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TRACE CLASSES AND QUADRATIC FORMS 
IN THE MODULAR GROUP 

BENJAMIN FINE 

ABSTRACT. The Modular Group M is PSL2(Z) the group of linear fractional trans­
formations with integral entries and determinant one. M has been of great interest in 
many diverse fields of Mathematics, including Number Theory, Automorphic Function 
Theory and Group Theory. In this paper we give an effective algorithm to determine, 
for each integer d, a complete set of representatives for the trace classes in trace d. This 
algorithm depends on the combinatorial group theoretic structure of M. It has been sub­
sequently extended by Sheingorn to the general Hecke groups. The number h{d) of trace 
classes in trace d is equal to the ideal class number of the field Q(\/d2 — 4). The algo­
rithm mentioned above then provides a new straightforward computational procedure 
for determining h{d). Finally as an outgrowth of the algorithm we present a wide gener­
alization of the Fermât Two-Square theorem. This last result can also be derived from 
classical work of Gauss. 

1. Introduction. Fermat's two-square theorem in its general form states that — 1 is 
a quadratic residue modulo n—or equivalently the equation JC2+1 = 0 is solvable modulo 
n—if and only ifn = u2 + v2 for some integers w, v with (w, v) = 1. In [3] a proof of this 
was given which involved the group theoretical structure of the Modular Group M = 
PSL2(Z) and which was in a sense independent of number theory. This was generalized 
in [4], [5] to show that many rings—called sum of squares rings—satisfy a Fermat's 
two-square theorem. Using similar techniques Rosenberger and Kern-Isberner [9] further 
generalized this to different equations. 

In this paper we present an effective algorithm, based on the combinatorial group the­
oretic structure of M, to determine a complete set of representatives for the trace classes 
for any trace d. It has been pointed out to us by M. Sheingorn that this algorithm can be 
extended to the Hecke Groups in general [13]. This algorithm then gives a new straight­
forward technique for counting h(d), the ideal class number of the field Q(Vd2 — 4). 
While much work has gone into determining the values of h(d) (see [2], [12], [15], [16]) 
and the structure of so-called non-parabolic subgroups this is as far as we can determine 
the first group theoretical algorithm to give specific hyperbolic class representatives. 

As a further consequence of this algorithm we give the following wide generaliza­
tion of Fermat's two-square theorem which can also be derived from work of Gauss [8]. 
Given a positive integer d, there exists a finite set/i,</(*, v), fzjfay),..., fh(d),d(x,y) of 
integral quadratic forms each of discriminant d2 — 4 such that for any integer n the equa­
tion x2 + dx + I = 0 is solvable modulo n if and only if n — ftjia, b) for some / and 
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some integers a, b with (a, b) = 1. Further the set {//,</} are unique up to an equivalence 
relation on quadratic forms. The number h{d) above is the ideal class number of the field 
Q(Vd2 — 4) and we give an effective procedure given d to determine the {/i,̂ (jc, y)}. Note 
that Fermat's two-square theorem is precisely the above with d = 0 and thus the equation 
x2 + 1 = 0. In this case h(0) = 1 and the quadratic form is/(jc, y) = x2 + y2. 

2. Trace classes in the modular group. Recall that the classical Modular Group 

M is PSL2(Z) the group of 2 x 2 projective matrices with integral entries and determi­

nant one. The elements of M can be considered as projective matrices ± I with 

a, b, c, d rational integers and ad — bc— 1. Equivalently the elements can be considered 
as linear fractional transformations z1 = -^ again witha,b,c,d G Z and ad— be = 1. 

Multiplication of such transformations is done via matrix multiplication. We will use 
both interpretations as necessary. 

We identify the following transformations: 

x : z = — l/z and y : z — — l / z + 1. 

Important also for our further work are the transformations 

xy : z — z + 1 and xy2 : z = z/z + 1. 

Group theoretically M is generated by x and y and can be presented as (see [3], [12]) 

M= (x^y-.x2 =y3 = 1). 

This has the structure of a free product of the cyclic group of order 2 generated by x and 
the cyclic group of order 3 generated by y. From this we obtain that any element g G M 
has a unique representation as a word W(x,y) in x and y. That is g = JC*1/*1 • • ^"y"" 
where t\ — 0 or 1, tl• = 1, / = 2 , . . . , n and w, = 0,1 or 2 if / = 1, . . . , n. When we refer 
to an element of M as a word we mean the element the word represents. 

