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Abstract. Let 7 be a finite-dimensional real vector space on which a root system X is given.
Consider a meromorphic function ¢ on V¢ = V 4 iV, the singular locus of which is a locally
finite union of hyperplanes of the form {4 € V¢ | (4, a) = s}, € X, 5 € R. Assume ¢ is of suitable
decay in the imaginary directions, so that integrals of the form | iV ¢(4) d2 make sense for generic
n € V. A residue calculus is developed that allows shifting . This residue calculus can be used to
obtain Plancherel and Paley—Wiener theorems on semisimple symmetric spaces.
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0. Introduction

In several fundamental papers on harmonic analysis related to symmetric spaces or
Lie groups, a certain application of the Cauchy theorem plays an important role.
In its simplest form, the idea is present already in the proof of the
Paley—Wiener—Schwartz theorem for the Euclidean space (see, for example, [12,
p. 182]), where the integral

[ e 0.)
iR
over the imaginary space is shifted in a real direction n € R" to an integral

f e Oy(&)dé (0.2)
n+iR"

over a parallel space. Here, s is an entire function on C"of exponential type, that is,
it satisfies an estimate of the form

sup(1 + [ e ®Re ()] < oo
LeC”

for some R > 0 and all £ € N. It is the polynomial decay at infinity (in the imaginary
directions), following from this estimate, that permits the use of Cauchy’s theorem to
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shift the integral (0.1) to (0.2). The shifted integral allows an estimate that is used to
show that the (inverse) Fourier—Laplace transform (0.1) of ¥ has compact support.
The use of such an argument in the context of more general symmetric spaces goes
back to Helgason, [11]. Later, Helgason’s result was successfully applied by
Rosenberg, [16], to give a new proof of the Plancherel theorem for a Riemannian
symmetric space. In [3], where we obtain the most-continuous part of the Plancherel
decomposition for a semisimple symmetric space, an analogous shift of integrals
plays a key role.

In other situations in harmonic analysis, the same technique is used with a
meromorphic function . Then the shift of integrals results in the appearance of
residues, which contribute to lower dimensional spectrum. This is, for instance,
the case in the fundamental work of Selberg and Langlands on automorphic forms
([13], [14]; see also the exposition in [15], in particular Section V.1.5(c)). In the spirit
of the classical proof, but with residues appearing, Paley—Wiener theorems are
proven in various contexts in [1, 6, 9]; the analysis in the former two papers is
in one complex variable, whereas that of Arthur in the last mentioned paper is
in several variables (like in Langlands’ work on automorphic forms). In [10],
Heckman and Opdam treat the Plancherel decomposition for graded Hecke algebras
by a residue calculus in a similar multi-variable setting.

In [4] we employ a multi-variable calculus with residues to obtain an inversion
formula for the Fourier transform related to a semisimple symmetric space. The
results of [4] will be used in [5] to prove the Paley—Wiener and the Plancherel theorem
for these spaces (see the introductions of [4] and [8] for more details, and for
references to related work by other people).

In this paper we prepare the ground for [4] and [5] by developing the necessary
residue calculus. The basic tool is the one-variable residue theorem. In order to apply
it in the multidimensional setting with root systems, some geometric and combina-
torial problems have to be solved. It is the treatment of these problems that is
the essential purpose of this paper. The calculus is formulated entirely in terms
of root systems, without any reference to (analysis on) semisimple symmetric spaces,
but the scope of theory is naturally directly motivated by the intended application.
We believe there may be other applications than the one we have in mind, and that
the calculus is therefore of independent interest. This is our motivation for presenting
this part of the program [2-5] in a separate paper.

The main result is stated in Theorem 3.16 and Corollary 3.18. In the application
the left-hand side of Equation (3.26) in Corollary 3.18 corresponds to a so-called
pseudo-wave packet. It is the formation of the pseudo wave packet that is shown
in [4] to invert the Fourier transform. The terms in the right-hand side of (3.26)
then constitute the contributions of the several generalized principal series to the
Plancherel decomposition.

Besides Theorem 3.16, there are several features of the paper that are crucial for
the application, and that also add new insight to the cases of the previously cited
papers by Langlands, Arthur, Heckman and Opdam. First of all, the residues
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are obtained by operators that are defined independently of choices (Theorem 1.13).
This was already observed by Heckman and Opdamin their case. These operators are
naturally represented in a certain projective limit space (Section 1.3). Another note-
worthy result is the support theorem (Theorem 3.15). The proof of this theorem
demands some quite delicate combinatorial and geometric arguments (given in Sec-
tion 2). The theorem is the key to the Plancherel theorem; as will be seen in [5]
it follows from this support theorem that the individual contributions in (3.26)
are of tempered behavior. The concept of a residue weight (which will be explained
below) is introduced to facilitate some of the involved combinatorics. Together with
the transitivity theorem (Theorem 3.14) it is motivated by the induction that takes
place in [4]. The Weyl group invariance (Section 3.5) contributes to a proper under-
standing of the Maass—Selberg relations, as will be discussed in [3].

We shall end this introduction by giving an outline of the paper, at the same time
further explaining some of the motivating ideas.

Throughout the paper, V is a finite-dimensional real linear space, equipped with
an inner product (-, -), and V¢ denotes its complexification. We assume that a locally
finite collection H of hyperplanes in ¥ is given, and consider the space M(V, H) of
meromorphic functions on V¢ with singular locus contained in the union of the
complex hyperplanes Hc, H € H. Let P(V,H) be the subspace of functions
@ € M(V,H) having polynomial decay along the shifted imaginary space
n—+ iV, forevery ninreg(V, H), the complement in V of the union of the hyperplanes
from H. For ¢ € P(V,H) and n € reg(V, H) we consider the integral

f oduy, 0.3)
iV

where du ;- denotes the pull back of Lebesgue measure on (the real linear space) i}
under the translation vi— v — 5. When 5 varies in a fixed initial component C of
reg(V, H), the integral in (0.3) is independent of 5, by Cauchy’s theorem. We shall
therefore also write it with pt(C) in place of #, to indicate that an arbitrary point
of C may be taken, without changing the value of the integral. It is of interest
to study the behavior of the integral when # is moved to a different component
of reg(V, H).

If L is any affine subspace of V (i.e., a translate of a linear subspace), then by ¢(L)
we denote the central point of L, i.e., the point of L closest to the origin in V. We note
that L = ¢(L) + Vp, with V. a uniquely determined linear subspace of V. We shall
call ¢(L) + iV the tempered real form of L¢, since in the applications this is the
subspace of L where tempered spectrum is located.

For the applications it is now of particular interest to move the# in (0.3) as close to
0 (the central point of V') as possible, so that the domain  + iV of integration comes
close to the tempered real form iV of V¢ (this idea is also central in the previously
cited work of Langlands and Arthur). In general one cannot move 7 all the way
to the origin 0, since 0 might be contained in V \ reg(}, H), hence in the singular
locus of ¢. The best one can do here is to move # to one of the (finitely many) central

https://doi.org/10.1023/A:1002025119005 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002025119005

30 E. P VAN DEN BAN AND H. SCHLICHTKRULL

chambers, i.e., the components of reg(}, H) having the central point 0 in their
closure. For the applications it is important not to discriminate between the (central)
chambers. With this in mind we introduce, in Section 1.7, the concept of a residue
weight. It prescribes for what part of the integral (0.3) the point # is moved to other
components of reg(V,H). On the level of V' a residue weight is a function
t:comp(V, H) — [0, 1] with finite support, and such that) . ompr ) ((C) = 1.
The sum

> ower[ 0.4)
PUC)+iV

C'ecomp(V,H)

may be viewed as a redistribution of the integral (0.3) over the various components of
reg(V, H).If  is supported by the central chambers (such a ¢ is called central), then
each nonzero term of the above sum involves a central chamber C’; the point
pt(C") may be chosen arbitrarily close to the central point 0 of V', without changing
the value of the corresponding integral. In (0.4) the domains of integration are thus
brought as close as possible to the tempered real form iV of V.

The difference of (0.3) with its weighted redistribution (0.4) can be written as the
sum of the integrals «(C')[, .., @duy — fpt(c,) +iv @duy]. The expression in the square

n
brackets may in turn be rewritten as a sum of residual integrals of the form:

/ R(p)dpy. (0.5)
E+iVy

Here H € H is a hyperplane separating n from C’. Moreover, let Hy =
{HNH |H e€H, 9 2HNH Z H} be the hyperplane configuration in H induced
by H. Then & is a point in reg(H, Hy). Finally, R is a linear operator from
PV, H)to P(H, Hp), arising from taking a one variable residue in a variable trans-
versal to H. The operator Ris an example of what we call a Laurent operator, since it
encodes the procedure of taking a coefficient in a Laurent series expansion trans-
versal to H. Laurent operators are introduced and studied in Section 1.3.

The procedure of rewriting (0.3) as a sum of integrals is now continued as follows.
Each of the residual integrals (0.5) is redistributed over chambers of H at the cost of
codimension 2 residual integrals. The redistribution over the various chambers in H
is prescribed by a residue weight on the level of H (relative to Hy). The codimension
2 residual integrals are redistributed by a similar prescription, and we continue in this
fashion until the final step, where point residues in finitely many points of V" occur.
(In the application, these correspond to discrete spectrum.)

We thus end up with the formula of Theorem 1.3, which describes the original
integral (0.3) as the following sum of residual integrals:

/ pduy=Y"" > «C) Res$ odp; . (0.6)
pUO+iV LeL C'ecomp(L,H.) PUC)+iVL

Here £ denotes the collection of nonempty intersections of hyperplanes from H; for
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each L € £ the induced collection of hyperplanes in L is denoted by H, and the
associated set of connected components of reg(L,H;) by comp(L, H ). Finally,
Resi” is a Laurent operator from P(V, H) to P(L, Hy). It is of crucial importance
that the occurring Laurent operators Resg” are uniquely determined by the formula
(0.6); as mentioned, this observation goes back to Heckman and Opdam [10]. We call
these uniquely determined operators the residue operators associated with the initial
data H, C and the residue weight 1.

Thus we see that, as in the theory of automorphic forms, the residue operators
essentially arise as compositions of one variable residues (in variables transversal
to singular hyperplanes). However, since the characterization by (0.6) determines
the residue operators uniquely, it is clear from the start that it is of no importance
in which order the compositions are taken.This seems to distinguish the calculus
of [10] and the present paper from that of Langlands [14] and Arthur [1]. It is
the uniqueness of the residue operators that makes it possible to develop a full
residual calculus. We end Section 1 by discussing properties of the residue operators
needed in the later sections.

In Section 2 we study the residual support of an initial chamber C € comp(V, H),
i.e., the collection of L € £ such that the associated residual operator Res$ ™ is non-
zero. The purpose is to prepare for the support theorem, Theorem 3.15.

In Section 3 we specialize the theory developed so far to hyperplane configurations
related to a root system Z in V. Let Hyx be the collection of all hyperplanes H in V'
with Vg = ot for some o € X, and let Lz be the collection of all nonempty
intersections of hyperplanes from Hsz. We now consider a locally finite affine
hyperplane configuration H that is £-admissible, i.e., H C Hz. Moreover, we assume
that a positive system X+ is given and that  is bounded in the anti-dominant direc-
tion in the sense that the inner products (o, c(H)), for o € 7 and H € H, are
uniformly bounded from below. Such H occur as sets of singular hyperplanes in
the applications. Moreover, it is natural to choose as initial chamber C the unique
component of reg(V, H) on which every positive root is unbounded from below.

Of particular interest is the hyperplane configuration Hyz(0) consisting of the
hyperplanes from Hy containing 0. In other words, Hz(0) is the collection of root
hyperplanes. The associated collection Lx(0) of nonempty intersections is equal
to the collection R of root spaces in V. Given b € R, let P(b) be the collection
of connected components of reg(b, Hx(0)). Then V is the disjoint union of the
elements of P = UpcrP(D), also called the Coxeter complex of X. (If X is the root
system of a Cartan subalgebra in a semisimple algebra, then P is in bijective cor-
respondence with the collection of parabolic subalgebras containing the Cartan
subalgebra, whence the notation.) A residue weight on P is by definition a function
t:’P — [0, 1] such that Zer(b) t(Q) = 1forevery b € R. In Section 3.4, formula (3.6),
we define a residue operator Resf’t associated with data P € P(V), t, L€ Ls. It is
universal in the following sense. The chamber P determines the positive system
>+ = % (P) of roots positive on P. Let H be any Z-admissible hyperplane configur-
ation that is bounded relative to *. The residue weight 7 naturally induces a central
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residue weight w(f) on H. Proposition 3.6 now expresses that each of the residue
operators in (0.6), associated with the data H, C and w(¢) (where C is the initial
chamber), is equal to one of the universal residue operators Resi” .

An important feature of the universal residue operator is that it has transitivity
properties reflecting parabolic induction. The main result in this direction, Theorem
3.14, essentially expresses that every residue operator equals a point residue operator
associated with a subroot system of X. This transitivity is of crucial importance for
the applications to analysis, since it allows induction as a method of proof.

