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Abstract

Reconstructing past climate events relies on the relevant proxies and how they are related. Depending only on such
relationships, however, could not be robust because only few proxy observations are usually available at each age. A
state-space model employs a prior to make the hidden past climate events correlated with one another so that extreme
inferences are precluded. Here, we construct a Gaussian process state-space model for reconstructing past sea surface
temperatures from the alkenone paleotemperature proxy and apply the model to nine sediment cores with three
different calibration curves and compare the results.

Impact Statement

This paper introduces a general nonparametric framework of the past climate reconstruction based on a Gaussian
process state-spacemodel, which has a great potential to be extended tomore elaborate models or to be applied to
other proxies with their own calibration curves.

1. Introduction

The alkenone biolipid is a popular proxy for reconstructing past sea surface temperatures (SSTs)
because different SST environments make alkenone-producing species alter the relative proportion of
di- and tri-unsaturated C37 alkenones, which brings different values of UK0

37 ¼C37:2=ðC37:2þC37:3Þ
(Tierney and Tingley, 2018). This relationship allows to the reconstruction of past SSTs by exploiting
the relationship between SSTand past UK0

37 observations. To be specific, the relationship is formulated as
a calibration curve, which includes functions of estimates and errors. Tierney and Tingley (2018,
Table 1) provide a table of some popular calibration curves. For example, Müller et al. (1998) define a
linear calibration curve by UK0

37 ¼ 0:033 �SSTþ0:044þ0:0495 � ε, where ε is a standard normal random
variable.
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Notice that the posterior distribution of SSTs is given analytically if the calibration curve is linear and
the prior on SST is noninformative. For example, the calibration model of Müller et al. (1998) can be
converted into SST¼ðUK0

37�0:044Þ=0:033þ1:5 � ε. However, analytic posteriors are usually
not available for nonlinear calibration curves and priors. Therefore, a typical SST reconstruction relies
on theMarkov-chainMonte Carlo sampling to approximate the posterior distribution of SST givenUK0

37 by
drawing samples from the likelihood proportional to the calibration curve (and the prior).

One systemic drawback of such reconstruction methods stems from the fact that only few UK0
37

observations are available at each age (typically, at most 1), which might lead the inference to be very
unstable. For example, the above reconstruction cannot determine whether the given UK0

37 observation
is an outlier by itself, unless other information used for SST reconstruction is available. To overcome it,
one typical approach is to make the SSTs correlated over ages, that is, to model a series of past UK0

37
observations and the associated SSTs given their ages by a state-space model (Hangos et al., 2001). In
this framework, a calibration curve defines the emission model while the prior on SSTs is the transition
model of the state-space model. Now the problem is how to define the transition model, especially if
we lack the knowledge regarding the dynamics of SSTs over ages. One advantage of the state-space
model is that an SST estimation is available at any age, which is given as a posterior predictive
distribution.

In this work, we introduce a nonparametric state-space model for the SST reconstruction from the
alkenone proxy. To be specific, a Gaussian process prior defines the transition model that correlates the
SSTs over ages and SSTsamples are drawn from the posterior by the HamiltonianMonte Carlo algorithm
(Neal, 2010; Gelman et al., 2013). We also applied the model to nine sediment cores reaching up to
800 ka bp, to reconstruct SSTs from their alkenone proxies. In Section 2, ourmodelwill be described in the
mathematical formulations. Data and SST reconstruction results are given in Section 3. The paper ends
with a short discussion and conclusion in Section 4.

2. Method

Throughout the paper, we use the following notations:

• Y ¼fYðmÞgMm¼1: a set of past U
K0
37 observations, where Y

ðmÞ ¼ fyðmÞn gNm

n¼1 is from sediment core m.

• T ¼fTðmÞgMm¼1: a set of ages of past U
K0
37 observations, where T

ðmÞ ¼ ftðmÞn gNm

n¼1.

• X¼fXðmÞgMm¼1: a set of unknown SSTs of past UK0
37 observations, where X

ðmÞ ¼ fXðmÞ
n gNm

n¼1.

• Ψ¼fη, γ, λg: a set of kernel hyperparameters of the kernel function K, which are to be estimated.
• Θ¼fαm, βmgMm¼1: a set of core-specific scale and shift parameters to be estimated.
• μ: a given function that maps ages to SSTs, which come from the prior knowledge of past
standardized SSTs.

