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ON THE NILPOTENCY OF NIL SUBRINGS 

JOE W. FISHER 

I n t r o d u c t i o n . A famous theorem of Levitzki s tates t ha t in a left Noether ian 
ring each nil left ideal is nilpotent. Lanski [5] has extended Levitzki 's theorem 
by proving t h a t in a left Goldie ring each nil subring is nilpotent. Another 
impor tan t theorem in this area which is due to Herstein and Small [3] s ta tes 
t h a t if a ring satisfies the ascending chain condition on both left and r ight 
annihilators, then each nil subring is nilpotent. We give a short proof of a 
theorem (Theorem 1.6) which yields both Lanski 's theorem and Herstein-
Small 's theorem. W e make use of the ascending chain condition on principal 
left annihilators in order to obtain, a t an intermediate step, a theorem 
(Theorem 1.1) which produces sufficient conditions for a nil subring to be 
left T-nilpotent. As a corollary of this theorem we obtain a theorem of Bjork 
[1] which states t h a t if a nil ring satisfies the ascending chain condition on 
principal left annihilators and has finite left dimension, then it is left 
T-nilpotent. 

In § 2 we define an ideal L of a ring R to be essentially ni lpotent if i t con­
tains a ni lpotent ideal N of R which is essential in L. We show t h a t the prime 
radical of an arbi t rary ring is essentially nilpotent. Also we show t h a t if R 
satisfies the ascending chain condition on principal left annihilators, then 
each nil ideal of R is essentially nilpotent. 

Acknowledgement. I am indebted to my colleague Professor E . P . Armendariz 
for his assistance in the preparat ion of this paper. 

1. N i l p o t e n t subr ings . Throughout this paper, R will denote a ring which 
does not necessarily have an identi ty. A left (right) ideal I of R is a left (right) 
annihilator if there exists a subset 5 of R such t ha t / = l(S) = {x G R: xS = 0} 
(7 = r(S) = {x £ R: Sx = 0}). A left (right) ideal I of R is a principal left 
(right) annihilator if there exists an element s £ R such t h a t I = l(s) 
(I = f(s)). A ring R is said to be left T-nilpotent if for each sequence {xn} of 
elements in R there exists an n such t h a t Xix2 . . . xn = 0. 

T h e term " idea l" will refer to a two-sided ideal unless it is adorned with the 
adjective "left" . For a G R we will let (a) denote the principal ideal which is 
generated by a and let R1a = Ra + Za denote the principal left ideal which is 
generated by a. 

W e use a technique due to Bjôrk [1] to prove the following theorem. 
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THEOREM 1.1. Let R satisfy the ascending chain condition on principal left 
annihilators and let N be a nil subring of R which is not left T-nilpotent. Then 
there exists a sequence \an) of elements in N such that 

(1) Rla± + Rla2 + Rla% + . . . is a direct sum of non-zero left ideals, and 
(2) r({ak, ak+1, ak+2, . . .}) C f({ak+u ak+2, . . .}) for each k, where C denotes 

strict containment. 

Proof. We say that Xi G N has an infinite chain if there exists an infinite 
sequence {xn} in N such that x±x2 . . . xn ^ 0 for each n. Since TV is not left 
7^-nilpotent, there exist elements in N which have an infinite chain. Let 
l(x) be maximal in {l(y): y G N has an infinite chain}. Inductively we find 
xn such that l(xn) is maximal in {l(y): y G N and xx±x2 . . . xn-\y has an 
infinite chain}. It is now easy to verify that l(xi) = l(xiXi+i . . . xi+j) for 
each i and j . 

We claim that xx\X2 . . . xnX\ = 0 for each n ^ 1. If xx\X2 . . . xnX\ ^ 0, 
then xxix2 . . . xnX\X2 . . . xk ^ 0 for each k since l(xi) = l(xix2 . . . xk) for 
each k. Hence xx\X2.. .xnXi has an infinite chain. Whence l(x\X2.. .xnX\) =l(xi). 
However, this is impossible since X\X2 . . . xn is a nilpotent element. In exactly 
the same way we prove that xx\X2 . . . xnx2 = 0 if n ^ 2, and so on. 

Set ak = xxix2 . . . xk. We claim that Rxai + Rla2 + ^ ^ 3 + . . . is direct. 
In order to show that it is direct, suppose that 

(rid! + z&i) + (r2a2 + z2a2) + . . . + (rnan + znan) = 0, 

where rt G R and zt G Z. Multiply by x2 on the right. It follows that 
{ricii + Ziai)x2 = 0 or (fix + Zix)x\X2 = 0. Hence (rix + ^ix)xi = 0. That 
is ridi + Ziai = 0. Then we multiply by x3 on the right to obtain 

(r2xxi + z2xxi)x2Xz = 0, 

and hence r2a2 + 2;2a2 = 0. By continuing in this way, we conclude that the 
sum is direct. Therefore statement (1) follows. 

Statement (2) follows from the fact that for each k, akxk+i ^ 0 yet 
anxk+i = 0 for each n ^ k + 1. 