In the main result of the present paper, Theorem 3.16, formula (0.6) is
reformulated in terms of the universal residue operators. Via Weyl group con-
jugations Theorem 3.16 may be reformulated as Corollary 3.18. As mentioned
above, this corollary is applied directly in [4] and [5]; it gives the Plancherel
decomposition of a pseudo wave packet. The first summation in formula (3.26)
extends over the subsets F of A, the collection of simple roots in . Each subset
F determines a so-called standard o-parabolic subgroup Pr. The sum of terms
in (3.26) with F fixed corresponds with the contribution to the Plancherel
decomposition of the generalized principal series associated with Ppg.

1. The Residue Scheme

Let V' be a finite dimensional real linear space, equipped with an innerproduct (-, -),
and let V¢ denote the complexification of V, equipped with the complex bilinear
extension of (-,-). Let i € C be the imaginary unit. We shall often regard V¢ as
the Cartesian product of its real subspaces ' and iV.

1.1. THE SINGULAR CONFIGURATION

By an affine subspace of ' we mean any translate of a real linear subspace of V.
Thus, if 4 is an affine subspace, there exists a unique linear subspace V4 C V' such
that A =a+ V4 for all a € A. The unique point in 4 with minimal distance to
the origin is called the central point of 4 and is denoted by ¢(A4). Note that we have
A=c(A)+ V4 and c(4) L V4. We agree to call Ac:=c(4)+ (V4)c C Vi the
complexification of 4. For a € V¢ let T,: Vi — Vi be given by Ai— A+ a, then
Tuay:(Va)c = Ac is an affine isomorphism mapping V4 onto A. Via this iso-
morphism we equip 4 and A¢ with the structure of a real, resp. complex, linear
space. Moreover, we equip these spaces with the inner product obtained from
the restriction of (-, -) to Vg4, resp. (V4)c. We denote by A the collection of affine
subspaces of V.

An affine subspace 4 of V, such that the codimension of V4 in V' is one, is called an
affine hyperplane; a locally finite collection of affine hyperplanes is called an affine
hyperplane configuration. Let such a configuration H be given. We shall assume
that for every H € H a nonzero vector oy in the one-dimensional space Vj is chosen.
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Moreover, we define the first degree polynomial £5: Vi — C, by

Cr(2) = (g, 4 — c(H)); (L.

then H and H¢ are the null sets of £y in V' and Vi, respectively. We call the
elements of the set sing(V¢, H) := Ugcn Hc the singular elements; those of its comp-
lement reg(V¢,H) in Vi are the regular elements. We define the subsets
sing(V, H), reg(V, H) C V similarly.

Let N" denote the space of maps H — N =1{0,1,2,...}, and let d € N¥.1f
K C V is a compact subset we define a polynomial ng on V¢ by

w=mka= || " (12)
HeH, HNK#(

(if HN K =@ for all H € H we let ng = 1). We denote by M(V, H, d) the space of
meromorphic functions ¢: Vi — C such that for every compact subset K C V
the function 7k 4¢ is holomorphic on an open neighborhood of K x iV. Observe
that M(V,H, d) is independent of the choice of the normal vectors oy, H € H.
The functions in M(V, H, d) are holomorphic on the open set reg(V, H), which
is connected and dense in V.

We equip N’ with the ordering < defined by d < 4 if and only if d(H) < d'(H) for
all H € H. Then we have M(V,H,d) C M(V,H,d’) when d < d'. We now define

MV, H) = Uy M(V, H, d).
Let L € A. We define
H(L)={HeH|HD>DL} (1.3)
and
Hr={HNL|HeH\Hr, HNL # ¢}. (1.4)

These are affine hyperplane configurations in V" and L, respectively, hence we may
define the spaces M(V,H(L)) and M(L,H,) as above. Notice that H(L) is finite
and that M(V, H(L)) Cc MV, H).

For d € N" (or d € N"P) Jet ¢; be the polynomial on V¢ defined by

qgr=qra= [] " (1.5)
HEeM(L)

In particular we have gy =1, and gy = Z‘,],(H) for H € H. We observe that g.¢ is
holomorphic on a neighborhood of reg(Lc, Hy) for all ¢ € M(V,H, d), and that
@ —> qr@ maps the subspace M(V,H(L), d|s)) of M(V,H,d) bijectively onto
the space O(V¢) of entire functions on Vg, for all L € A.
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1.2. RESIDUES

Let V', H be as above, and let ¢ € M(V,H), H € H. For /. e reg(Hc, Hy) let ¥,
denote the meromorphic function zi— @(A + zag/|ag|) on C. We define the residue
Res}; ¢ of ¢ along H to be the function reg(Hc, Hy) — C given by

Res! p(2) = 2nRes._ol,(z) = / qo(/l + Z|ZH|) %,
H

where C, is the positively oriented circle in C of center 0 and sufficiently small radius
¢ > 0. Notice that the residue depends only on the normal vector oy through its
orientation: If the orientation is changed then Resf,(p changes by a factor —1.

Let S(V)) denote the symmetric algebra of V. We shall view its elements as con-
stant coefficient holomorphic differential operators on V¢ in the usual fashion, that
is, via the homomorphism induced by viewing the elements of V- as constant vector
fields on V. The real subalgebra of S(V') generated by V' (and 1) is denoted Sr(V);
its elements are called the real elements in S(V).

LEMMA 1.1. Let d € N, o e M(V,H,d), and H € H. Then

2n
v _ d(H)—1 ]
RCSH(p(/l) - (d(H) — 1) |OCH|2d(H)71 %y (qH¢)()~)’ (4 € reg(Hc, Hi))

Proof. Fix 1 ereg(Hc,Hu) and let ,(z) be as above. Then we have
Ly(A+ zag/|logl) = z|loy| and, hence,

— ] a
A Y,(2) =l | g1 p) <A ! Zﬁ)

Thus we see that i, has a pole of order at most d(H) at 0, and hence

1 g\ dD-1
Res-_o,(2) :7< ) 0y, ()]

(d(H) — 1) \dz
1 — — k)
= @an -1 lowgy | 24D 8D (g 0)(2),
and the lemma follows. ]

LEMMA 1.2. Letd e N", L e A, and u € S(V).There exists an element d' € NHe
such that w(qre)l., € M(L,Hr,d") for all p € M(V,H, d).
Proof. For each H' € H; we have

HH')={H eH|H>H)} 2 HUL).
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Let n = deg(u) and let &' € N be defined by

dH)=@m+1) Y. dH). (H eHy). (1.6)
HeH(H')\H(L)

We claim that the result holds for this &'

We assume that for each H' € H; a normal vector in ¥V, N V,#, has been chosen,
and that a corresponding first order polynomial ¢4,: L — C is defined (cf. (1.1)),
such that H{, = (¢4 )71(0). We observe that ¢L, is proportional to £, by a non-zero
real constant, for every H € H(H')\ H(L). If K C L is compact we define

= [ @' "ic—c (1.7
H'eHy, HNK#D

our claim then amounts to nku(g, ¢) being holomorphic on an open neighborhood of
K x iV in L¢ for all ¢ € M(V,H,d).
Let

HeH\H(L), HNK#)

then n§ = ¢p™*!|, for some non-zero constant ¢ € R. Moreover, if K # # we have
g = pqr, where ng and ¢y are given in (1.2) and (1.5). On reg(Lc, Hy) we now
have, by the Leibniz rule of differentiations,

u(qre) = u(p~' ) = p~" " qui(nk ) (1.8)
J

for some polynomials ¢; on L¢ and some u; € S(V), and the claimed property of
nku(qre) follows. O

From Lemmas 1.1 and 1.2 we immediately obtain:

COROLLARY 1.3. Letd € N, H € H. There existsd’ € N such that Resg maps
MV, H,d) into M(H, Hg,d").

1.3. LAURENT OPERATORS

Let L € A. We call a linear map R: M(V, H) - M(L,H.) a Laurent operator if
there exists, for each d € N’ an element u, in S( Vi) such that

Ro = ui(qr.a @)L, (1.9)

forall p € M(V,H, d). Here q; 4 1s defined in (1.5). A Laurent operator is called real
if it can be realized as above with u, real for all d. In particular, if Vo = Cand Lisa
point, then a (real) Laurent operator is a map that associates to a meromorphic
function a finite (real) linear combination of the coefficients of its Laurent series
at this point. We denote by Laur(V, L, H), resp. Laurr(V, L, H), the space of
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Laurent operators, resp. real Laurent operators, from M(V,H) to M(L,Hy).
Notice that Laur(V, V, H) = C; the only Laurent operators from M(V, H) to itself
are the constants times the identity operator. It follows from Lemma 1.1 and
Corollary 1.3 that Resz € Laurg(V, H, H), for H € H.

Notice that the notion of a Laurent operator is independent of the choice of the
normal vectors oy for H € H. We now fix such a choice. Then the following lemma
shows that for a given Laurent operator R, the elements u; € S(V7)in (1.9) are
unique. Moreover, u; only depends on d through its restriction to H(L). We denote
by ug the family (uy), o of elements from S(V}).

LEMMA 1.4. Let d € NP and u e S(V}H) be given. If u(qr.a @), =0 for all
¢ € M(V,H(L),d) then u=0.

Proof. Since qzﬁldlﬁ e M(V,H(L),d) fory € O(V¢), we have | . = 0 for all such
functions . The space O(V() is translation invariant, and so is the differential
operator u, hence we conclude that uyy = 0 on Vi, for all y € O(V). This implies
u=20. ]

It will be useful to have identified exactly those families u = (u4) ;) Of elements
from S(V}) that occur as ug for some Laurent operator R € Laur(V,L,H)
(clearly,ug determines R). For this purpose we need the following definitions.

Let V be a real linear space, and let X be a finite (possibly empty) collection of
complex nonzero linear functionals on V. For d € N* we define the homogeneous
polynomial function wy 4: Vi — C by

oy = [
teX
(if X = @ we let wy 4 = 1). Let < be the partial ordering on N¥ defined by d’ < d if
and only if d'(§) <d(¢) for all {eX. For d,d with d <xd we define
d —d e N* componentwise by differences as suggested by the notation. Then
Wy.q = Wx.q@x.4-q- 1t follows from the Leibniz rule that given u € S(V) there exists
an element ' € S(V') such that
u(@y,a-a¢)0) = ' p(0)

for all germs ¢ of holomorphic functions at 0 on V. Clearly «’ is unique; we denote it
by ja.4(u) (in fact, it only depends on d — d'). It is also clear that jz» 4 o ju.a = jar.a if
d" = d < d. We now define the space S.(V, X) as the projective limit

S<(V, X) =1lim(S(V), /). (1.10)

By definition, this is the space of all families (#4),.x of elements in S(V'), that are
directed with respect to the maps jy 4, that is, satisfy

Ug = jar,a(Ua) (L.11)
for all ', d with d’ < d.
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Let us now return to the situation that H is a hyperplane configuration in ¥ and
Le A Let

X(L) = {on | H € H(L)}.

Via the inner product on V' we identify the elements of X (L) with linear functionals
on Vi, and via the bijection H(L) — X (L) we identify NY® with N"P | Then

qr.a(A+v) = oyxr)a(v), (1.12)

forall Ae Le,ve Vi, de N5 Hence for u € S(Vi-)and d’ < d we have

wqra®r. = Jja.aWqr.a®)lr. (1.13)

for all functions ¢, that are defined and meromorphic on a neighborhood of
Lc and for which ¢p4s¢ is regular on reg(Lc,Hy). In particular, if
R:M(V, H) — M(L,Hyr) is a Laurent operator, then the family ur = (ug) o pmw
satisfies (1.9), hence

ud(qr.aP)lr. = ua(qr.ae)lr.

ford’ <d and ¢ € M(V,H,d"), and we conclude from (1.13) and Lemma 1.4 that
(1.11) holds. Hence ug € S_(Vi, X(L)).

LEMMA 1.5. The map Rw—>ug is a linear isomorphism Laur(V,L, H)—
S (Vi X(L)).

Proof. Only the surjectivity remains to be seen. Let u = (ug),; o €
S_(Vi, X(L)). For each de N we let wuy:= Udl,,, and define R= Ry
MWV, H,d)y - M(L,Hr) by (1.9) for p € M(V,H, d) (cf. Lemma 1.2). It follows
easily from (1.11) and (1.13) that R is well defined on M(V, H). That R belongs
to Laur(V, L, H) and satifies u = ug is then obvious. O

We call S_(Vi, X(L)) the projective limit model for Laur(V, L, H). In what
follows we shall sometimes identify objects in Laur(V, L, H) and its model by means
of the isomorphism in Lemma 1.5. In particular, since S_(V;, X(L)) only depends
on H through H(L), it follows that Laur(V, L, H) >~ Laur(V, L, H(L)).