• C¼fδ, σg: a calibration curve where δ and σ are UK0
37’s mean and standard deviation function of

SSTs, respectively.

Also, for making the formulations succinct, let μA be a vector of which entry is μ að Þ for each a∈A and
KAB be a matrix of which entry isK a, bð Þ for each pair a, bð Þ∈A�B. In addition, we assume that both δ
and σ are continuously differentiable.

2.1. Gaussian process state-space model

The Gaussian process state-space (GPST) model (Frigola et al., 2014; Eleftheriadis et al., 2017) is a
nonparametric state-space model that adopts a Gaussian process as the transition model with unlimited
memory, whichmeans that it does not take theMarkovian assumption.More specifically, it consists of the
following two models for each sediment core m:

e25-2 Taehee Lee et al.

https://doi.org/10.1017/eds.2022.29 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.29


• Emission model:

pðYðmÞjXðmÞÞ ¼
YNm

n¼1

N ðyðmÞn jδðXðmÞ
n Þ,σðXðmÞ

n Þ2Þ: (1)

• Transition model:

p X mð ÞjT mð Þ
� �

=N X mð ÞjμT mð Þ þβm, α
2
m KT mð ÞT mð Þ þ λ2INm

� �� �
: (2)

Then, the posterior distribution of SSTs given UK0
37 and ages is given by p X mð ÞjT mð Þ,

�
Y mð ÞÞ∝p X mð ÞjT mð Þ� �

p Y mð ÞjX mð Þ� �
and the posterior predictive distribution of the SST x at an arbitrary

age t and the location of the sediment core m can be derived as follows:

pðxjt;Y ðmÞ, T ðmÞÞ ¼
Z

pðxjt;XðmÞ, TðmÞÞpðXðmÞjTðmÞ, Y ðmÞÞdXðmÞ: (3)

One advantage of the GPSTmodel is that it does not require the proxy observations at regularly spaced
ages because a Gaussian process is consistently defined over a set of inputs. Another advantage comes
from its nonparametric form, which allows it to be free from certain parametric models that might require
either strong prior knowledge or excessive assumptions.

2.2. Emission model

A calibration curve defines the emission model in the state-space model. Here, we will try the following
three curves:

1. A linear calibration curve (MULLER) fromMüller et al. (1998), which is the most universal model
for converting alkenone proxies into SSTs.

2. A nonlinear calibration curve (BAYSPLINE) from Tierney and Tingley (2018), which was
constructed by a Bayesian B-spline regression model which considers the seasonality of the
training dataset.

3. A nonlinear calibration curve (HGPR) from Lee and Lawrence (2019), which is a heteroscedastic
Gaussian process regression model with considering outliers in the training dataset.

The above three curves are visualized in Figure 1. Notice that HGPR shows a consistent departure from
MULLER and BAYSPLINE at lower temperatures and has considerable heteroscedasticity at high
temperatures. Calibration curves are defined in the range between �1 and 31°C.

Figure 1. Three calibration curves. Each band indicates the 95% confidence band.
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2.3. Transition model

The transition model in (2) can be explained in words as follows: “a core process is shared by all sediment
cores, and it is shifted and scaled by its core-specific parameters,” which means that the standardized
SSTs, X mð Þ �μT mð Þ �βm

� �
=αm, of the sediment core m follows a Gaussian process prior

N 0, KT mð ÞT mð Þ þ λ2INm

� �
.

The mean function μ brings prior knowledge (“rough guess”) about the past standardized SSTs to the
model. Here, we adopt reconstructed SSTs from Shakun et al. (2015) for the prior knowledge, available up
to 800 ka bp, and then define μ by the interpolation.

We chose the effective kernel for a two-layer GP where the kernels of the layers are both squared-
exponential (SE) (Lu et al., 2020), which is defined by following, as the kernel function K:

K u, v;η, γð Þ≜ 1þη2 1� exp �γ2 � ju� vj2
� �� �� ��1=2

: (4)

Notice that the above kernel converges to 1þη2ð Þ�1=2
as ju� vj!∞ and K u, v;η, γð Þ = 1 if u¼ v.