Since conjugate matrices have the same trace the conjugacy classes in M break down 
by trace. A trace class in M is a conjugacy class all of the same trace. For a given positive 
integer d the number of trace classes in trace d is given from the Lattimer-MacDuffee 
Theorem by the ideal class number of the field Q(y/d2 — 4) [12]. We denote by h(d) the 
number of trace classes in trace d. 

Our proofs depend on the determination of specific representatives for each trace 
class. Our technique then gives another procedure to count h(d). 

A word W(x,y) in M is cyclically reduced if W ^ W^W2W\ for other non-trivial 
words W\, W2. In M this is equivalent to W(x,y) not beginning with x and ending with 
x or beginning with y and ending with y2 — y~{ or beginning with y~l and ending with 
v. Clearly an element of M is conjugate to a word in cyclically reduced form. Further if 
two words W\, W2 are cyclically reduced then they are conjugate if and only if W\ is a 
cyclic permutation of ^ [ 9 ] . 
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We say that a word W(x,y) in M is in block reduced form abbreviated BRF if W(x, y) 
begins with x and ends with either y or y2. A piece of the form (xy) or (xy2) is called a 
block. If W is in BRF then its block length denoted BL(W) is the number of blocks in W. 

An element T in M has order 2 if and only if T is conjugate to x. Further T has order 2 
if and only if trace T - tr(7) = 0 so {x} represents the trace class of trace 0. Similarly 
if T has order 3 then tr T — ±1 and T must be conjugate to y or y1. We then have: 

LEMMA 1. Every element of M is conjugate to either x or y or y2 or a word in BRF. 

PROOF. Since every element of M is conjugate to a cyclically reduced word we con­
centrate on cyclically reduced words. Let g = W(x, y) be cyclically reduced and not equal 
to x or y or y2. If g begins with x it must end with y or y2 since it is cyclically reduced 
and therefore g is in block reduced form. If g begins with y or y2 is must be followed by 
x. The word W\ which is the cyclic permutation of W beginning with this x is conjugate 
to g. This must also be cyclically reduced and therefore as above must end with y or y2 

and therefore be in block reduced form. 

Notice that a block reduced word is of the form 

(xyr(xy2)bl-"(xy2)bk. 

We impose an ordering on words in block reduced form. We say that a word W(x, y) is 
in standard block reduced form abbreviated SBRF if it has one of the following forms, 

(i) W = (xy)n for some integer n 
(ii) W — (xy2)n for some integer n 

(iii) W= ((xy)rt(xy2)*)' for integers n, k,t 
(iv) W — (xy)a](xy2)b] • • • (xy)ak(xy2)bk where a\ — max{<2/}. If a\ — at for some i 

then b\ > bt. If b\ — b{ then £2 > &/+1 and so on. (The largest occurrence of 
(xy) is in the front and if the largest occurrence occurs more than once then the 
ordering goes to the occurrences of (xy2).) 

This definition imposes an ordering on words in SBRF. Notice that no two different 
words in SBRF are cyclic permutations of each other while any word in BRF is a cyclic 
permutation of some word in SBRF. Therefore: 

THEOREM 1. The trace classes in M are in one to one correspondence with words in 
SBRF together with {x}, {y}, {y2}. The matrices corresponding to SBRF words together 
with the matrices for {x}, {y}, {y2} give representatives for each trace class. 

PROOF. AS seen in the proof of Lemma 1, {x}, {y}, {y2 } give representatives for the 
elements of finite order. If g is of infinite order it is represented by a word W(x, y) not 
conjugate to any of the above three. Therefore from Lemma 1 and the remarks preceding 
the theorem it is conjugate to exactly one word in SBRF. 

In enumerating the conjugacy classes it is somewhat easier to deal not with the SBRF 
words but rather with the sequence of exponents. With this in mind we call a finite se­
quence of integers a standard block reduced sequence or SBRS if it is one of the following 
forms making it the sequence of exponents for a SBRF word 
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(i) (a,0) 
(ii) (0,*) 

(iii) (a,b,a,b,...,a,b) 
(iv) (a\, b\,..., cik, bk) with a^ b{ as in the definition of SBRF words. 