EXAMPLE 1.6. Let V >~ R, let £ € V'\ {0}, let x € V* be defined by x(¢) = 1, and
finally let X = {x}.We use the canonical identification S(V") >~ C[£]. It is easily seen
that the map j;441: S(V) — S(V) for each d € N is the map ui— ' that maps a
polynomial u € C[£] to its derivative. Hence, S.(V, X) is the space of all sequences
(Uq) 4 of polynomials u, € C[¢], for which u;,, ; = uy for all d € N. For example,
let / € 7 be fixed, then S_(V, X) contains the sequence 1’ = (r}),.r defined by
rh=(d —1))7'¢! for d = max(0, /) and r, = 0 for max(0,/) > d > 0.

Let g € V, L = {q}, and assume that L belongs to the hyperplane configuration H.
The Laurent operator R, € Laur(V,L,H) corresponding to a sequence
(Uq) g € S—(V, X) is given by ¢ 1— ug(3x)((x — q)d(p)(q) for ¢ € M(V,H) and d
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sufficiently large. For example, the Laurent operator that corresponds to the
sequence r just defined is given by ¢ i— (d — D!~ (0)((x — 9)?p)(q) for d suf-
ficiently large, which is the operator that maps ¢ to the coefficient of (x — q)_l
in its Laurent expansion at q.

On the other hand, if L = {g}¢ H, then H(L) = ¥ andN""® has just one element.
Hence S (V,X(L))=S(V), and the Laurent operator that corresponds to a
polynomial u € C[¢] is given by ¢ 1— u(3,)(¢)(q).

The family of Laurent operators is relatively large. This is illustrated by the pre-
vious example as well as the following lemma:

LEMMA 1.7. Let d’ € N¥.

(1) The map jo.a:S(V) — S(V) is surjective for all d = d'.
(i1)) The canonical map ui— ug from S (V, X) to S(V) is surjective.

Proof. (1) Since jgr 4 o jora = jar.a if d” < d’" < d, it suffices to prove the surjectivity
for the case when d(&) = d'(¢) for all elements & € X except a given one, for which
d(&) = d'(¢) + 1. Assume that this is the case, and let ¢ € X be this given element.
Then @y -4 = £ Furthermore, let ' € S(V) be given. By linearity ofjy 4 we
may assume that u' is of the form u' = u’of with k € N and " € S(éh), where
oz € V is determined by &= (xz,-). It is then seen from the Leibniz rule that
(Wae)(Ep)(0) = (k + DIE[*u/(9)(0). Hence, ja a(u'oz) = (k + D|E[Pu/, from which the
asserted surjectivity of jz 4 follows.

(ii) Let &/ € S(V) be given. For k € Nlet d; € N be given by di(¢) = d'(¢) + k for
each ¢ € X. By (i) we can successively choose elements ug, 11, ... € S(V), such that
up =o' and jg_, 4 (k) = ur—; for all k > 1. For arbitrary d € N* we now define
ug € S(V) as follows. For k sufficiently large we have d < di. Let uy = jg.q (ur).
It is easily seen that uy is well-defined and that the string (ug),.x belongs to
S (V, X). The surjectivity follows, since uy = ug, =ty = v'. O

1.4. COMPOSITION OF LAURENT OPERATORS

Let L, L' € A with L' C L. It is easily seen that Hp = (Hr),-

LEMMA 1.8. Let R=M(V,H) - M(L,Hr) and R': M(L, Hr) - M(L, Hr) be
Laurent operators. Then R o R: M(V, H) — M(L', Hy) is also a Laurent operator.
If R and R’ are real, then so is R o R.

Proof. Let d € N, Since Ris a Laurent operator there exists u = uy € S(V) such
that (1.9) holds for ¢ € M(V,H, d). According to Lemma 1.2 and its proof we have
Rp € M(L, Hr,d') where d’ € N is given by (1.6) with n equal to the degree of u.
Similarly, since R’ is a Laurent operator there exists «' € S(V;, N V) such that
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Ro =u(q}, 4 )./ for ¢' € M(L, Hy, d'), where

dho= [1 €)y':Le—C (1.14)
HeH(L)

is the analogue of (1.5), for L’ inside L (see also the explanation leading up to (1.7)).
Thus we have

(R o Ryp =1/ (q}, y[u(qr.a ¢)]lL. )N,

and the claim is that there exists ¥’ € S(V7) such that this equals u"(qr 4 ¢)| L

Let H' € H;. As mentioned in the proof of Lemma 1.2, we have that ¢, is propor—
tional to £, by a nonzero real constant, for all H € H(H') \ H(L). It then follows
from (1.4) and (1.6) that

n+l1
904 = C[ 1_[ (ZH)d(H)] L

HeH(L)\H(L)

with ¢ € R\ {0}. Let p: Vi — C denote the polynomial inside the square brackets,
and observe that ¢y = pqrqs. We now have

U (g} lulgra ) = cd (P up ™" qr.a @)L L= u'(qr.a )l L.
(1.15)

where

W =cu oanrl ou Op71
The latter is a differential operator on V¢ whose coefficients are holomorphic (by the
Leibniz rule). Moreover they are invariant under translations in directions of
Vi ,because p is invariant under such translations. Since we take restrictions to
L in (1.15) we can replace «” in (1.15) by the constant coefficient operator obtained
from it by evaluation of its coefficients in any point of L{., and since # and «’ both
belong to S(V7), so does then «”. It is also seen that if «u and u' are real, then
so is #”. This completes the proof. O

1.5. FUNCTIONS WITH POLYNOMIAL DECAY

Let H be an affine hyperplane configuration, and let d € N”. We denote by
P(V,H,d) the subspace of M(V,H, d) consisting of those functions ¢ for which

sup (14 [4)"|(nx.a@)(A)] < 00 (1.16)

AeK iV

for every compact subset K of V, and every n € IN (with ng s defined by (1.2)).
Endowed with the collection of seminorms vk , given by the left-hand side of (1.6),
the space P(V,H, d) becomes a Fréchet space.
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Let Fy: C*(V) — O(V) be the Fourier-Laplace transform, defined by

Fuf() = /V e~ £() dpiy (),

where dy - is Lebesgue measure on V. This is an isomorphism onto the Paley—Wiener
space PW(V), consisting of all the functions y € O(V,) of exponential type, i.e., for
which there exists 4 > 0 such that

sup (1 + |2))"e™ ROl (7))

A€ Vi
is finite for all n € N. Notice that if y € PW(}) then the functions qz’ldlﬁ belong to
PV, H,d), for all L € A. Exploiting this observation, as in the proof of Lemma
1.4, we can improve that lemma as follows:

LEMMA 1.9. Let d € N and u € S(Vi) be given. If u(qr.a P, =0 for all
¢ € P(V,H(L),d) then u=0.

Observe that if d <d in N" then PV, H,d) c P(V,H,d) with continuous
inclusion map. We now define P(V,H) = U, \»P(V, H, d) and endow this space
with the inductive limit of the topologies. We define the spaces P(L, Hy) similarly
for all Le A, It follows from Lemma 1.9 that a Laurent operator
RM(V,H) - M(L,Hy) is uniquely determined by its restriction to P(V, H(L)).

LEMMA 1.10. Let L € A and let R: M(V,H) - M(L,Hr) be a Laurent operator.
Then R maps P(V, H) continuously into P(L, H).

Proof. Letd € N™ and let u = uy € S( Vi) be such that (1.9) holds. Then we know
from Lemma 1.2 that there exists @' € N such that R maps M(V,H, d) into
M(L,Hp,d"). We claim that it maps P(V, H, d) continuously into P(L, H,, d").
Let ¢ € P(V,H,d), let K C L be compact and let 7k be given by (1.7). The required
estimate for nku(q, 4 ¢) now follows from (1.8) and Lemma 1.11, to be proved next.
The lemma follows immediately. O

LEMMA 1.11. Let K C V be compact. Then there exists a compact set K' C V, and
for every ue S(V) and n € 7 a constant C > 0 such that
sup (14 A1) lmx )] < € sup (1 | [ )]
AeKxiV LeK'xiV
for all d € N"™ and y € M(V, H, d).

Proof. Fix the compact set K’ such that its interior contains K, and such that it
meets only those hyperplanes from H that already meet K. Then ng 4 = ng .4 for
all d e N,

Fix linear coordinates A', ..., A on V¢ that are real on V; for Ay € Vi, € > 0, let
D(Jo,€) denote the polydisc {ie Ve |Vj:|¥ — )fbl <¢}. Fix ¢>0 such that
Dy, )NV C K’ for all 4y € K. Then D(Jy, €) C K’ x iV for every /g € K x iV.
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By a standard application of the Cauchy integral formula, we obtain the estimate

((ung ap)(Z0)l < C° sup  |(mx.ay)(A)]
)
foralld e N, Y e M(V,H,d)and Jy € K x iV, with C' > 0 a constant depending
only on u. On the other hand, there exists a constant Cy > 0, such that for all
0 € Vi and all 4 € D(J, ¢€), we have Cy! < (1 + |Ao)(1 + 12)~! < Cy. Combining
this estimate with the former one, we obtain

(1 + 140l)"l(ung ap)(Z0)l < C le(l)p )(1 + 121" (k. a¥) (A,

with C > 0 depending only on u, n. The proof is now completed by using that
D(Jy,€) C K' x iV for every /g € K x iV. O

1.6. THE RESIDUE OPERATOR FOR ADJACENT CHAMBERS

Let H be as above. We call the connected components of reg(}, H) the chambers of
V' (with respect to H), and denote the set of these by comp(V, H). The chambers
are convex sets. Let C be a chamber in ¥V, and let C denote its closure. If
H € 'H and the intersection H N C has a nonempty interior in H we call this interior
a face of C. It is easily seen that the face equals C Nreg(H, Hy), and that it is a
chamber of H with respect to Hy.

If Cis a chamber of V' we denote by pt(C) a point in C, arbitrarily chosen. We shall
use this symbol only when it makes no difference if a different choice had been made.

Two chambers C} and C; of V are called adjacent if they are separated by precisely
one hyperplane H € H (i.e., there is a path from pt(C;) to pt(C,) passing through UH
only in reg(H, Hy)). Notice that this is precisely the case when C; and C, have a
unique face in common; we denote this face by C; A C,. If C; and C, are adjacent
with the separating hyperplane H € H we say that the pair (Cj, C) is positively
ordered if the chosen normal vector oy points in the direction from C; to Cj.

Let du, denote Lebesgue measure on V, normalized with respect to the inner
product. If ¢ is a measurable function defined on the set # + i}V C V¢ for some point
n € V we denote bnyiV ¢@du, the integral fV o+ iv)duy(v), if it exists. In
particular, if ¢ € P(V, H), then it follows from (1.16) that this integral converges
for all n € reg(V, H). Moreover, it follows easily from Cauchy’s theorem together
with (1.16) that the value of the integral only depends on # through the chamber
C € comp(V, H) to which 5 belongs. We therefore write it as

/ pduy
pt(CO)+iV

If L € A we define fpt(c)+iVL ¢ duy similarly, for C € comp(L, Hy) and ¢ € P(L, Hp).
In particular, if L is a point, L = {4¢}, then C = L is the only chamber in L, and
fpt(CH[VL @ du; is the evaluation of ¢ in Ao.
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PROPOSITION 1.12. Let Cy, C; € comp(V,H) be adjacent chambers, with the
common face Cy A C, C H, H € H. Then

/ (Pdﬂv_/ qod/zv=6f Resy o duy (1.17)
pUC)+IV pUC)+iV PUCIAC)+iVir

for all ¢ € P(V,H), where e =1 if (Ci, Cy) is positively ordered, and ¢ = —1
otherwise.

Proof. Notice that both sides of (1.17) are independent of the choice of oy. Hence
we may assume that (Cy, (3) is positively ordered. Fix points ;, € Cj, j = 1,2. We
may assume that n, —n; € Vj; this vector then points in the same direction as
or. Moreover, we may assume that the line segment from #; to n, passes UH in
exactly one point, p € reg(H, Hy). Then

oxH .
=p 4 X —, =1,2
=P G )
for suitable real numbers x; and x, with x; <0 < x;.