Here we fix η¼ ffiffiffiffiffi
99

p
so that 0:1≤K u, v;η, γð Þ≤ 1.

To estimate kernel hyperparameters Ψ¼fη, γ, λg and core-specific parameters Θ¼fαm, βmgMm¼1, we

first obtained point estimates X¼fXðmÞg
M

m¼1 of SSTs one-by-one as the medians of the samples drawn

from the emission model only, and then run the gradient ascent on the following objective function:

L Ψ, Θð Þ≜
XM
m = 1

logN bX mð ÞjμT mð Þ þβm, α
2
m KT mð ÞT mð Þ þ λ2INm

� �� �
: (5)

2.4. Hamiltonian Monte Carlo algorithm

Because the posterior of SSTs p X mð ÞjT mð Þ, Y mð Þ� �
∝p X mð ÞjT mð Þ� �

p Y mð ÞjX mð Þ� �
is in general not given as an

analytic form, the next-best approach would be to approximate it with samples. Markov-chain Monte
Carlo (MCMC) algorithm (Liu, 2001) is a typical method to sample from a distribution of which only its
proportional formula is known. However, MCMC could be very slow in practice, especially if the
proposal distribution is not efficient. To design an efficient proposal distribution might not be straight-
forward when the random variable is of high-dimensional, and components are highly correlated.

Hamiltonian Monte Carlo (HMC) (Neal, 2010) is an efficient Monte Carlo algorithm by using
derivatives of the logarithm of posterior with respect to the random variables to sample for constructing
the proposal distribution. Details of the implementation can be found in Gelman et al. (2013). One
requirement of HMC is that the logarithm of posterior is differentiable with respect to the random
variables: it is fulfilled if a given calibration curve is differentiable.

Algorithm 1. SST Reconstruction by the Gaussian Process State-space Model

1 initialize kernel hyperparameters and core-specific parameters.
2 draw SST samples with a noninformative prior on SSTs and likelihood (1).
3 obtain medians of the SST samples.
4 estimate kernel hyperparameters and core-specific parameters with the objective function (5) by

gradient ascent.
5 draw SST samples with the prior (2) and likelihood (1) by HMC.
6 draw SST samples at query ages by (3).
7 return kernel hyperparameters, core-specific parameters, and SST samples.

Now we are prepared. The whole algorithm of our model is summarized in Algorithm 1. The software is
available at https://github.com/eilion/CI2022_SST_Reconstruction, with specific values of hyperpara-
meters such as the number of leap frog steps.
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3. Data and Results

In this analysis, we chose nine sediment cores that reach up to 800 ka bp: IODP-U1417 (Müller et al.,
2021), ODP-1010, ODP-1021, ODP-1088, ODP-1125, ODP-1208, ODP-1241, ODP-722, and ODP-846
(Herbert et al., 2016). Their spatial information is in Figure 2. Most of the results are visualized in the
Supplementary Material. Here, we just present the comparison of SST estimates between the point-wise
reconstruction (i.e., SSTs are estimated independently) and GPST-based reconstruction with the calibra-
tion curve BAYSPLINE for the four cores IODP-U1417, ODP-1208, ODP-722, and ODP-846 in
Figure 3. Notice that our main purpose is not to compare calibration curves but just to show that our
GPST model works with various models.

4. Discussion and Conclusion

In this work, we have processed nine sediment cores that contain alkenone proxies to reconstruct SSTs up
to 800 ka bp. As shown in Figure 3, the Gaussian process state-space model results in smoother and less
noisy SST inference than the point-wise SSTestimates. For example, variances of GPST SSTestimates of
ODP-846 are 0.7188, 0.7268, and 0.5230 forMULLER, BAYSPLINE, andHGPR, respectively, whereas
those of point-wise SST estimates are 0.9397, 1.0435, and 0.6317. Detailed comparison can be found in
the Supplementary Material.