We then have: 

THEOREM 1'. The trace classes in M for trace d > 2 are in one to one correspon­
dence with standard block reduced sequences. The traces are uniquely defined functions 
of the sequences. 

PROOF. If the trace is 0 or 1 the element has finite order and is conjugate to x, y, or y2. 
Otherwise it is conjugate to a SBRF word and thus related to the corresponding SBRS. 

Now we separate the conjugacy classes by trace. 

LEMMA 2. If W(x, y) is a word in M in BRF with BL( W) > 1 then the transformation 
for W has only positive entries. 

PROOF. If BL( W) = 1 then W = xy represented by ± I 0 ] } or W = xy2 repre­

sented by ± . The lemma is finished by induction. If W — W\xy with W\ having 

only positive entries then multiplying by (xy) will again give only positive entries. Sim­
ilarly multiplying by xy2 will give only positive entries. 

The next lemma is our key lemma. 

LEMMA 3. IfW^ (xy)n or (xy2)k is a word in M in BRF and BL(W) = n then 
t r (W)>/ i+ l . 

PROOF. The proof is again by induction on the block length. If BL(W) = 1 then 
W = xy or W — xy2. From above then we see that tr(W) = 2 in both cases. Suppose that 
W has block length n + 1. Then W = W\xy o r W = Wixy2 with BL(Wi) = n. Suppose 
first that Wi = (xy)n. Then since W ^ (xy)n+l it follows that W = (xy)n(xy2). (xy)n is 

represented by the matrix ± n 1 so W is represented by ± J . This has 

trace n + 2. An identical argument works if W\ = (xy2)n. Suppose now that W\ does not 
have one of those two forms. Then from the inductive hypothesis tr{W\)>n+\. 

Let W\ — ± , J with a+d > n +1. Further c > 0 since from Lemma 2 there are 

only positive entries. If W = Wyxy then W — ± J. Then tr(W) = a + d + c > 

n + 1 + c. Thus tr(W) > n + 2 since c > 1. 
The identical argument works if W — W\xy2 proving the lemma. 

From these two lemmas we obtain our procedure for effectively determining a repre­
sentative for each trace class. 
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THEOREM 2. Given a positive integer d there exists an effective procedure to deter­
mine a representative for each trace class in trace d. The procedure is as follows; 

(1) Ifd — 0 the representative is x 
(2) Ifd = 1 the representatives are y and y2 

(3) If d — 2 there are infinitely many trace classes. The distinct words (xy)n and 
(xy2)n as n runs over the positive integers give the representatives 

(4) Ifd > 2 then: 
(i) List all words in SBRF of block length (d — I) or less. (Equivalently list 

all standard block reduced sequences whose sum is (d — I) or less.) 
(ii) Determine the traces of each word determined by the list in (i). Each word 

in the list which has trace d determines a representative and this gives a 
complete list. 

Before we indicate the proof, notice that finding the representatives for trace d also 
determines the representatives for all traces less than d. 

PROOF. The proof follows directly from the previous lemmas. If d — 0 or d — 1 
the element has finite order and thus x, y, y2 are representatives as in the proof of The­
orem 1. All other elements are conjugate to elements in standard block reduced form. 
If the tr(W) = 2 and BL(W) = n then W must be conjugate to either (xy)n or (xy2)n or 
else by Lemma 2, tr(W) > n + 1. Suppose then that tr(W) = d. From Lemma 1, W is 
conjugate to a word in SBRF. From Lemma 2 this then must have block length (d — 1) 
or less. The procedure then follows easily. 

To clarify Theorem 2 we present an example. 

EXAMPLE. We find a complete set of representatives for the trace classes in trace 6. 
We first generate all SBRF of sum 5 or less. We then find the corresponding words (in 

SBRF) and their traces. This gives the following table. 