When evaluating the integrals along V7 we shall be using the diffeomorphism

®: Vy x R — V given by

o
lotgr|

O, y)=A+y

Obviously the Jacobian of this map is 1. We now have
/ pduy — / pduy
ny+iV m+iV

- fV (001> + ) — o, + )] dyiy ()

- f / (0012 + DG 1) — (1, + DG )] dy diy(2)
Vau JR

- 7 ' “—H>d -
/VH[/RQD(HZ +(x2+ly)|aH| y

—/ (p(p + il 4 (x + iy)a—H)dyi|duH(X).
R

774

The function V. ;;: 21— @(p + i’ + zog/|ey|) on C is meromorphic, and its only
possible singularity in [x1; x2] + iR occurs at z = 0. It now follows from the residue
theorem and the estimates in (1.6) that the difference between the two inner integrals
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in the expression above equals

2nRes,—oY,,(2) = Res,‘§<p(p + il),

and the result is proved. ]

1.7. RESIDUE WEIGHTS

Let
L=Ly={HIN..NH#0|HeH k>0U{V}CA

be the collection of all the nonempty intersections of hyperplanes from H, together
with the full space V. We order £ by inclusion. Let comp(H)=
Ureccomp(L, Hy) denote the collection of all chambers of all the subspaces
L € L. By a residue weight associated to H we mean a function ¢:comp(H) —
[0; 1] such that for each L € L:

(@) flcomp(z,n,) has finite support, i.e., the set {C € comp(L, H.) | #(C) # 0} is finite,
(b) ZCecomp(L,HL) Z(C) =1

For example, if a distinguished nonempty finite set of chambers, C(L) C
comp(L, Hy), has been chosen for each L € £, then we obtain a residue weight
by letting #(C) = 1/|C(L)| if C € C(L) for some L € £ and #(C) = 0 otherwise. Here
|C(L)| denotes the number of elements in C(L).

The set of residue weights associated to H is denoted WT(H). Observe that if
te WI(H) and Le L then the restriction ¢, of ¢t to comp(Hp)=
Uper,comp(L’, Hy,) belongs to WT(H.). Here £,:={L' e L| L C L}.

THEOREM 1.13. Let ‘H be an affine hyperplane configuration in V and let
t € WT(H). Then for every chamber C € comp(V, H) there exists a unique family
of Laurent operators Resf”: MV, H) > M(L,Hr), L € L, such that

(a) {L e L|Ress' 0} is finite,
(b) forall o € P(V,H) we have

/ pduy =Y > t(C/)/ Res o dy;. (1.18)
pt(C)+iV LeL C'ecomp(L,Hy) pt(CH+iVy

Moreover, the operators Resf” are real and we have Resg” =1, the identity operator.
For H € H, the operator Reslg’r is a real multiple of Resz.

The proof of this result (inspired by [10, Lemma 3.1]) will be given in the following
two subsections. Based on the theorem we define the residual support of
C € comp(V, H), relative to ¢, as the finite subset of £ given in item (a). It is denoted
ressupp(C, f). The expression (1.18) gives the motivation for the phrase ‘residue
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weight’. Notice in particular, that the term in (1.18) corresponding to L = V reads
Z () pduy,
C’ecomp(V,H) pi(C)+iV

that is, it is a weighted sum of shifted integrals.

1.8. THE EXISTENCE OF THE RESIDUE OPERATORS

We first prove the existence of the operators Resf” in Theorem 1.13. The proof is
carried out by induction on the dimension of V. Thus let m € IN and assume that
the existence of the residue operators has been established for all pairs (¥, H) with
dim V' < m and all residue weights 1 € WT(H)(if m = 0 this is certainly all right,
as there are no such pairs). Let a space V' of dimension m and a chamber
C € comp(V, H) be given. We rewrite the left-hand side of (1.18) as follows:

‘/ pduy = > «(C) @ duy+
pu(CO)+iV C’ecomp(V,H) pUC)+IV

ool edw [ edn |
C'ecomp(V, H) pt(CO)+iV pt(C)+iV

The first sum on the right-hand side is going to represent the part of (1.18) where
L=V, with Res?/l = I. In the second sum, the expression in the square brackets
can be written as a sum of terms

/ wwv—/ pduy
pUC)+iV pUC)+iV

with adjacent chambers C;, C; € comp(V, H). Using Proposition 1.12 we can write
each of these terms as

+ / Res,zq) duy,
PUCIAC)+iVi

where H € H is the separating hyperplane. By the induction hypothesis applied to
(H, Hpy) and the restriction ¢y of # to comp(H ), the latter expression can be written
as

£ > e[ R CUReodu,
LeLly C"ecomp(L,Hz) pUC")+iVL

with real Laurent operators Resf‘ACz’f”:M(H s Hy) > M(L, Hr). By Lemma 1.8
the operator

R = Res{ "2 o Res);
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is a real Laurent operator. The existence of the operator Resf” now follows; it is a
real linear combination of operators of the form R, with H € H(L).

1.9. THE UNIQUENESS OF THE RESIDUE OPERATORS

We shall now establish the uniqueness part of Theorem 1.13. Let 1 € WT(H) and
C € comp(V,H) be given. If we have two families of operators satisfying (a)
and (b) in Theorem 1.13, we obtain by subtraction a family of Laurent operators
Ry MV, H) > M(L,Hy), L € Ly, satisfying (a) and

0= ) ) Rrpdu,

Lel C'ecomp(L,Hr) puC)+iVL

for all ¢ € P(V,H). In order to obtain the desired result we must prove that Ry = 0
for all L € £. This results immediately from the following proposition.

PROPOSITION 1.14. Let 'H and t be as in Theorem 1.13, and let d € N¥. Assume
there is given, for each L € L, an element uy, € S(Vi) such that

(@) {L e L]|ug#0} is finite,
(b) forall p € P(V,H,d) we have

0=> > f(C’)/ ur(qr.ap) du,.
Lel C'ecomp(L,H.) pUC)+iVL

Then uyp, =0 for all L.

Proof. We shall proceed by downward induction on the dimension of L. Thus let
/ € N and assume that it has been already established that u; = 0 for all L € £ whose
dimension is strictly greater than / (if / = dim V this is certainly all right as there are
no such subspaces L). Let Ly € £ be of dimension /. We claim that u;, = 0. Let
L,={LeL|dimL </ L#Ly}. We have

0= Y Y« wede (1.19)
LeL,U{Ly} C'ecomp(L,Hr) pu(C)+iVL
for all ¢ € P(V,H, d).

Notice that for each L € £, we have Ly ¢ L and, hence, H(L) ¢ H(Ly). Choose
Hyp € H(L)\ H(Ly), then for N; € N sufficiently large we have uL(EZif) =0 on
reg(Lc, Hy) for all functions f holomorphic on a neighborhood in V of this set.
Let

g= [
LEL:*,ML?fo

(where, as usual, an empty product is 1), then u;(¢f) = 0 on reg(Lc, Hy) for f as
before. Moreover, g is not identically zero on Ly. We now have (insert g¢ in place
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of ¢ in (1.19))

0= > o ur(qro 0 40) duy,
) pUC)+iV7,

C/€C0mp(L0,HL0

for all ¢ € P(V,H,d). In particular this holds if ¢ has the form qzolydlp with
Y € PW(V)(see above Lemma 1.9), and we thus obtain

0= > 1O L, (@) diy,
C’ecomp(Lo, Hr,) pUC)+iVi,

for all y € PW(V). The space PW(V') is invariant under multiplication by a poly-
nomial as well as under the application of a constant coefficient differential operator,
and functions in PW(V’) restrict to functions in PW(L) for any L € £. Hence the
integrand in the expression above belongs to PW(Zy). By Cauchy’s theorem we
can then replace each point pt(C’) by any other point of Ly, in particular, by
the central point, and we obtain (using property (b) in the definition of a residue
weight)

0= / o (@) dis,
c(Lo)+iVi,

for y € PW(V). The space PW (V) is also invariant under translations by elements of
V¢, and hence

0= / ury (g du, (1.20)
1 LO

for all € PW(V),where ¢'(1) = q(4 + c¢(Ly)). Notice that the polynomial ¢’ is not
identically zero on V. The space {f|;;- | f € PW(V)}is dense in the Schwartz space
S(iV) (where iV is considered as a real Euclidean space), and the right-hand side of

(1.20) is continuous on this space. Hence this identity holds for all y € S(iV).
LetQ, Ci VLL0 and Q, C iV, be open nonempty sets such that 0 € € and such that
¢’ 1s nowhere zero on Q = Q; x Q, C iV. Then it follows from (1.20) that we have

0= [ wwdn, (1.21)
iV,
fory € C*(Q). If uy, # 0 there exists a function f; € C°(Qy) such that u; f1(0) = 1.

Moreover, there exists a function f; € C(Q,) such that fiVL Sfodu, =1. Let
Y =f1®f, € CX(Q), then we have 0

/ UL(,lPd,uLO =1,

contradicting (1.21). Hence u;, =0 as claimed. This completes the proof of
Proposition 1.14, and thus also that of Theorem 1.13. OJ
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1.10. SUBCONFIGURATIONS

In the remainder of Section 1 we give some properties of the residue operators that
will be used in the following sections.The properties are easily established by means
of the uniqueness inTheorem 1.13.

Suppose Hy and H are affine hyperplane configurations in V' with Hy C H.
We call Hy a subconfiguration of H. We have M(V,H) D M(V,Hy) and
PV, H) D P(V,Hy). In general a chamber Cy € comp(V, Hy) contains several
chambers from comp(V, H); we denote by comp(Cy, H) the set of these chambers.

Let L € A, then Hy r:= (Ho); is a subconfiguration of H;. Moreover, if R is a
Laurent operator M(V, H) — M(L, Hyr), then it follows from (1.9) that the restric-
tion of R to M(V, Hy) maps into M(L, Hy ) and is a Laurent operator.

The set Ly:= Ly, is a subset of £ = L. The inclusion map i: Ho~—H induces a
map * from WT(H) to WT(Hy) as follows. Let 1 € WT(H) and define for
L e Ly and Cy € comp(L, Hoy. 1):

FoC)= Y. 0. (1.22)
Cecomp(Cy,Hr)
It is easily seen that i*(¢) is a residue weight for (V, Hy). It is called the induced
weight.

PROPOSITION 1.15 Let Cy € comp(V,Hp), C € comp(Cy, H), t € WT(H) and
Le L. Then

ResIC,‘”i*(’) if Le Ly;

1.23
0 otherwise. ( )

C.t _
Resy | ey 1) = {

Proof. By Theorem 1.13 (for the configuration Hy and the weight i*(¢)) and (1.22)
we have, for all ¢ € P(V, Hy):

/ ¢ duy
pt(Co)+iV

=y X > o[ RO,
pUCH+iVL

LeL, C(’] ecomp(L,Ho.1) C’ecomp(C(’),HL)

Since pt(C’) € Cj for all C' € comp(Cj, Hy) we can insert these points for pt(Cj) on
the right-hand side, and we obtain

/ pduy =Y > «C) / Res& Dy, (1.24)
p(Co)+iV LeLy C'ecomp(L,H.) pU(C)+iVL

for all ¢ € P(V, Hyp).
Let dy € N, and define d € N by d(H) = dy(H) for H € Hy, and d(H) =0
otherwise. Then P(V,H,d) = P(V, Hy, dy), and we have the equation (1.18) for
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all ¢ in this space. Since pt(C) € Cy the left-hand sides of (1.18) and (1.24) coincide,
hence so do the right-hand sides, and the identities in (1.23) follow by means of
Proposition 1.14. O

In particular, we have the following immediate consequence of Proposition 1.15.

COROLLARY 1.16. Let H, t, and C be as in Theorem 1.13, andlet o € M(V, H). Let
Ho C H denote the set of hyperplanes along which ¢ is singular, and let Lo = Ly,. If
Le L\Ly (in particular, if ¢ is holomorphic in a neighborhood of L), then
ResS g = 0.

For the next result we recall (see below Lemma 1.5) that we have identified the
spaces Laur(V, L, H) and Laur(V, L, H(L)).

COROLLARY 1.17. Let H, t, and C be as above, and let L € L be fixed. Furthermore,
let Cy € comp(V, H(L)) be determined by C C Co, and let i: H(L)—H be the inclusion
map. Then Res$' = Rest" ),

(In other words, when computing the residue operator Resf”, or more precisely,
its representative in S (V7, X(L)), we can ignore all the hyperplanes from H that
do not contain L.)

Proof. This follows immediately from Proposition 1.5, since H(L) is a sub-
configuration of H and since in this case we have L € Lo = Lyz). O

1.11. INVARIANCE UNDER ISOMETRIES

Let T: V — V be an isometry. Then 7' maps hyperplanes to hyperplanes, hence it
maps H to the affine hyperplane configuration TH:= {TH | H € H}. It is easily seen
that 7 maps comp(H) bijectively to comp(7TH), and thatgp i— ¢ o T~! is a bijective
linear map from M(V,H) to M(V, TH), as well as from P(V, H) to P(V, TH).

Since 7 is an isometry there is a unique linear orthogonal transformation of V,
which we denote by 77, such that

(T'u)(p) = (@ oT)o T (1.25)

for ue V and ¢ € C®°(V). Thus if T itself is linear then 77 =T, and if T is a
translation then 77 = 1. Let 7" denote as well the natural extension to S(¥) of this
map, such that (1.25) holds for u € S(V). Let L € A. Then 7' maps S(V}) to
S(V#) and S_(Vi, X(L)) to S—(V#, TX(L)). It follows (cf. Lemma 1.5) that
T’ induces a linear isomorphism, also denoted 77, of Laur(V,L,H) onto
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Laur(V, TL, TH), and by (1.9) and (1.25) we have
T'R(p) =R(poT)o T} (1.26)

for R € Laur(V, L, H), ¢ € MV, H).