Notice that SSTestimates fromHGPR tend to be lower than those fromMULLER andBAYSPLINE at
low SSTs, which is because the calibration curve of HGPR is higher than those of MULLER and
BAYSPLINE below 15∘C. Also, the SST inference from the GPST model differs from the translated SST
prior by Shakun et al. (2015), as shown in Figure 4 in the BAYSPLINE case. Such discordancemight stem
from the regional singularity, but consistent discordance, such as those at 700–800 ka bp, might imply the
potential of better measurement of global SST changes from multiple proxies. Extreme point-wise SST
estimates are well controlled by the GPST, such as those at 142.315 ka bp of IODP-U1417 and at
436.24 ka bp of ODP-1021. Another observation is that GPST SST estimates are closer to the translated
SST prior from Shakun et al. (2015) as the density of proxy observations is sparser, which is consistent
with the transition model based on the Gaussian process that makes SSTs correlated over ages: see figures
in the Supplementary Material.

There are five advantages of the SST inference based on the Gaussian process state-space model. First,
the GPST indirectly correlates the proxy observations so that information stored in each age are shared.
Second, the GPST defines the transition model to able an SST inference at any query age. For example,
SST estimations of IDOP-U1417 in Figure 3 are available before 100 ka bp even though no proxy

Figure 2. Sediment core locations on map.
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observation is there. Third, the Gaussian process prior allows to utilize the datasets that are not spaced
regularly over ages without an interpolation in preprocess. Fourth, the transition model of GPST is
nonparametric thus free from the structural misspecification of the parametric modeling. Fifth, the GPST
does not assume the memoryless property that the Markov models cannot avoid being involved with.

An alternative of the Hamiltonian Monte Carlo algorithm is the variational inference (Bishop, 2006),
that is, to approximate the posterior of SSTs given the dataset with a known explicit distribution, such as
Gaussian, with the evidence lower bound as its objective function. Here, we do not consider this for
possible cases where the posterior is skewed or multimodal.

In Section 2.3, we estimate the kernel hyperparameters and core-specific parameters from the medians
of SSTs of the point estimates for regularizing the dynamics of the core process. However, the best way
would be first to bring the estimation of kernel hyperparameters of the core process from the global dataset
(i.e., depending on the UK0

37 cores as many as possible) and then to estimate the core-specific parameters of
the query cores only, which will be done in full-scale as a subsequent work.

Figure 3. SST Reconstructions of four cores with BAYSPLINE. In each panel, blue bars indicate the 95%
confidence intervals for quantiles of point-wise SST samples and black regions indicate the 95%
confidence band for quantiles from GPST-based SST samples. Black curves are the medians of GPST-
based SST samples.
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Our current GPST model has some drawbacks. First, it ignores the direct correlation of SSTs across
sediment cores, that is, they are conditionally independent given the core Gaussian process prior
N 0, KT mð ÞT mð Þ þ λ2INm

� �
, which might not be the best way of exploiting the UK0

37 thoroughly. Second,
the core Gaussian process prior is homoscedastic, that is, it assumes the constant error covariance λ2INm ,
which might be unrealistic because the pattern of SSTs would be nonstationary over time. Third, our

Figure 4. Deviations of the BAYSPLINE medians of SST samples at query ages of 0–800 ka bp by the
GPST model from the translated SSTestimates given by Shakun et al. (2015). From top to bottom, panels
contain IODP-U1417, ODP-1208, ODP-722, and ODP-846 consecutively. Colors are consistent with
those in Figure 2. Dots and crosses are the GPST SST estimates and point-wise SST estimates,
respectively.
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model does not assume potential lead-or-lags of the information between sediment cores, which might be
against the natural phenomenon regarding the change of SSTs over the transitions of glacial and
interglacial epochs: this can be done by estimating lead-or-lag core-specific parameters to shift proxy
observations over ages. Fourth, the current model does not take other types of proxies that are relevant to
SSTs. Fifth, the model does not take account of age uncertainties of proxy observations in the sediment
cores, which couldmake SSTestimations smoother over ages. Such drawbackswill be addressed in future
works.

Author Contributions. Conceptualization: T.L.; Data curation: T.L., C.E.L.; Data visualization: T.L.; Methodology: T.L., J.S.L.;
Software: T.L.; Writing—original draft: T.L., J.S.L., C.E.L. All authors approved the final submitted draft.

Competing Interests. The authors declare no competing interests exist.

Data Availability Statement. Replication data and code are in the GitHub repository: https://github.com/eilion/CI2022_SST_
Reconstruction.

Ethics Statement. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

Funding Statement. This research was supported by grants from the NSF DMS-2015411; NIH R01 HG011485-01; and NSF
OCE-1760838.

