differentiability of J was proven.

We will prove that if A, /x are small enough then (d\, c^) € / (C^ x C$2) and functional
J is Frechet continuously differentiable provided that (d\,d,2) is an optimal control. The
uniqueness of the optimal control follows from a convexity argument (see [3,5] as general
references).

Lemma 4.1. Suppose (2.7), (ut,vt) a positive solution of system (2.8) and kiX <
/j, < k2\ for k\,k,2 fixed positive constants. Let (di ,^) be an optimal control satisfying
(3.4). Then there exist Ao,/xo > 0, such that the inequalities

jAu* < di < A-=-, in Q,
c

d2 ^ / x — , in
c2

hold true for 0 < A < Ao and 0 < \i <

Proof. Take X,fi satisfying (3.1). Then, from Theorem 3.5, (dijCfe) verifies (3.8).
Hence the proof is completed by showing that r, s < | in i? when A, /x are small enough.
Prom the proof of Proposition 2.1, one deduces that there exists a positive constant c
such that (R, S) = (Xr, /J,S) satisfying

Again, by elliptic regularity |r|oo < cA, |s|oo < cfi (here c denotes different constants in
each case). This last fact is a consequence of the Rellich-Kondrachof Theorem and the
elliptic equations verified by r and s. If N ^ 2, by the arguments mentioned above, r,s e
LP{f2) for p e (l,oo), in particular for p € (iV,oo). So, r,s 6 W1-P(i?) ^ C°'a{Q) for
a = 1 - (iV/p). On the other hand, if TV > 2, r, s € tf1^) ^ Lri (/?), with n = 2N/{N-
2) > 2 = r0. In this way, as - A r + [dx + cx(2u + v))r = (/x/A)(6 - c2u)s + di € Lri(/?),
then r e V71>ri and, analogously, s € W1'7"1. If ri ^ N, again the Rellich-Kondrachov
Theorem finishes the proof. If r\ < N, then we can repeat the same process and we will
obtain n0 such that rno ^ N, since {rn} < N, Vn 6 N, yields a contradiction. •

P r o p o s i t i o n 4 .2 . Under hypotheses (2.7) and (3.7) and taking 0<\<\0,0<fi<

Mo f-Vh/xo as in Lemma 4.1), the functional
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is continuously Frechet differentiable. (Here the pair (ut,vt) is again the unique positive
solution of system (2.8).)

Proof. Let (d\,d2) be an admissible control in

A — ,A— x \n— ,/j.—
4 cij [ 4 c2

and / , g € L°°(Q). Proposition 3.3 can be applied. Consequently,

Km (l/(3){J(di + (3f,d2 + (Ig) — J(di,d2)} = J'(d\, d2)(f,g),
/3-vO

where

J (di, d2)( / , g) = I A^<ii + HT]d2 -\- Xuf + \ivg — 1d\f — 2d2g
Jn

1 — r) — 2d\]f + [/xu(l — s) — 2d2]g, (4-1)f
where (r, 5) is defined as in Theorem 3.5. The boundedness of terms in (4.1) gives us the
continuity of linear operator J'(di,d2). Now, take a sequence (e",e™) in

w* , £ l [ t), 6 1
4 C\\ [ 4 c2]

with (e™,e2) ->• (ei,e2). By similar arguments to those applied in Proposition 3.3, one
obtains (un,vn) -> (u,v) and (rn,sn) -> (r,s) in ff^/?) n L°°(/?). Therefore,

J : A—,A— x \[x—,fi—\ -+WL
[ 4 dj [ 4 c2j

is continuously differentiable. •

Remark 4.3. It is clear that, under the hypotheses of the previous proposition, func-
tions

u,v : [ A ^ I
are Lipschitz continuous. This is a consequence of the Gateaux differentiability of (u, v),
the uniform estimates for (£,77) with respect to (d\,d2), and standard regularity argu-
ments for elliptic equations. Let L be a common Lipschitz constant for u and v.