LEMMA 1.18. Let T:V — V be as above, and let te WT(H). Then
Tt:=to T~ € WI(TH). Moreover, let C € comp(H) and L € L. Then

T'Res¢ = Rest <™, (1.27)

Proof. The first statement is clear from the definition of WT.Let ¢ € P(V, TH),
then the claim in (1.27) amounts to

ResS(p o T)o T! = ReslS "o (1.28)

Since T preserves Lebesgue measure we have

/ P T = [ odu. (1.29)
pt(O)+i

pUTC)+iV

The identity (1.28) follows easily, if we apply (1.18) to the left-hand side of the
expression (1.29) and use the definition (Theorem 1.13) of the residue operators
ReslS 7, O

1.12. EXTENSIONS

Let A C V be an affine subspace, and let H 4 be an affine hyperplane configuration in
A. Then by

H={(H +Vi|H €Mty

we define an affine hyperplane configuration in V/, which we call the extension of H 4.
It satisfies

Vs> Vi, forall HeH. (1.30)

Conversely, if a given affine hyperplane configuration H in V satisfies (1.30), then
H=(HNA)+ Vy for all H € H, and hence H is the extension of the hyperplane
configuration

Hiy={HNA|HeH) (1.31)
in A.

LEMMA 1.19. Let H be the extension of H4, and let L € A. Assume Vj C Vi. Then
L=LNA+Vf.
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() Define, for ¢ € M(V,H)and v € Vi, a function ¢, on Ac by
o (A) =p(A+v) (L€ Ac). (1.32)

Then ¢, € M(A, H4). Moreover, if ¢ € P(V,H) then ¢, € P(A, H,).
(i) Let a Laurent operator Ry: M(A, H4) — M(LN A, Hina) be given, and define,
Jor ¢ € M(V,'H), a function Rp on L¢ by

Ro(A+v) = Ry(p,)(4) (1.33)

for e (LN A)c, v e Vi Then Rp € M(L, Hr) and R: M(V, H) - M(L, Hy)
is a Laurent operator.

(iii) The map R41— R defined in (ii) is an isomorphism of Laur(4, LN A, H4) onto
Laur(V, L, H).

Proof. That L = LN A + V5 is obvious. Let a normal vector oy € V7 be chosen
for each H € H, then ay is also a normal vector for H N 4 in V4. With these choices
fixed, it follows that the associated first degree polynomials £4: Ve — C and
Lung: Ac — C in (1.1) are related by the equation

(o +v) = Luna(h) (L€ Ac,ve Vi) (1.34)

The bijection H i— H N A from H to H,4 induces a bijection N ~ N+ Let K c 4
be a compact subset. It follows from (1.34) that for every d € N" ~ N+ we have

nka(A+v) =7mka(h) (A€ Adc,ve Vi)

Now (i) easily follows.

Notice that H(L) is the extension of Hy(LNA)={H e Hy| H D LNA}. It
follows from this observation and from the identity (1.34) that for a given
d € N ~ NH4ED the polynomials ¢z: Ve — C and grrs: Ac — C in (1.5)
are related by

gL +v) = qrra(l) (L€ Ac,v e Vi) (1.35)

Let R4 be given, as in (ii), and let u € S_ (Vi N V4, X(L N A)) be its image by the
isomorphism in Lemma 1.5. Here the set X(L N 4) consists of the normal vectors
in V4 to the hyperplanes in H 4(L N 4). With the choice of normal vectors mentioned
earlier in the proof we have X(L N A) = X(L). Since Vi, N V4 = Vi we conclude
that

S (Vi X(L)) = S (Vi N V4, X(LN A)). (1.36)

Hence u € S (V}#, X(L)). As in Lemma 1.5 let R, be the corresponding Laurent
operator M(V,H) — M(L, Hr), then R,¢ is given by (1.9) for ¢ € M(V,H). It
is now easily seen from (1.35) that the function R¢ defined by (1.33) is equal to
R,p. Hence R = R, and (ii) is proved. Moreover, (iii) is an immediate consequence
of (1.36) and Lemma 1.5. [
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Remark 1.20. Given a Laurent operator R € Laur(V, L, H) we denote by R, its
preimage in Laur(4, L N A, H 4) by the isomorphism of (iii). Notice that if we ident-
ify the spaces of Laurent operators with their projective limit models, as mentioned
below Lemma 1.5, then it follows from the proof above that the map Ri— R, is
just the identity map on the space (1.36).

Let £ = Ly, L4 = Ly,. The map Li— LN A is a bijection from £ to £,4. The map
Ci— CN A is a bijection from comp(H) to comp(H,). Hence, if 1 € WT(H) we
obtain a residue weight ¢4 € WT(H4) by defining

t4(CNA)=1C0), (C € comp(H)). (1.37)
The map ti— t,4 is then a bijection from WT(H) to WT(H,).

LEMMA 1.21. Let 'H be the extension of H4 as above, and let t € WT(H),
C € comp(H). Then

(Res$™), = ResSh (1.38)

for every L € L.

Proof. We define for each L € £ the Laurent operator R;: M(V,H) — M(L, H,)
by (R1), = Res{(4". The lemma follows if we establish the identity R; = Res{ "’ for
every L € L. By the uniqueness in Theorem 1.13 it suffices to prove that

/ pduy =" > «C) / Rppdy; (1.39)
POV LeL C'ecomp(L,Hy) pUC)+iVL

for ¢ € P(V, H).
For each fixed v € V. we have

RLo(h+4v) = ResSH (0 )(A) (L e (LN A)) (1.40)
(cf. (1.33)), and

/ ¢, duy
pCNA)+iV 4

=YY we [ Re™ g d
LeLly C'ecomp(L/,H;) puC)+iVp

by the definition of the residue operators for H,. Substituting L' = LN A and
C"=CnNA(LeL,C ecomp(L,H)), and applying (1.37) and (1.40), we obtain

/ pdi=Y Y «0) (RLg), ity (141)
PUCNA)+iV 4

LeL C'ecomp(L,Hr) PUC'NA)+iV 104

Now ¢ € P(V, H), and for every L € £ we have R, ¢ € P(L, H), by Lemma 1.10.
Hence the expressions on both sides of (1.41) are integrable over v € iV/§ with respect
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to the measure du v (v). Moreover, the desired equation (1.39) follows by application
of the Fubini theorem. O

2. Support Conditions

As mentioned in the introduction we would ideally like to replace the 7 in an integral
of the form (0.3) by the origin of V/, at the cost of residual terms. This means that for
the terms in (1.18) corresponding to L = V" we want to have #(C’) = O unless 0 € C’.
Likewise, in the contributions to (1.18) from L # V (the residual terms) we would
like to have #C’) = 0 unless ¢(L) € C’. In the application, in [5], to the Plancherel
decomposition, the tempered part of the spectrum is to be found on (real) affine
subspaces in V¢ of the form ¢(L)+ iVy. Therefore, we call this affine subspace
of L¢ the tempered real form of L. What we want is that only integrals over tem-
pered real forms contribute in (1.18). However, in general we cannot quite obtain
this, since ¢(L) may belong to the singular set sing(L, H,) for some L € £. What
we can obtain is that an integral over pt(C’) + iV only contributes if ¢(L) is in
the closure of C’. For this purpose, we introduce in this section the notion of a central
residue weight; this is a weight that is supported on chambers C’ with closure con-
taining c¢(L) (where C’ € comp(L, Hr)). Our main result here is Theorem 2.6, which
gives necessary conditions for an element L € £ to produce a nonvanishing residue
operator, relative to a central weight.

2.1. CENTRAL RESIDUE WEIGHTS

Let H be an affine hyperplane configuration in V, and let L € £L. A chamber
C e comp(L, H;) is called central (in L), if its closure contains the central point
¢(L). The set of central chambers in L is denoted comp (L, H); this is a finite
set since H is locally finite. Let #: comp(H) — [0; 1] be a residue weight. We call ¢
central if it has central support, that is if for every L € £ and C € comp(L, H,)
we have #(C) # 0 only if C € comp.(L, Hr). The set of central residue weights is
denoted WT.(H).

EXAMPLE 2.1. A particularly simple case appears if ¢(L) € reg(L, Hy) forall L € L.
In this case there is only one central residue weight 7., namely that which associates
the weight 1 to the unique central chamber (which contains ¢(L)) for each L,
and 0 to all other chambers. For this weight, (1.18) reads

[ o= Resfodu 1)
pt(C)+iV Lel JL)+iVy

for C € comp(V, H) and ¢ € P(V, H).
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As mentioned, we shall give a necessary condition for an element L € £ to be in the
residual support ressupp(C, ¢) of a chamber C € comp(V, H) relative to a central
weight . If C is also central, the criterion is simple:

LEMMA 2.2. Let C € comp(V,H) be a central chamber, and let t € WT . (H) be a
central weight. Then for every L € ressupp(C, t) we have 0 € L.

Proof. Observe first that if C’ is another central chamber in V' then there exists a
sequence Ci, ..., C, of central chambers in V' such that C; = C, C, = C’, and
C;, C,, are adjacent for all i.

Let L € L. Since ¢ is central it follows from the preceding observation and the
proof in Section 1.8 that Res{ is a linear combination of operators of the form
Resf”c“” o Res}, with adjacent chambers Cy, Cs, both central in V. The hyperplane
H € H(L) that separates C; and C, contains 0 since C;, C, are both central. More-
over, C; A C, is a central chamber in H. The restriction ¢ of ¢ to comp(Hp) is also
central.

The proof is completed by a straightforward induction on dim V', OJ

For non-central chambers C our criterion for an element L € £ possibly to be in
ressupp(C, t)(with 1t € WT.(H)) is more intricate. Let us describe the idea for the

simple case of Example 2.1. Using that Reslc,"“ =1 we rewrite (2.1) as follows:

/ pduy —f pduy =Y / Res; "o duy.
PUO)+iV 0+iV Lelb Ty Jetiv

It follows from the proof of this formula (see Section 1.8) that a hyperplane H € H
that belongs to ressupp(C, ¢.) must separate C and 0. In other words, the line
segment [pt(C); 0] from pt(C) to 0 must intersect H, say in a point ¢. This exactly
is our condition if L = H is a hyperplane. The limitation on the lower dimensional
spaces in ressupp(C, ¢) is inductive: If L € ressupp(C, t.) has codimension 2 in
V, it must be contained in one of the above mentioned hyperplanes H, and it must
separate ¢ from c¢(L). Here ¢ is the point mentioned above — notice however that
we must take into account that it depends on the choice of the point pt(C) in C.

An example is given in the Figure 1, where H consists of the two lines H} and H»,
and C is the lower left chamber.

When we move the two-dimensional integral prV @ duy fromp = pt(C) top =0,
a residue occurs at a point, say ¢, on Hi, to the left of its intersection with H,. This
residue is itself a one-dimensional integral along g + iVy,, and has to be shifted
to an integral along the tempered real form c(H;) + iV, of H;. In the latter shift
another residue occurs at the point of intersection, H; N Hy; this residue is a scalar.
Thus we see that ressupp(C, 7) (at most) consists of V', H;, and H; N H,.

For the general case when c¢(L) is allowed to be singular in L, the result is of a
similar nature. Besides the complications arising from considering the general case,
another difficulty arises from the problem that the point ¢ € [pt(C); 0] N H (see
above) may be a singular point of H. This occurs already in the simple case described
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o0 H2

< Hl

/ c(Hn)
C

Figure 1.

above, for example if in the figure we add a third line, H3, that intersects Hy, resp. H»,
to the left of, resp. below, H| N H,. If C is again the lower left chamber, the point ¢
where [pt(C); 0] intersects H; could happen to be the point H; N H;. However, this
is not the case if pt(C) is chosen outside a certain singular subset of C (viz., outside
the line through 0 and H; N H3). This is precisely our aim in the following subsection:
We shall define (for finite hyperplane configurations) an open dense subset
reg”~(V, H) of reg(V, H) such that the mentioned problem is avoided (on all levels)
if pt(C) is chosen from this subset.

2.2. WEAKLY SINGULAR HYPERPLANES

For the rest of this section we assume that H is finite. We shall define reg™ (1, H) by
means of a larger (but still finite) hyperplane configuration ™. The definition
of this configuration is inductive.

If c € Vand 4 C V is an affine subspace we denote by aff(c, 4) the affine span of
{c} U A, that is the set of all affine combinations (1 — f)c + 14, t € R, of ¢ and all
points 1 € A. The set aff(c, 4) is obviously an affine subspace, and its dimension
is dim 4 + 1 unless ¢ € 4 in which case aff(c, 4) = 4.

We define for each L € £ afinite set H; of hyperplanes in L, by induction on dimZ,
as follows:

H; = HpUfaff(c(L), H") | H € Hy, «(L)¢ H, H' € Hy). (2.2)

If dimL =0 then H; =¥, and (2.2) gives H;, = . If dimL =1 then (2.2) gives
H; =Hr. Let H~ =H; this is a finite hyperplane configuration in V, and it
has H as a subconfiguration. We call the hyperplanes in H~ weakly singular with
respect to H.