Provenance. This article is part of the Climate Informatics 2022 proceedings and was accepted in Environmental Data Science
on the basis of the Climate Informatics peer review process.

Supplementary Material. To view supplementary material for this article, please visit http://doi.org/10.1017/eds.2022.29.

References
Bishop C (2006) Pattern Recognition and Machine Learning (Information Science and Statistics). New York: Springer.
Eleftheriadis S, Nicholson T, Deisenroth M and Hensman J (2017) Identification of Gaussian process state space models. In

Proceedings of the 31st International Conference on Neural Information Processing Systems. RedHook, NY: CurranAssociates,
pp. 5315–5325.

Frigola R, Chen Y and Rasmussen C (2014) Variational Gaussian process state-space models. In Proceedings of the 27th
International Conference on Neural Information Processing Systems, vol. 2. Cambridge, MA: MIT Press, pp. 3680–3688.

Gelman A, Carlin J, Stern H, Dunson D, Vehtari A and Rubin D (2013) Bayesian Data Analysis. Boca Raton, FL: CRC Press.
Hangos K, Szederkényi G, Lakner R and Gerzson M (2001) Intelligent Control Systems: An Introduction with Examples.

New York: Springer.
Herbert T,LawrenceK,Tzanova A, Peterson L,Caballero-Gill R andKelly C (2016) LateMiocene global cooling and the rise

of modern ecosystems. Nature Geoscience 9(1), 843–847.
Lee T and Lawrence C (2019) Heteroscedastic Gaussian process regression on the alkenone over sea surface temperatures. In

Proceedings of the 9th International Workshop on Climate Informatics. Paris: École Normale Supérieure, pp. 269–274.
Liu J (2001) Monte Carlo Strategies in Scientific Computing. New York: Springer.
Lu C, Yang S, Hao X and Shafto P (2020) Interpretable deep Gaussian processes with moments. In Proceedings of the Twenty

Third International Conference on Artificial Intelligence and Statistics. Palermo: PMLR, pp. 613–623.
Müller P,KirstG,RuhlandG, von Storch I andRosell-MeléA (1998)Calibration of the alkenone paleotemperature indexU37K’

based on core-tops from the eastern SouthAtlantic and the global ocean (60°N–60°S).Geochimica et Cosmochimica Acta 62(10),
1757–1772.

Müller J, Romero O, Cowan E, McClymont E, Forwick M, Asahi H, März C, Moy C, Suto I, Mix A and Stoner J (2021)
Alkenone unsaturation indices and SST reconstruction for IODP Site 341-U1417, PANGAEA.

Neal R (2010) MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo, vol. 54, no. 1. Boca Raton, FL:
Chapman & Hall, pp. 113–162.

Shakun J, Lea D, Lisiecki L and Raymo M (2015) An 800-kyr record of global surface ocean ∂18O and implications for ice
volume-temperature coupling. Earth and Planetary Science Letters 426(1), 58–68.

Tierney J and Tingley M (2018) BAYSPLINE: A new calibration for the alkenone paleothermometer. Paleoceanography and
Paleoclimatology 33(3), 281–301.

Cite this article: Lee T. Liu JS and Lawrence CE. (2022). A Gaussian process state-space model for sea surface temperature
reconstruction from the alkenone paleotemperature proxy. Environmental Data Science, 1: e25. doi:10.1017/eds.2022.29

e25-8 Taehee Lee et al.

https://doi.org/10.1017/eds.2022.29 Published online by Cambridge University Press

https://github.com/eilion/CI2022_SST_Reconstruction
https://github.com/eilion/CI2022_SST_Reconstruction
http://doi.org/10.1017/eds.2022.29
https://doi.org/10.1017/eds.2022.29
https://doi.org/10.1017/eds.2022.29

	A Gaussian process state-space model for sea surface temperature reconstruction from the alkenone paleotemperature proxy
	Impact Statement
	Introduction
	Method
	Gaussian process state-space model
	Emission model
	Transition model
	Hamiltonian Monte Carlo algorithm

	Data and Results
	Discussion and Conclusion
	Author Contributions
	Competing Interests
	Data Availability Statement
	Ethics Statement
	Funding Statement
	Provenance
	Supplementary Material