Sequence 

(1,1) 
(1,2) 
(2,1) 
(1,3) 

(1,1,1,1) 
(2,2) 
(3,1) 
(1,4) 

(1,2,1,1) 
(2,3) 

(2,1,1,1) 
(3,2) 
(4,1) 

Word 
xyxy1 

xy(xy2)2 

{xyfxy1 

xy(xy2)3 

xyxy2xyxy2 

(xy)2(xy2)2 

(xy)3xy2 

xy(xy2)4 

xy(xy2)2xyxy2 

(xy)2(xy2)3 

(xy)2xy2xyxy2 

(xy)\xy2)2 

(xy)4xy2 

Block Length 
2 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 

Trace 
3 
4 
4 
5 
7 
6 
5 
6 
10 
8 
10 
8 
6 
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Therefore we have found the following: 

Trace Number of Classes Representatives 

3 1 xyxy2 = ± f { J 

(xy)(x?)2 = ±[3
l | j 

(xv)2(xy2) = ± ( i i ) 

(xy)(xy2)3 = ±(4
3 [j 

(xy)W) = ±( | J) 

(xy)\xy2f = ±[5
2 \ 

(^)4(xy2) = ± ( i \ 

(xy)(xy2)4 = ± (J } 
Before we move on we describe a separate related algorithm suggested by R. Kulkarni 

[10]. Notice from Lemma 2 that there exists a complete set of trace class representatives 
whose matrices have only positive entires. The alternative algorithm to that given in 
Theorem 2 is then the following. 

ALTERNATIVE ALGORITHM FOR FINDING TRACE CLASSES. Given a trace d 
(1) Determine all projective unimodular matrices with trace d and only positive en­

tries. This can be done since there are only finitely many positive solutions to the 
equations u + v = d, zw = 1 — uv. 

(2) Using the standard algorithm (see [7] or [12]) express each of these matrices in 
terms of the standard generators JC, y. 

(3) Among the words found in step (2) choose the ones in SBRF. These will give a 
complete set of representatives. 

EXAMPLE. We again find the representatives for trace 6. From step ( 1 ) we obtain the 
following matrices. 

Mli) 
± 

5 2^ (3 H , (3 8 
2 1 ' 8 3 0-*(î 

Expressed in terms of the standard generators with the respective SBRF's indicated 
these are: 

I \)=(xy)\xy\ ±{l !)=(*v)(^2)4 
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± ( ) 5J-(xy2)(xy)4~(xv)4(xy2) 

±[4 J)=(^y2)4(xy)~(xy)(xy2)4 

± (7 2) = (^ 2 ) (^ ) (^ 2 ) 3 ~ (^v)(^2)4 

± ( 1 2 ) = ^ W)^) ~ (*y) V ) 

± [^ I j = (xy2)3(xy)(^2) ~ (xy)(*y2)4 

± ( 1 I) = (̂ )(̂ 2)̂ )3 ~ to)V) 

• G ï ) (*y)W)2 

± ( 8 3 ) = ^ ) 2 ^ > ^ > 2 ~ toOto2)4 

± ( 1 3 ) = ^ ) 2 ^ ) ^ ) 2 ~ (*>» W ) 

By choosing the SBRF's we see that as in the previous table there are three trace 
classes with representatives given by (xy)(xy2)4, (xy)4(xy2), (xy)2(xy2)2. 

Although this sceond algorithm has the advantage of only finding the trace classes 
for a single trace the difficulty in expressing a matrix in terms of the standard generators 
(especially for larger entries) makes the first algorithm somewhat easier to work with. 

3. The generalized Fermât 's theorem. We now obtain our result on quadratic 
forms. We note that this can also be derived from work in Gauss [8]. 

THEOREM 3. Given a positive integer d ^ 2, there exists a finite number h(d) of 
integral quadratic forms f\j(x,y), f2,d(x9y),..., fh(d),d(x>y) eacn of discriminant d2 — 4 
such that for any integer n the equation x2 + dx + 1 = 0/5 solvable modulo n if and only 
ifn = fij(a, b)for some i= 1 , . . . , h(d) and some integers a, b with (a, b) = 1. Further: 

(a) For each d ^ 2 there exists an effective procedure to explicitly determine a set 
offi4s. 

(b) h(d) = ideal class number ofQiy/d2 — 4) = number of trace classes in trace d. 
(c) The fids are unique in the following sense: If n = (a, b) for some integral 

quadratic form of discriminant d2 — 4 then x2 + dx + 1 = 0/5* solvable mod 
n and there is an equivalence relation on quadratic forms of discriminant d2 — 4 
such that is equivalent to somefd(x, y). 