Notice that by the inductive construction it is obvious that ] is the set of hyper-
planes in L that are weakly singular with respect to H;.
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Letsing™ (V, H) = sing(V,H™) = UH and reg™(V, H) = reg(V,H") =V \UH".
The crucial property of the refined configuration H™ is expressed in the following
lemma:

LEMMA 2.3. Let A e reg™(V,H) and let g € RANsing (V,H), ¢ 0. Then g € H
for a unique hyperplane H € H, and RINH = {q} C reg”(H, Hp).

Proof. Let H € H™~ be such that ¢ € H. The set RAN H is affine, hence either
it is a point or it equals RA. The latter is excluded since 4 is ~-regular and, hence,
is not in H. Thus RAN H ={q}. In particular, 0¢ H. It follows from (2.2)
(with L= V) that the hyperplanes from H~ \H contain 0. Hence H € H.
Assume ¢ € sing” (H,Hy). Then qe H' for some H' €My, and since (2.2)
(again with L = V) implies that aff(0, H') Csing (V,H), we conclude that
Rg C sing™(V,H). Again, this contradicts the assumption on A. Hence,
q € reg~(H, Hpy). In particular, this implies the stated uniqueness of H. All state-
ments in the lemma have now been proved. O

More generally, let Ly € £ and/ € reg™ (Lo, Hy,), and let
L={(1—-0c(Ly)+tA|te R}

If ¢ € £ N sing™ (Lo, Hi,), g # ¢(Lo), then ¢ € L for a unique L € H,,,, and we have
¢NL={q} Ccreg” (L, Hr). This follows immediately from the preceding lemma,
applied to Lo, Hp,.

2.3. THE CHAMBERS OF THE REFINED CONFIGURATION

We call a connected component of reg™(V,H) a ~-chamber and denote by
comp™(V,H) the (finite) set (=comp(}V,H”)) of these ~-chambers. Since
reg”(V,H) C reg(V,H) there is a natural surjective map ip:comp™(V,H) —
comp(V, H) defined by 1(C) D C for C € comp™(V, H).

Put comp™(H) = Ureccomp™(L, Hy). Notice that here the set £ is defined relative
to the original configuration H; in general not all intersections of elements from H™
belong to L. This has the effect that in general comp™(H) does not cover all of
V(whereas comp(H) does cover V). Notice also that by the inductive construction
of H~ we immediately have for all Ly € £ that comp™(Hy,) is the subset of
comp”(H) consisting of those ~-chambers C for which CN Ly # ¥ (and, hence,
C C Ly).

If C € comp™(H) we denote by L(C) the (unique) element L € £ for which
C e comp™(L,H;), and we put dim C = dimZL(C). Let r:comp™(H) — comp(H)
be given by «(C) = i1()(C). Furthermore, let ressupp(C, 1) = ressupp((C), t) for
t € WT(H).

If p, g € V we write [p; ¢] for the line segment {(1 — #)p + tq | t € [0; 1]} from p to ¢,
and [p; q[:= [p; q] \ {¢}.
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LEMMA 2.4. Let Cy € comp™(H) be given and put Ly = L(Cy). Let p € Cy. The set
P(p) = {C € comp™ (H) | dim C < dim Cy, [p; c(Lo)[N C # B}

is independent of p. Moreover, dimC =dim Cy—1 for each C € B(p), and
[p; e(Lo)] N C has exactly one element. Denote this element by q(p, C), then

[p: e(Lo)[ N sing™ (Lo, Hr,) = {q(p. C) | C € f(p)}- (23)

Proof. Fix C € (p) and let g € [p; c¢(Lo)[N C. It follows from the observation
below Lemma 2.3 that L:=L(C) is a hyperplane in Ly, and that
[p; c(Lo)]N L ={q}. The hyperplane L separates C; from c¢(Ly), hence
[4; ¢(Lo)] N L consists of a single point ¢g(4) for all 1 € Cy. Again by Lemma 2.3
we have ¢(1) € reg™ (L, Hy) for all 1 € Cy. The map A1— ¢(1) is affine. Hence, its
image ¢(Cp) is a convex subset of reg™ (L, Hy), and as it contains ¢ = ¢g(p) we con-
clude that ¢(Cy) C C. This shows that C € (/) for all 1 € Cy. Hence f(p) C B(4).
The converse statement holds by symmetry of the argument. Thus f(p) is indepen-
dent of p.

It remains only to prove (2.3). That g(p, C) belongs to sing™ (Lo, Hy,) for each
C € f(p) is clear. Conversely, if ¢ € [p; c(Lo)[ N sing™ (Ly, Hy,) then the observation
below Lemma 2.3 shows that g € reg™ (L, H.) for some L € Hy,. Hence, g C
for some C € comp™(L, Hy). Hence, C € S(p) and g = ¢(p, C). OJ

We write f(Cp) for the set f(p) C comp™(H) of the preceding lemma. We now
define the partial order relation <4, on comp™(H) by C’ <4 C if and only if there
exists an integer k > 0 and a sequence Cy, ..., C; € comp™~(H) such that Cy = C,
Cr=C', and C; € p(Ci—y) for 0 <j < k.

Notice that a ~-chamber Cp € comp~(H) is central (i.e., its closure contains
c¢(L(Cy))) if and only if B(Cy) is empty. Thus the central ~-chambers are the minimal
elements in comp™~(H) with respect to <.

It is easily seen that if Ly € £ and Cy € comp~ (Lo, Hr,), then a ~-chamber
C’ e comp~(H) satisfies C' <y Cy if and only if it lies in Ly, and satisfies
C =n,, Co. In particular, <3, equals the restriction of <y to comp™(Hy,).

2.4. BOUNDS ON THE RESIDUAL SUPPORT

PROPOSITION 2.5. Let H be finite and t € WT (H) a central weight. Then for every
Co € comp™(V,H) and for every L € ressupp(Cy,1t) there exists a ~-chamber
C <y Cy such that

«(L(C)) € L C L(C). (2.4)

Proof. For any Cy € comp™(H) we denote by L[<4 Cy] the set of those L € L for
which there exist a ~-chamber C <4 Cj such that (2.4) holds. We must show that
ressupp(Cy, 1) C L[=y Co] for Cy € comp™(V, H). By the uniqueness of the residue
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operators (cf. Theorem 1.13) it suffices to prove that for every Cy € comp™(V, H),
L e L[=xy Cy], there exists a Laurent operator Ry: M(V, H) - M(L, Hr) such that
we have

duy, = H(C' / Rrpd 2.5
fp - @duy Lqu;{co] C’EcomXp%L,HL) () N Lpduy (2.5)
for all ¢ € P(V,H). We shall achieve this by induction on dim V.

Let m € N and assume the existence of operators Ry such that (2.5) holds has been
established for all pairs (V,H) with dim V' < m and all central residue weights
t € WT.(H) (if m = 0 this is certainly all right, as there are no such pairs). Let a
pair (V,H) be given with dim V' =m, and let t € WT.(H) and Cy € comp™(V, H).

Fix p € Cpand let Cj, ..., C, be an enumeration (possibly empty) of the elements
from B(Co). Then (cf. (2.3)) the hyperplanes H;:= L(C}) € H cut the line segment
[p; O] into r + 1 disjoint, nonempty pieces:

[p; O[= U_olg;; gj+11,

where go:= p, ¢;:= q(p, C}) forj =1, ...,r,and g,4:= 0 (we have assumed that the C;
are numbered in suitable order). For each j = 1,...,r there is a unique chamber
C; € comp(V, 'H) such that ]g;; gi+1[C C;. Moreover, C; is adjacent to C;_;, and
we have Cj_1 A C;=1(C)). The chamber C, is central. It now follows from
Proposition 1.12 that for all ¢ € P(V, H) we have

,,
[ odw=[ odw+Yof Resoduy .6
p+iV pt(C,)+iV j=1 q/-+iVHj ’

with ¢; = £1.
By Theorem 1.13 and Lemma 2.2 we have

&
[ o= ¥ o) Resfode.
PUCH+IV LeL,0eL C'ecomp(L,Hy) PUC)+iVL

If0 € L, then L € L[=y Cy] because (2.4) holds with C = Cy. Hence, the first term in
(2.6) has the form desired for (2.5).
It remains to be seen that each of the terms

f Rest@ d,qu
qj+iVHj

in (2.6) also has the desired form. This follows easily from our induction hypothesis
and Lemma 1.8 (use that C 571,0 C,’ = C <y (). O

THEOREM 2.6. Let 'H be a hyperplane configuration in V and t € WTc(H) a central
weight. Let Cy € comp(V, H). Then

le(L)] < infleq |4] 2.7
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and

{c(L), 4) =0, (4 € Cy) (2.8)

for all L € ressupp(Cy, ?).

Proof. Fix L€ L. It follows from Corollary 1.17 that we may assume that
H = H(L). In particular, then H is finite. In order to prove the inequalities (2.7)
and (2.8) for a chamber Cy, € comp(V, H) it suffices, by density, to establish them
for each ~-chamber inside Cy. We may therefore assume that Cy € comp™(V, H)
and L € ressupp(Cy, t). According to Proposition 2.5 there exists a ~-chamber
C <y Cy such that (2.4) holds. Then c¢(L) = ¢(L(C)). Let Cy, ..., Cx € comp™(H)
with Cx = C and Cj € f(Cj_y) for j=1,..., k. Let 4y € Cy be arbitrary and deter-
mine 4; € C; for j =1, ..., k recursively such that ; € [4,_1; cL((C;—1))[N C;. Then
|4l < |4j—1| for j=1,...,k, and since A € C we also have |c(L(C))| < |4|. We
conclude that |c¢(L)| < |Ao].

Put L; = L(C)) and ¢; = ¢(L;) for j =0, ..., k, then ¢y =0, cx = ¢(L) and

V=L DL D...0L,=L(C)D L.

Letj=1,..., k. Then (v, ¢ji_1) = (cj-1, ¢j-1) < (¢}, ¢;) = (v, ¢;) for all v e L;. Hence
(A, e(L) — ¢j—1) = (4j, c(L) — ¢;).

Since 4; € [4i—1, ¢j—1[ and ¢j—; L ¢(L) — ¢j—; we have
(4j-1, (L) = ¢j1) = 1%, ¢(L) — ¢j—1)

forsome #; > 1. Hence (4;_1, ¢(L) — ¢j—1) = tj(4;, (L) — ¢j) forj =1, ..., k, and since
(A, ¢(L) — cx) = (A, 0) = 0 we conclude that (1o, ¢(L)) = (Ao, ¢(L) — ¢o) = 0.

3. The Residue Scheme for Root Systems

In this final section we assume X to be a (possibly nonreduced) root system in the
finite dimensional real inner product space V. Let °V denote the span of X, and
Vy its orthocomplement in V; we do not require that °V = V. We shall apply
the theory developed so far to meromorphic functions with singular hyperplanes
of the form ¢+ ot, with ce V, o e X.

3.1. ADMISSIBLE HYPERPLANE CONFIGURATIONS

By definition an affine root hyperplane in V' (with respect to X) is an affine
hyperplane H for which there exists a root « € ¥ such that Vy =oat. Thus
H = c¢(H) + ot = H,;, where

H,o={AeV|{ia) =s} (3.1)

and s = (¢(H), «) € R. Let Hy denote the set of all affine root hyperplanes in V" and
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Hx(0) = {0 | o € I} the (finite) subset of the hyperplanes that contain 0. An affine
hyperplane configuration H in V is called -admissible if H C Hy, that is if it consists
of affine root hyperplanes. Notice that Hy itself is not an affine hyperplane con-
figuration, since it is not locally finite (unless dim® V' = 0).

A root space in V' (with respect to X) is defined to be a linear subspace bin V' of the
form b = ocll Nn...N aclL for some roots oy, ..., 0; € X; we agree that V itself is a root
space. Let R = Ry denote the set of root spaces, and let Ly be the set of all affine
subspaces L of V' for which V', € R. The elements of Ly and R are the nonempty
intersections of hyperplanes from Hy and Hx(0), respectively. Given L € L5 we put

He(L)={HeHs | HO L ={c(L)+at |aeX, al Vi}; (3.2)

this is a finite set, hence a X-admissible hyperplane configuration. The set of inter-
sections associated with this configuration is

Ls(Ly=1{L' € Ls | L' DL} ={c(L)+b|beR, b> V).

In particular we have Hz(Vy) = Hx(0) and Lx(Vy) = R.
Given b € R we write sing(b, X) and reg(b, X) for the sets of singular, resp. regular,
elements in b, associated with the hyperplane configuration Hx(0). This means that

sing(b, ) = U,eppe - ND, reg(b, X) = b \ sing(b, X).