COROLLARY 1.2. Let R satisfy the ascending chain condition on principal left 
annihilators and let R have finite left dimension. Then each nil subring of R is 
left T-nilpotent. 

The proof is evident. 

COROLLARY 1.3. Let R satisfy the ascending chain condition on principal left 
annihilators and the ascending chain condition on right annihilators. Then each 
nil subring of R is left T-nilpotent. 

The proof is evident. 

LEMMA 1.4. Let R satisfy the descending chain condition on principal right 
annihilators. Then R is left T-nilpotent if and only if for each x G R there exists 
a positive integer h(x) such that xRh(x) = 0. 
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Proof. Suppose tha t there exists Xi G R such t ha t for each positive integer h, 
X\Rn 7^ 0. Hence X\R ^ 0 and {T{x\y): X\y ^ 0 and y £ R] has a minimal 
element, say V(xiX2). We claim tha t X\X2R 9^ 0. \ix\X2R = 0, thenf (x ix 2 ) = R. 
However, in this case, the minimality of V(xiX2) would contradict X\R2 ^ 0. 
Thence x±x2R ^ 0 and {f(x1x2y): xxx2y 9^ 0 and y € R} has a minimal 
element, say f(xiX2x-s). By continuing in this manner, we obtain a sequence 
{xn} such t ha t XiX2 . . . xn 9e 0 for each w. Whence R is not left T-nilpotent. 

T h e proof in the opposite direction is obvious. 

PROPOSITION 1.5. Let R satisfy the ascending chain condition on left anni­
hilators. Then a subring N of R is nilpotent if and only if it is left T-nilpotent. 

Proof. Suppose t ha t N is left T-nilpotent. Since the ascending chain con­
dition on left annihilators (equivalently the descending chain condition on 
right annihilators) is inherited by subrings, we have by Lemma 1.4 t h a t for 
each x Ç N there exists a positive integer h(x) such tha t xNh(x) = 0. From 
the ascending chain condition on left annihilators, there exists an m such t h a t 
l(Nm) = l(Nm+l) = If Nm+1 ^ 0, then there exists x € N such t h a t 
xNm ?* 0. However, xNh™ = 0. This contradicts l(Nm) = l(Nh™). Therefore 
Nm+i = Q a n d N i s n i i p 0 t en t . 

T h e proof in the opposite direction is obvious. 

T H E O R E M 1.6. Let R satisfy the ascending chain condition on left annihilators 
and let N be a nil subring of R which is not nilpotent. Then there exists a sequence 
{an} of elements in N such that 

(1) Rld\ + Rla2 + R1az + . . . is a direct sum of non-zero left ideals, and 
(2) r({ak,ak+1, ak+2, . . .}) C r(\ak+u ak+2, . . .}) for each k. 

Proof. T h e result follows immediately from Theorem 1.1 and Proposition 1.5. 

COROLLARY 1.7 (Lanski). Let R satisfy the ascending chain condition on left 
annihilators and let R have finite left dimension. Then each nil subring of R is 
nilpotent. 

T h e proof is evident. 

COROLLARY 1.8 {Herstein-Small). Let R satisfy the ascending chain condition 
on both left and right annihilators. Then each nil subring of R is nilpotent. 

T h e proof is evident. 

2. Es sen t ia l n i l p o t e n c y . An ideal L of R is said to be essentially nilpotent 
if it contains a nilpotent ideal N of R which is essential in L, i.e., N has non-zero 
intersection with each non-zero ideal of R which is contained in L. W e notice 
t ha t if an ideal K of R is contained in an essentially ni lpotent ideal L, then K 
is essentially nilpotent. If N is a ni lpotent ideal of R which is essential in L, 
then N r\ K is a ni lpotent ideal of R which is essential in K. 
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LEMMA 2.1. Let L be a non-zero ideal of R and let k ^ 2 be a fixed integer. If 
each non-zero ideal J Ç L of R contains a non-zero nilpotent ideal whose kth 
power is zero, then L is essentially nilpotent. 

Proof. Let \N\. X G A} be the collection of all the non-zero nilpotent ideals 
of R which are contained in L and whose kt\\ power is zero. Let 

ft = {SQ A: Zxts #x is direct}. 

Then il is non-empty and inductive. Hence by Zorn's lemma there exists a 
maximal element T in Î2. 

Consider N = J^xer 0 N\. Since each N\ is a two-sided ideal of R, multi­
plication in N is componentwise. Thence Nk = 0. We claim that N is essential 
in L. If not, then there is a non-zero ideal J C L of R such that N C\ J = 0. 
However there exists a non-zero N\ Ç J such that iVx* = 0. Thus N + iV\ is 
direct and so the maximality of T is contradicted. 

Let the prime radical of i?, denoted by B(R), be the intersection of all the 
prime ideals of R. 

PROPOSITION 2.2. Each non-zero ideal J of R which is contained in B(R) 
contains a non-zero nilpotent ideal I such that P = 0. 