Lemma 4.4. Consider hypotheses (2.7), (3.7) and taking 0 < A < Ao, 0 < n < fj-o
(the values Ao and /xo determined in Lemma 4.1) and (u*,u«) the positive solution of
system (2.8). Then the functions

r,s: [Ay,A|] x

defined in Theorem 3.5, are locally Lipschitz continuous.
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Proof. Choose k > 0 small enough for the following inequality to be verified

(a - c\ut +b- c2vt)
2 < 4(ci(2u* + vt) - k)(c2(ut + 2vt) - k).

Then system (3.9) may be rewritten as

( - A + k)r + [di + ci(2u + v)- k]r - ^{b - c2v)s = d1} in Q,
A

(-A + k)s + [d2 + c2(u + 2v) - k]s (a - c\u)r = d2, in Q,

dr ds
— = — = 0, on dQ,
ov ov

or, equivalently,

I \-di - cx (2u + v) + k}r + y (b - c2v)s + dx ̂
= F(r,s,d1,d2).

x

—d2 — c2{u + 2v) + k]s H—(a — C\u)r + d2
fj /

The function F is linear and continuous with respect to r and s, so F is continuously
Frechet differentiable in {r,s). Moreover, F is Lipschitz continuous with respect to the
other variables {d\,d2). The implicit function theorem ensures that the map (di,d2) i->
(r, s) is locally Lipschitz continuous. •

Theorem 4.5. Assume hypotheses (2.7), (3.7) and fciA < fi < k2X for k\,k2 fixed
positive constants (as in Lemma 4.1). Then there exist X\,fj,i > 0 such that if 0 < A <
Ai,0 < ii < HI, there exists a unique optimal control.

Proof. Define

K = < (di,d2) £ \^-r,^—\ x M~)M— : (di,0^2) is an optimal control >,
I [ 4 cij [ 4 c2j J

where (u*,vt), A and \x are taken as in Lemma 4.1. Let us begin by showing that K C
L°°{fl) x L°°{Q) is precompact. In fact, take (d™, d£) a sequence of elements of K. From
Theorem 3.5 and Lemma 4.1 we deduce that

d? = \\un{\ - rn),

± l - sn).

However, sequences (un, vn) and (rn, sn) admit subsequences which converge in C1>Q(/?),
a € (0,1), in particular in L°°(J?) (recall that both sequences are bounded in W2'P(Q),
p e (l,oo)). Consider the compact set co(K), the closed convex hull of K. The function
co(K) -»• LX(Q) x L°°(/2), (di,d2) '—» (u(l - r),v{l - s)) is Lipschitz continuous, L
again denoting its Lipschitz constant. Take \x < min{A0, (1/L)}, fj,i < min{/j,0, (1/L)}.
In this situation we will prove that J' : co(K) -> {L°°(Q) x L°°{Q))*, denned as

J'(dud2)(f,g)= f [A«(l - r) - 2di}f + ^ ( 1 - s) - 2d2}g, V/ ,g € L°°(Q),
Jn
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is strictly monotone, that is

(J'(d1,d2)-j'(d1,d2),(d1,d2)-(d1,d2))<o, \/(dud2), (dud2)ec5{K). (4.2)

Consequently, J is strictly concave on co(K), and, therefore, K reduces to a singleton.
Let us see the latter. The choice of A and /j, implies

(-2 + AL)|di - Ji | 2 + (-2 + ^L)\d2 - d2\
2 + |di - di| \d2 - d2\L(\ + n)

< -\d1-di\2-\d2-d2\2 + 2\d1-di\\d2-d2\ ^ 0,

and it follows that

(J'(d1,d2) - ./'(di.daMda.da) - {dud2)) < 0,

for all (d\, d2), (d\, d2) S co(K). Obviously, the above inequality implies that there is

only one point in K. •

Example 4.6. Consider the problem of control where a = b are constant functions,

<̂i = $2, and Ci = c2. In this case, if a > 5, Theorem 2.2 may be applied with u* =

(a — S)/2c = w* as lower solutions. If, in addition 26 < a, condition (3.7) holds true, and,

consequently, if X,fx are small enough, the unique optimal control (^1,^2) 6 Cj x ft is

described by Corollary 3.6.
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