As usual the connected components of the latter set are called the chambers of b; we
write P(Db) for the set (= comp(b, Hxz(0),)) of these, and P for the set (= comp(Hx(0)))
of all chambers of all b € R:

P= UbeR P(b)

This union is disjoint; if P € P there is a unique root space bp € R such that P € P(b).
Notice that if P € P(b) then the subset —P of b also belongs to P(b); it is called the
chamber opposite to P. The set P is called the Coxeter complex.

Notice that if b is a root space, then the set Z;.:= £ N bt is a root system in the
subspace bt of V. Notice also that W, the Weyl group of X, acts on R: If
b=ofN...Noy and we W then wb={wd|ieb}=wux) N...N(wo)".
Moreover, w(reg(b, X)) = reg(wb, X). Hence there is also a natural action of W
on P.

The set P(V) is in one-to-one correspondence with the set of positive systems for Z;
the correspondence is given by

P YP)={aceX|a>0on P}

Let P € P(V) be given. Each affine root hyperplane H € Hy has the form (3.1) with
o € Z(P) and s € R. Let V*(P, H) denote the component of ¥\ H pointed at by
o, and V~(P, H) the other component. Then

VEP,H)={AeV|{a)=s).
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Furthermore, if H is a Z-admissible hyperplane configuration we put
VEP.H) = Nien V(P H). (3.3)

Clearly if V*(P, H) or V'~ (P, H) is not empty, it belongs to comp(V, H). We say that
‘H is P-bounded if there exists so € R such that if H,; € H for some o € Z(P),s € R,
then s > 5.

LEMMA 3.1. Let P € P(V) and let H be a Z-admissible hyperplane configuration.
The following properties of ‘H are equivalent:

(1) H is P-bounded,
(i) V(P,H)#9,
(iii)) g e V: Ay — P Creg(V, H).

Proof. (1) = (ii). Let s¢ be as above, and choose 49 € V such that (4¢, o) < s0 for all
o€ XZ(P). Then Ape V- (P,H,,) for all «e€X(P) and s>=s), and hence
Ao € V(P H).

(i) = (ii). Take A9 € V=(P, H). Then g — P C V— (P, H) C reg(V, H).

(ii) = (1). Suppose Ay— P Creg(V,H), and let sy = min,esp){do, x). If
H=H, ; € H, where o € X(P), then (1o — P)NH = . Hence (o — 4, ) # s for
all A € P, from which it easily follows that (4, o) <s. Thus sy <. O

3.2. RESIDUE WEIGHTS

DEFINITION 3.2. The elements of WT(X):= WT(Hz(0)) are called residue weights
associated with . Thus, by definition, these are the functions ¢#: P — [0; 1] such that
> pepy H(P) =1 for all b e R.

For t e WT(Z) and w € W we define wt € WT(Z) by wt(P) = t(w~'P) for P € P.
Likewise, we define 1V € WT(X) by ¢Y(P) = t(—P).If wt = ¢ for all w e W, resp. if
t¥ =1, we call t Weyl invariant, resp. even.

EXAMPLE 3.3. The map Pi— 1/|P(bp)|~! is a residue weight. We call it the stan-
dard weight. It is both Weyl invariant and even.

Our goal in this subsection is to define a suitable map from WT(X) to WT.(H), for
each X-admissible hyperplane configuration H. For this we need the following
lemma:

LEMMA 3.4. Let a chamber Q € P(V) be given, and let H be a X-admissible hyper-
plane configuration. Then there exists a unique central chamber C € comp (V,H)
Sfor which QN C # @.

Proof. Since H is locally finite there exists a positive number ¢ such that 0 € H for
all hyperplanes H € H that meet the open ball B.:= B(0, ¢) in V. Moreover, since H is
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Z-admissible such a hyperplane is contained in sing(V, Z). It follows that
W#B.NQOCB Nreg(V,Z) C B.Nreg(V, H) C Ucecomp,(v,1)C-

Moreover, for C € comp.(V,H) we haveQ N C # @ if and only if BN QN C # ¢,
since Q and C are both central and stable under contraction. However, since
B.N Q is convex, it follows from the above inclusions that B.N QN C # @ for
one and only one chamber C € comp.(V, H). O

Let H be as above and let L € £L = Ly. Then it follows from Lemma 3.4
that for each chamber Qe P(V.) there is a unique central chamber Cy =
Co 1,1 € comp.(L, H) intersecting non-trivially with (L) 4 O.

Let now t € WT(X) be given. We define a map wy(¢): comp(H) — [0; 1] as follows.
Let L € £ and C € comp(L, Hy). Then

on((C)x= > «0Q) (34)
QEP(VL), CQ:C
if C is central in L, and wyx(¢)(C):= 0 otherwise. It is straightforward to check that
on(t) € WT (H).

3.3. LAURENT OPERATORS

Let L € L5 and let Hx(L) be the finite hyperplane configuration in V" given by (3.2).
The Laurent operators R € Laur(V, L, Hx(L)) map M(V,Hs(L)) into O(Lc).
Fix a chamber P € P(V), and let Z(P) denote the set of indivisible roots in
2(P). For each H € Hyx(L) we require that the chosen normal vector oy (see Section
1.1) belongs to X(P) (it is then unique). Let b = ¥;. As in Section 1.3 (see (1.10))
we form the projective limit S._(b*, X), X = Z(P) Nb*. The space S._ (b, X) is
isomorphic to Laur(V, L, Hs(L))(cf. Lemma 1.5); we denote it by S.(b*, P).
The map u— R =R, that takes an element u e S_(b-, P) into Laur(V,L,
Hx(L)) is given by (1.9), that is, by

Rop(2) = ua(@x a¢,)(0), (4 € Lo), (3.5)
for d € N ~ NP ) AV, Hx(L), d). Here

@100 3 vi— @A+ ),
and

oy bt 3 vi—> l_[ (o, v)4@®).
a€X(P)Nbt

In particular, we emphasize that we have in S_(b*, P) a model for Laur(V, L, Hx(L))
that depends only on L through its tangent space b = V', € R.
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Let H be an arbitrary Z-admissible hyperplane configuration in V, and let L € L5
and P € P(V) be given. Again we require that the normal vector oy has been taken
from Z(P) for all H € H. Let H(L) be defined by (1.3), then H(L) C Hx(L). Let
b= V.. Given an element d € N5 we extend it trivially to an element of
N2 ~ NEE (that is, so that it vanishes outside H(L)). Then the polynomial
qr defined in (1.5) is related to the polynomial @y, defined above by
qra(+v) = wy () for A € L, v € Vi (cf. (1.12)). It follows that (3.5) makes sense
for ¢ € M(V,H, d) and, moreover, that in this way we obtain a Laurent operator
R=R, M(V,H)— M(L,H). In conclusion, there is a natural linear map from
S_(bt, P) to Laur(V, L, H), for all Z-admissible hyperplane configurations H in
V and all L € Ly with V;, = b, and if H = Hx(L) then this map is an isomorphism.

3.4. THE UNIVERSAL RESIDUE OPERATOR

Let L € L5 and let Hx(L) be the finite hyperplane configuration in V' given by (3.2).
Fix PeP(V) and let V- (P,L)=V_(P,Hz(L)) be the chamber in
comp(V, Hx(L)) defined by (3.3); we have V= (P, L) # ¥ because Hx(L) is finite (use
Lemma 3.1). Finally, let r € WT(X) be given and put w(f) = @y ) (). We define
the residue operator associated with the data L, P, ¢t by

ResP:= Res] FP21 O MV, Hx(L)) — O(Lc). (3.6)

Let b = V.. As described in the previous subsection the residue operator (3.6) is
given by a unique element in the projective limit space S. (b1, P); we denote this
element by Res{” as well, and call it the universal residue operator associated with
the data L, P, t. It also follows from the previous subsection that it makes sense
to apply this element to functions in M(V, H) for any X-admissible hyperplane con-
figuration H; it gives a Laurent operator from M(V, H) to M(L, H). In particular,
if LeLsy\ Ly then it follows easily from Corollary 1.16 that Res{"q; =0 for
o e MV, H).

EXAMPLE 3.5. Let V=R, X = {£a}, P = {x > 0}, and let t € WT(Z) be given by
t(P)=t(—P)=1/2, t({0}) = 1. Fix 1 € R and let L = {1}. There are exactly two
chambers in comp(V, Hs(L)), they are the sets V'~ (P, L) and V' (P, L) given by
the inequalities x < 4 and x > 4, respectively. The induced weight w;(7) takes
the following values on these chambers. If 4 <0 then w (£)(V~(P,L)) =0 and
o (VTP L) =1; if 2> 0 then w ()(V~(P,L)) =1 and o, ()(V(P, L)) =0;
if A =0 then w ()(V~(P, L)) = o ()(VT(P, L)) =1/2. Tt then follows from the
residue theorem that

—2nu if <0,
Res(j =1 —mu if 2=0,
0 if 1>0.
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where u 1is the element of Sk(b{ P) that corresponds to the operator
@ 1— Res._, ¢(z); it is independent of A, cf. Example 1.6.

Let H be a P-bounded X-admissible hyperplane configuration in V', then we have
V—(P,H) € comp(V, H)(cf. Lemma 3.1). Let L € L4, and let Hx(L) be as in (3.2).
Then H(L) C Hx(L), where H(L) is given in (1.3). We shall now identify the residue
operator

ReSLV-(P,H),wH(t): MWV, H) = ML, Hy)

in terms of the element Res}”’, which was defined independently of .

PROPOSITION 3.6. Let t € WT(X), P € P(V), let H be a P-bounded Z-admissible
hyperplane configuration, and let L € Ly. Then

Reszi(P’H)‘“’”(’)(p = Resﬁ”(p

for all ¢ € M(V, H).

For the proof we need the following lemma. Let H; C H, be X-admissible hyper-
plane configurations, and let the map i*: WT(H,) — WT(H;) be defined as in (1.22).

LEMMA 3.7. We have i*(w,(t)) = wy,(2) for all t € WT(Z).
Proof. Let L € Ly, and C, € comp(L, (H1);).It is easily seen that it suffices to
show the following:Let Q € P(V.). Then

Ci=Cormn & Corn, €comp(Cy, (H2)p). (3.7)

Recall that Cg 1%, € comp(L, (H;),) is the unique central chamber for which

Co.rm; N[e(L) + O] # 0.
This property immediately implies (3.7). O
Proof of Proposition 3.6. Let H; ="H(L), then H; CH and V~(P,H;)D
V=(P,H), as well as H; C Hg(L) and V—(P,H;) D V- (P, L). By the preceding

lemma we have i*(wx(?)) = wy, (¢) as well as *(w.(?)) = wy,(¢),and by Proposition
1.15 we then have

V=(P,H1), o, (1)
V,H]) = RGSL !

RGSZ*(P,H),UJHU”M(
as well as

P, V=(P,H1),wn, (1)
RGSL tl./\/l(V,Hl) = RCSL 1 .

The proposition follows immediately, since a Laurent operatorM(V,H) —
M(L, Hp) is uniquely determined by its restriction to M(V, H;) (see Lemma 1.4).[]
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3.5. THE ACTION OF THE WEYL GROUP

The Weyl group W acts orthogonally on V" and it preserves . Hence, it also acts on
‘Hy and Ly. We shall now see how this action affects the residue operators.

LEMMA 3.8. Let H be a Z-admissible hyperplane configurationin V, and letw € W.
Then wH ={wH | H € H} is also Z-admissible, and if L € Ly then w maps
comp(L, Hy) bijectively onto comp(wL, (WH),,;). Moreover, if t € WT(X) then

()W C) = r(w'1)(C) (3.8)

for all C € comp(H).

Proof. The first statements are straightforward to verify. The equality in (3.8)
follows from (3.4) and Definition 3.2, once it has been observed that if
0 € P(Vy) then wQ € P(V,r) and wCq 1.1 = Cyo,wr,wr.This latter observation is
also straightforward (cf. Lemma 3.4). I

We shall now apply Lemma 1.18. Notice that the operator w:S(V) — S(V)
obtained from (1.25) is just the natural action of w. We denote this operator, as
well as the corresponding operator in (1.26), by w.

COROLLARY 3.9. Let H, w, L, and tbe as in Lemma 3.8, and let C € comp(H). Then

C,on(t) __ wC, Wy (Wt)
wRes; = Res,; .