As an immediate corollary: 

COROLLARY 1. The equation x2 + dx + 1 = 0 is solvable modulo n if and only 
ifn= f(a,b)for some quadratic form of discriminant d2 — 4 and integers a,b with 
(a,b)=h 
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PROOF OF THEOREM 3. Given d ^ 2 let Ti4, i = 1 , . . . , h(d) be a complete set of 
trace class representatives in trace d. Suppose 

Tid = ± l,d l,d with utd + tid = d a nd determinant one. 
\Wi4 fi,d J 

Now consider a conjugate of Ti4. 

±fa b\ (ui4 vtA f d -b\ 
[c d) [wi4 ti4 J {-c a J 

QX = ± f * vwa2 + (fw - ww)flfe - wi4b
2 \ 

The upper right hand corner of a general conjugate of Tid then defines a quadratic 
form in two variables. For each / = 1,2,..., /z(J) let 

fiAx,y) = v^x2 + ( ^ - ww)xy - w w / . 

A computation shows that the discriminant of each/^jc, v) as defined above is d2—4. 
(The middle term ti4 — ui4 — d — 2ui4.) 

Now suppose that the equation x2 +dx+1 = 0 is solvable modulo n so that x2 +dx+1 = 
—nm or equivalently — x{d + x) — nm — 1. Therefore there exists a projective matrix 

±\ . G M which has trace d. 
y m d+xj 

This matrix must then be a conjugate of one of the standard representatives Ti4. There­
fore the upper right hand corner, n, of this matrix must have the form of a conjugate of 
Ti4 and thus n = fi4(a,b). Further {a,b) = 1 since ad— be = 1 in (1). 

Conversely suppose that n — ft4(a, b) for some/^Qc, y) with (a, b) — 1. Then there 
exists integers c, J such that ad—be — and thus there is a projective matrix 

Conjugating Ti4 by this matrix gives 

which has trace J. Therefore it must have the form 

±i \ m x + d) 

Further it has determinant one and so — x(x + d) — nm = 1 or x2 + dx + 1 = — nm and 
therefore x2 + dx+1 = 0 is solvable modulo n. This proves the main part of the theorem. 

The constructive procedure for finding the {ft4(x,y)} is as follows. Use the method 
of Theorem 2 to find a complete set {Ti4}, i = 1 , . . . , h(d) of representatives for trace 
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classes in trace d. Formally conjugate each of them as in (1) to get the corresponding 

fiAx>y)' 
Since h(d) = number of trace classes in trace d this equals the class number of the field 

Q(Vd2 - 4) by the Lattimer-MacDuffee Theorem [12]. 
To show the uniqueness part suppose n = f(a, b) with {a, b) — 1 and the discriminant 

oif(x,y) being d2 — 4. Supposef(x,y) = vx2 + txy + wy2. Let w\ — —w and t = d — 2u 
so that u — (d — 0 /2 . Then since the discriminant is d2 — 4 we have w(d — u) — vw — 1 
so that the projective matrix 

(2) vf :± 
V 

d — u is in M. 

Proceeding as in the proof of the first part this matrix has trace d and determinant one. 
Since (a,b) =1 there exists integers c,d such that ad — be = 1 and so the projective 
matrix 

T=± 

Then conjugating Vf by T gives us 

± 

is also in M. 

n ) • 

-x + dj 
Since this has determinant one, x2 + dx + 1 = 0 modulo n and therefore rc = fi^iu, v) 

for some (w, v) = 1 from the first part. Associate to each quadratic form/(x, y) of dis­
criminant d2 — 4 the matrix Vf as given in (2). Define f\ to be equivalent to/2 if Vfx is 
conjugate to Vf2. This is the mentioned equivalence relation. 

We now give an example of the procedure. Using the table of representatives for traces 
up to 6 we determine a set of {//^}-

Trace 

3 

4 

5 

6 

Number of Classes 

1 

2 

2 

3 

Representati 

±a 
*(? 