Proof. From [4, p. 56, Proposition 1] we have that B(R) = {a 6 R: each 
sequence a0, «i, a2, . . . with a0 — a, aw+i Ç anRan is ultimately zero}. Let a be 
a non-zero element of / . If aRa = 0, then it can easily be shown that (a)3 = 0. 
If aRa 7e 0, then there exists a non-zero a,\ G aRa CI / . If aiRa± = 0, then 
(ai)3 = 0. If <2ii?ai ^ 0, then we continue until ultimately we get a non-zero 
<V|.i Ç <vKaw Ç / such that an+iRan+i = 0. Thence (an+i)3 = 0, and the proof 
is complete. 

THEOREM 2.3. Let R be an arbitrary ring. Then the prime radical B(R) is 
essentially nilpotent. 

Proof. The result follows immediately from Lemma 2.1 and Proposition 2.2. 

Remark. It follows from Proposition 2.2 and the proof of Lemma 2.1 that 
B(R) contains a nilpotent ideal N such that N3 = 0 and N is essential in 
B(R). If R has an identity, then this is improved to N2 = 0 and N is essential 
in B(R). 

THEOREM 2.4. Let R satisfy the ascending chain condition on principal left 
annihilators. Then each nil ideal L of R is essentially nilpotent. 

Proof. We claim that each non-zero ideal J Ç L of R contains a non-zero 
nilpotent ideal / of R such that P = 0. Since J ^ 0, {l(x): x ^ 0, x G /} has 
a maximal element, say 1(a). If a2 ^ 0, then the maximality of 1(a) forces 
1(a) = l(a2). This is impossible since a is nilpotent. Hence a2 = 0. Moreover, 
if aRa ^ 0, then there exists r Ç R such that ara ^ 0. Again 1(a) = I(ara). 
This is impossible since ar is nilpotent. Whence aRa — 0. It follows easily 
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from a2 = 0 and aRa = 0 that (a)2 = 0. Therefore the result follows from 
Lemma 2.1. 

Remark 1. It follows from the proofs of Lemma 2.1 and Theorem 2.4 that L 
contains a nilpotent ideal N such that iV2 = 0 and N is essential in L. 

Remark 2. Theorem 2.4 can be obtained from Theorem 2.3 and a theorem of 
Gupta [2, Theorem 3] which states that if R satisfies the ascending chain 
condition on principal left annihilators, then each nil ideal is contained in B (R). 

PROPOSITION 2.5. If an ideal L of R is left T-nilpotent, then L is contained in 
B{R). 

Proof. Suppose that L $£ B(R). Then there exists an Xj £ L — B(R). If 
X\L C B(R), then XiRxi Ç x\L Ç B(R). Since B(R) is a semiprime ideal, 
we obtain xi £ B(R). Thus XiL $£ 5(7?) and so there exists x2 £ L such that 
XiX2 € L — B(R). Again x±x2L $£ B(R). Hence there exists x3 £ L such that 
XiX2Xs £ L — B(R). By continuing in this fashion we obtain {xn} in L such 
that X\X2 • • • X^ 5̂  0 for each n. This contradicts the left T-nilpotency of L. 
Therefore L QB(R). 

PROPOSITION 2.6. If an ideal L of R is left T-nilpotent, then L is essentially 
nilpotent. 

Proof. Indeed L is essentially nilpotent since L Ç B(R) (Proposition 2.5) 
and B(R) is essentially nilpotent (Theorem 2.3). 

Example 1. Essential nilpotency does not imply left T-nilpotency. If it did, 
then it wrould follow from Theorem 2.4 and Proposition 1.5 that each nil 
ideal is nilpotent in a ring which satisfies the ascending chain condition only on 
left annihilators. The following example of Sasiada (unpublished) shows that 
this is not the case. Let R be the ring generated over the integers by the 
elements Xi, x2, x3, . . . , xn, . . . subject to the conditions that XjXt = 0 for 
j ^ i. Then R is nil and satisfies the ascending chain condition on left anni­
hilators, yet is not nilpotent. 

Note. It has been brought to my attention that by making use of different 
techniques, Shock [6] has recently obtained some beautiful new results on the 
nilpotency of nil subrings. Briefly, his technique has been to make use of 
elementwise characterizations of the prime radical and certain conditions 
which are equivalent to the prime radical being nilpotent. 

Added in proof. We sketch the following proof of Proposition 1.5 which does 
not require Lemma 1.4. 

Suppose that N is left T-nilpotent. Since R satisfies the ascending chain 
condition on left annihilators, there exists an m such that 

l(Nm) = l(Nm+1) 

If Nm+1 y£ 0, then there exists Xi G N such that xxN
m j6 0. Then XiNm+l ^ 0 
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and hence there exists x2 G N such that XiX2iV
m ^ 0. Then XiX2N

m+l ^ 0 
and hence there exists x3 G N such that XiX2x3iV

m ^ 0. By continuing in this 
fashion, we obtain {xn} in N such that XiX2 . . . xn ^ 0 for each w. This con­
tradicts the left r-nilpotency of N. Therefore N is nilpotent. 
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