If 'H is P-bounded for some P € P(V), then wH is wP-bounded and
wRes! (PHOWHD _ R gV (PaH) o)

Proof. The first statement follows immediately from Lemma 3.8 in combination
with Lemma 1.18. The other statements then follow from the observation that
wV=(P,H) = V- (wP, wH). |
PROPOSITION 3.10. Let Pe P(V), Le Ls, t e WTI(X), and w € W. Then

wRest" = Res!/F-"! (3.9)
If
w(Z(P)N V) C Z(P), (3.10)

then we also have

wRest’ = Rest)". (3.11)
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Proof. Put H = Hx(L). Then wH = Hx(wL), and we obtain (3.9) from (3.6) and
Corollary 3.9. Assume (3.10). We claim that then

Resh’ = Res) 7. (3.12)

By the definition of Res{” it suffices to show that V~=(P, H) = V—(w~' P, H), and for
this it suffices to show that V~(P, H) = V—(w~'P, H) for all hyperplanes H € H.
Such a hyperplane is of the form ¢(L) + o with o € £ N Vi (cf. (3.2)), and we must
then show that o« € Z(P) if and only if & € Z(w~!' P). This follows easily from (3.10).
Hence (3.12) holds, and by application of w to both sides of it we obtain (3.11) after
use of (3.9). O

Notice that we may regard (3.9) as an identity in the space S_(wVi, wP). When
(3.10) holds we have wViNZ(wP)=wVFNZ(P), hence in this case
S (wVi, wP)=S_(wVi, P), and we may similarly regard (3.11) as an identity
in the latter space.

By arguments similar to those leading up to (3.9) we obtain the following identity

(Resi')Y = Res 0" € S_(Vi, —P), (3.13)

where the element on the left-hand side has been defined by means of the principal
automorphism ui— ¥ of S(V) determined from XV:= —X (X € V); it is easily seen
that this automorphism induces a map from S_(Vi, P) to S_(Vi, —P).

3.6. TRANSITIVITY OF RESIDUES

Let b e R. If P € P(V) then £(P)Nb' is a positive system for X,.. Let *P be the
associated chamber of b, so that

(P)Nbt =2, (*P). (3.14)
Alternatively, *P may be characterized as the unique chamber of b for which
PC*P+0. (3.15)

More generally we have the following result. Let Py denote the set of all chambers of
all root spaces in b*.

LEMMA 3.11. Let b € R, P € P, and assume that b C bp. Then there is a unique
chamber *P € Py. for which P is an open subset of *P + .

Proof. Let*bp = bp N bt € Rs,. » then bp decomposes as the orthogonal direct sum
*bp + b. We now have the following inclusions of open subsets:

P C reg(bp, X) C reg(*bp, 1) + b C Dp,

from which the result easily follows. O
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Let t € WT(Z) and define *#: P,. — [0; 1] by

Q= Y. up (3.16)

PeP, bpDb, *P=Q

for Q € P,.. It is easily seen that *t € WT(Z.). Moreover, if ¢ is Weyl invariant or
even, then so is *1.

Let H be a Z-admissible hyperplane configuration in ¥, and assume that b C Vg
forall H € H.Let*H = M, = {H N b | H € H} (cf. (1.31)), then *H is a hyperplane
configuration in b*, and  is its extension. It is easily seen that *H is ;. -admissible.
If s € WT(H) we define *s = 5,0 € WT(*H) as in (1.37), that is by *s(C N b*) = s(C)
for C € comp(H).

LEMMA 3.12. Let H be as above, and let t € WT(Z). Then w-x(*t) = *[wn(1)].

Proof. Let L € £ and let P € P(V7). Recall from the text following the proof of
Lemma 3.4 that P determines a central chamber Cp = Cp 1 3 € comp,.(L, Hy) by
the condition

CpN(c(L) + P) # 0. (3.17)

Let*L = LNb*, then Vi = V7 Nbt. Let Py (V-1) denote the set of £, -chambers of
V.r. Then, similarly, each Q € P,.(V-;) determines a unique central chamber
Co = Coy+rn € comp.("L,* H+r) by

Con(e(L)+ Q) #9. (3.18)
It follows from (3.15) and (3.17) that

CpN(c(L)+*P+Db)#0,
and since C = (CNDbY)+b for all C € comp(L, H;) this implies that

(CpNbY) N (e(L) + *P) # 9.
Invoking (3.18) with Q = *P we conclude that

C.p=Cpnbt (3.19)

for P € P(Vy).
Let C € comp (L, Hy). It follows from (3.19) that we have the disjoint union

(PeP(Vi)| Cp=C) = (P EP(VL) 7P = 0.

UQePhwm, Co=

Hence we obtain from (3.4) and (3.16)

o (1)(C) = > (Q) = W (*)(C N b,

QeP1 (Vxp), CQ:CﬁbL

and the lemma is proved. ]
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LEMMA 3.13. Let H be as in Lemma 3.12, and let P € P(V). Then
V=(P,H)Nbt = V- (*P,* H).
Proof. It follows immediately from (3.14) that
V-(P,H)Nbt = V=(*P, HNbt)
for all H € H. O

Let L € Ly and assume that V7 D b. Then we can apply the preceding two lemmas
to the configuration H = Hx(L). Let *L = L Nbt, then we have:

*H="[Hx(L)]={HNb" | H € Hz, H D L}

= {*H €My, | "H D> *L} = Hs,, (°L), (3.20)

and Hsx (L) is the extension to V of this configuration in bt.

Notice that the projective limit model for the set Laur(bt,* L,* H) of Laurent
operators M(b*+,* H) — M(*L,* H-1) is S— (V& Nb* P). Since b C V. we have
Vi nbt = Vi, and by (3.14) we have Z(*P) N V4 Nbt = Z(P) N V. Hence this
model is identical with S._(V{, P), the projective limit model for Laur(V, L, H) (cf.
also (1.36)).

THEOREM 3.14. Letb € R, L € Ly, and assume thatb C Vy. Then, for t € WT(Z),
P € P(V), we have the following identity in S_(Vi, P):

Resh’ = Res.t . (3.21)

In particular, if b = V7, then *L is a point. Thus by this theorem we can reduce the
determination of the residue operators Resf” to the case where L is a point.
Proof. Let H = Hx(L). Recall from the definition in (3.6) that

Resl! = Res) (F7hon®,
By Lemma 1.21 and Remark 1.20 we have, in S_(V}, P):
Res LV’(P,H),(UH(r) _ ResZ’(P,H)ﬂbi,*[wH(t)L
and combining these identities with Lemmas 3.12 and 3.13 we then have

V— *P,* s *t
Res! = Res!; (7000,

Here *H = Hs,, (*L) as in (3.20). On the other hand, by (3.6) we also have
Res.t ' = Resf/L_(*P‘*H)’w*”(*t).

This proves (3.21). ]
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3/]. THE SUPPORT THEOREM

Let L, P, and ¢ be as in the beginning of Section 3.4. We shall now give a necessary
condition on L in order that Res}”’ does not vanish. The condition is on the central
point ¢(L), and the key to the result is Theorem 2.6.

Let I'" =T'"(V) C V be the closed cone spanned by the roots of X(P), that is,

F*:{ Z X0 ‘ X, € R, xa>0},
%X (P)

and let I~ = —I'". For b € R we define similarly

rreh)=1 Y ( nheR, =08, T @b =_Iob),
2eX(P)Nbt

then TH(bt) c I Nbt. (We agree to set I'({0}) = {0}.) We also put

OHT ={2ebt | (A a) >0 VaeZ(P)Nb}.

THEOREM 3.15. Let L € Ly, P € P(V), and t € WT(X). If Rest" # 0 then
o(L) e T=(V}).

Proof. Let H = Hx(L) and Cy = V~(P, H), then by definition (see (3.6)) we have
Resh' = ResS"“"") Since wy(r) is central we can apply Theorem 2.6. Assume
Resi” # 0. Then L € ressupp(Cy, wx(t)) and we obtain that (c¢(L), A) = 0 for all
A€ Co.

Notice that for each H € Hx(L) we have H = ¢(L) + ot with « € Vi NZ(P).
Hence ¢(L) — (V{)t € V=(P, H), and taking the intersection over H € Hs(L) we
obtain that ¢(L) — (Vi)' € Cy. Hence, (c(L), c(L)—7) =0 for all e (V)™ It
follows easily that then (c(L), ) < 0, and from this we derive the desired result since
[~ (V}) is the dual of the cone (V3)* in Vi O

3.8. CONCLUSION

We can now state the main result that will be applied in [S]. Let P € P(V), let H be a
P-bounded Z-admissible hyperplane configuration, and let £ = £3. Moreover, let

Rpy =inf{|i] | 4 € V7 (P, H)}

and let B(O, Rp ) denote the closed ball of radius Rp 3, centered at 0. Since H is
locally finite, there exists ¢ > 0 such that for all L € £ with |c¢(L)| < Rpy and all
H € 'H we have HN B(c(L), €) # ¥ = c¢(L) € H. Choose, for each Q € P, a point
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gp € ONB(0,¢). Then, for Ae B0, Rpy) and L e L with ¢(L)=41 we have
A+eg e Co 3 (see Section 3.2).

THEOREM 3.16. Let P, H, L, and &g, Q € P, be as above, and let t e WT(X). Then
for each b € R the set

{Z € b" | Res};\ ¢ # 0 for some ¢ € M(V, H)} (3.22)

is finite and contained in T~ (b%) N B(0, Rp.3). Moreover, if n € V=(P, H) then

[ odn=% S0 Relfods (3.23)
n+i

beR Jebt QeP(b) Ateg+i

for all o € P(V,H).
Notice that in (3.23) the term corresponding to b = V' reads as follows:

() @duy.
0eP(V) eotiV

In particular, if 0 € reg(V, H) then this equals [;, ¢ duy, and thus (3.23) gives an
expression for the difference between the latter integral and [ i @ dpy by means
of residues.

Proof. Given b € R and 4 € bt we have from Proposition 3.6 that
Res! ¢ = Res., 700 (3.24)

for ¢ € M(V,H) if A+ D € L. Otherwise Resf;r’btp = 0 (see the remarks after (3.6)).
The finiteness of the set in (3.22) then follows from Theorem 1.13 (a). That the
set is contained in I'"(b') and B(0, Rp ) follows from Theorems 3.15 and 2.6,
respectively.

Combining Theorem 1.13 and (3.24), we have

[ eaw=% > oune) Res{" dr.

n+iV LeL C'ecomp(L,Hy) pt(C)+iVL

Hence, by (3.4),
/ pdu, = Z Z Z t(Q)f Resi o du,
n+iVv pt(Co)+iVL

LeL C'ecomp(L,Hy) QeP(Vy),Co=C'

=Y > 10 Resh /o dy;.

LeL QeP(Vy) pU(Co)+iVL

In the last expression we choose ¢(L) + ¢p as the point in Cy. Moreover, we write
J=c(L)and b= V;. Then b € R and / € b*. Hence (3.23) holds. O
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It is convenient to rewrite (3.23) in a somewhat different form. Let A = A(P)
denote the set of simple roots for X(P). Then the Coxeter complex
P = Uper P(b) can be parametrized as follows. For each subset F' of A we denote
by by the orthocomplement of F in V; then by € R. Let Pr € P(br) be the chamber
on which the roots of A\ F are positive. The chambers Pp, where F C A, are called
the standard chambers (relative to P). In particular, we have P = P, and
Vo = Pa. Given F C A we denote by Wy the subgroup of W generated by the ref-
lections in the elements of F, and define the subset WY of W by

F—{ve W|wWF)CZ(P)}.

LEMMA 3.17. (i) Let F C A. Each element w € W has a unique expression of the
form w = vu, where v e WF and u e Wg. The stabilizer of the standard chamber
PF in Wis WF.

(i1) Let Q € P. There exists aunique subset F C Asuch that Q is W-conjugate to Pr.
Moreover, there exists a unique v e W¥ for which Q = vPp.

Proof. See [7, Thm. 2.5.8 and Props. 2.6.1, 2.6.3]. O

In the following corollary notation and assumptions are as in Theorem 3.16. We
assume in addition that the weight ¢ is Weyl invariant, and that the ¢p have been
chosen so that ¢,9 =wep for all we W, Q e P (this is clearly possible). Let
er =¢p, for F C A.

COROLLARY 3.18. For each F C A the set
{7 € by | Res}yy (¢ ov) # 0 for some ¢ € M(V,H),v e WF} (3.25)

is finite and contained in T~ (by) N B(0, Rp ). Moreover

/ pduy = Z Z 1(PF) A+b1.‘( Z ¢ o V) dpy, (3.26)
n+iV Jtep+ibp

FCA jeb} veWF

for ¢ € P(V, H).
Proof. 1t follows from (1.26) and Proposition 3.10 that for v e W¥, ¢ € M(V,H)
we have

Resly, (@ ov) = ((Res) )p) ov=(Resli , @)ov. (3.27)

Hence by the first conclusion of Theorem 3.16, if Res/ o, (9 ) # 0 then v4 belongs
to a finite subset of I'"(vbz) N B(0, Rp ). It is easily seen that vA e '~ (vby) implies
/. € T (by) for v e W¥. The statements about the set (3.25) follow.

It follows from (3.23) and Lemma 3.17 together with our assumptions on 7 and &g
that

[ edm =3 3 % urn Res! ., 0 i,
n+i

FCA yeWF - Evbl V+vep+ivhr
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Substitution of y = v4, / € by, in the sum over y, together with a similar substitution
in the integral on the right-hand side, yields

S YT [ Resl 00 v,
T EFTIDR

FCA veW" jebp:

and the result follows from (3.27) and a simple rearrangement of the sum. O
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