-a *(î 
K: 
*(? 
^ 

V 
I, 
2 ' 
1, 

r 

r 
4 ' 
1, 
2 ' 
1, 

ves Quadratic Forms 

x2 —xy — y2 

1 x2 — 2xy — 2v2 

2X2 - 2xy - y2 

x2 — 3xy — 3y2 

3X2 — 3xy — _y2 

| x2 — Axy — Ay2 

| Ax2 - 4xy - y2 

Ix2 - 4xy - 2y2 
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The theorem then says for example that x2 + 5x + 1 = 0 is solvable modulo n if and 
only if n = a2 — 3ab — 3b2 or n = 3a2 — 3ab — Z?2 for some integers a, £ with (a, b) = 1. 
For/7 a prime this says that 21 is a square modulo/? if and only if p is represented by one 
of those two forms. 

4. On the determination of h(d). The determination of h(d) is known from the 
class number formulas [2], however the procedure outlined in Theorems 2 and 3 actually 
provides another recursive technique for finding this number. In this final section we 
present some facts about this technique. 

Let h(k, d) = number of super block reduced form words of block length k and trace d. 
Then from Lemma 3. 

LEMMA 4. h(d) = Y?kz\ KK d). 

Therefore the recursive counting procedure lies in the determination of h(k, d). Con­
sider the function/: (super block reduced sequences) —• N the natural numbers, given 
by 

f(aubx,...,ak,bk) = t r a c e d ( x y 2 ) * ' • • • (xy)ak(xyY*. 

The function/ is what is used to evaluate the trace of a super block reduced form 
word. We obtain a few straightforward facts about this function. 

LEMMA 5. Letf be the function defined above. Then: 
(1) f(a,b) = ab + 2 
(2) f{a\,b\,a2,bi) = 2 + a\b\ + a\b2 + &2#i +^2^2 + a\b\aib2 
(3) In general f {a \,b\ ,...9ak, bk) = 2 + (collection of even products in afti) 
(4) f(a\,b\,...,ak,bk) — f(b[,a^\,...) for any cyclic permutation of a\,b\,..., 

ak,bk 

The proofs are computations on traces. As corollaries we obtain the following. 

COROLLARY 2. h(d- \,d) = 2. 

PROOF. Again by computation the only super block reduced form words of block 
length d — 1 and trace d are (xy)d~2xy2 or (xyXxy2)^2. All others give traces greater 
than d. 

Then from Lemma 5 part (1) we obtain. 

COROLLARY 3. The class number h(d) > the number of divisors of d — 2. In par­
ticular h(d) grows with d. 

Ken Williams in a private correspondence [14] has given the following alternative 
(more traditional) proof of Corollary 3. Let \i(n — 2) = number of positive divisors of 
n — 2. Let a be an arbitrary divisor of n — 2. Since a can be positive or negative there are 
2[i{n — 2) possibilities for a. Consider the 2[i{n — 2) integral binary quadratic forms 

fa(x,y) = ax2 + (n- 2)xy - ((n - 2)/a)y2. 

https://doi.org/10.4153/CMB-1994-030-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-030-1


212 BENJAMIN FINE 

Each fa(x, y) has discriminant d2—4. Further it can be shown that each/fl(x, y) is primitive 
and reduced. Further each/a(jc, v) is ambiguous as a divides n — 2. From Proposition 3.8 
of [1] the 2[i(n — 2) ambiguous reduced forms fa fall into at least (i(n — 2) different 
cycles of reduced forms. Hence h(d) = number of cycles of reduced forms of discriminant 
d2 - 4 > fi(n - 2). 

Finally using Nielsen reduction [7], [11] on the super block reduced form words we 
get an easy proof of the following interesting result. 

LEMMA 6. Given positive integers m, n > 2 we can find A, B in M with tr(A) = m 
and tr(B) — n such that (A, B) is free of rank 2. 

PROOF. Let A = (xy)m~2(xy2) and B = (xy)(xy2)n~2. Then tr(A) = m, tr(£) = n and 
using Nielsen reduction A, B generate a free group of rank 2. 

We close with a question. Consider the ideal classes in Q(y/d2 — 4). We have seen 
that these are in one to one correspondence with the super block reduced sequences of 
integers of sum d — 1 or less. What if anything do these sequences tell us about the 
structure of the ideal classes? 
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