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FUNCTIONALS ON REAL C(S)
NICHOLAS FARNUM AND ROBERT WHITLEY

The maximal ideals in a commutative Banach algebra with identity have
been elegantly characterized |5; 6] as those subspaces of codimension onc
which do not contain invertible elements. Also, see [1]. For a function algebra
A, a closed separating subalgebra with constants of the algebra of complex-
valued continuous functions on the spectrum of A, a compact Hausdorff space,
this characterization can be restated: Let [ be a linear functional on A with
the property:

*) For each [ in A there is a point s, which may depend on [, for which
F(f) = f(s).

Then there is a fixed point s, with I°(f) = f(so) for all fin A.

For the space of real-valued continuous functions on a compact Hausdor(t
space S, property (*) does not generally characterize the multiplicative linear
functionals. For example, the functional

F(f) = j;f(x)dx, S =10,1],

has property (*) [6]. We are thereby led to characterize exactly those linear
functionals which satisfy (*) on the space of real-valued continuous functions
on S. We additionally consider a condition which is suggested by (*) in which
the value F(f) of the functional is related to the values of f at two points.

In what follows S will be a compact Hausdorff space and C(S) the supremum
norm Banach space of real-valued continuous functions on S. For a continuous
linear functional F on C(S) there is a unique associated Borel measure g,
with variation norm |u| = ||F||, I'(f) = [fdu, and with support o (u) [3].

THEOREM 1. Let I be a linear functional on the real Banach space C(S).
Then I satisfies (*) if and only if I is a positive linear functional of norm one
with the support of the associated measure contained in « connected sel.

Proof. 1f ¢(u) is contained in a connected set C, then

inf {f(s) :sin C} £ ffdu < sup {f(s) :sin C}.

Since f(C) is connected, there is a point s in C with
56 = f gin = £ Q1.
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Conversely suppose that F has property (*). It is clear that F is a positive
linear functional with ||F|| = F(1) = 1. Assume that ¢(u), for the associated
positive measure p, is not contained in a connected set. Then there are points x
and y in ¢(u) with disjoint connected components C, and C,. Recall the fact,
which will frequently be useful, that a component in a compact space is the
intersection of all closed and open, i.e. clopen, sets which contain it [4, p. 240;
2, p. 251]. Since C, and C, are compact, there is a clopen set U containing C,
with the complement U¢ containing C,. The argument used to see this is a
version of the standard proof of the normality of a compact Hausdorff space
in which clopen sets are used to separate points in C, and C,. Since I satisfies
(*), the values of I on the characteristic functions of the sets U and U,
F(xy) and F(xpe) must be either zero or one, and as 1 = I'(xy) + F(xy-)
one of the values must be zero. Then either u(U) = 0 or u(U°) = 0, which
contradicts both x and y belonging to the support of u.

Thinking about property (*) suggests that we consider functionals I for
which FF(f) = af(s) + bf(t). It is too strong to let all of «, b, s, and ¢ vary
with f; for if I'is any continuous linear functional, || F|| = 1, then, as

f(so) = inf {f(s) : sinS} < F(f) < sup {f(s) : sin S} = [f(ty),

F(f) is some convex combination of f(sy) and f(¢y). It is too easy to fix s = s,
and t = f, and let « and b vary; for then, as whenever f(sy) = f(t)) = C,
I'(f) = 0, we must have [* a linear combination of the evaluations at s, and
at 1o |3, p. 421]. The interesting problem involves those linear functionals /°
satis{ying:

Let ¢ and b be fixed. FFor each f there are points s and ¢, which may

**) depend on f, with s # ( and IF(f) = «f(s) 4+ bf(1).

The condition s # ¢ keeps (*) and (**) distinct.
The characterization of functionals satisfying (**) will depend on relations
between « and b. The following division is necessary.

() IF(f)y = «f(s) + bf(t), withe=zb>0and a4+ b =1,
(=) F(f) = «f(s) +0f(t), withe>0,0 <C,a4+b>0, anda —b =1,
) F'(f) = [(s) = f(1).

Any other values for « and b can he reduced to one of these three cases by
dividing /< by a suitable scalar.

Il

Levma 1. If (U, Us, Usl is « purtition of S into three clopen sets and I, wilh
associated measure u, salisfies (¥*), then |u|(U;) = 0 for atleast oncof i = 1,2, 3,.

Proof. Let x;; be the characteristic function of U, and let ay, as, a3 be in R.
Then ¢(ar, ay, a3) = F(X, axe,) = 2, ap;, where u; = p(U;), and so ¢ is
a continuous function of (ai, as, a3). Now for a fixed (a, a3, a3’) and
renumbering the U's, if necessary, ¢(a), e, ') = «(X; a/xv;(s)) +
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(Y, ai'xe, 1)) = way + ba’ or (« + D)ay’. Thus a'uy + ad’pe + a3’y =
o't 4 ar’b or (« + D)ay’ and by continuity of the left hand side of this equa-
tion, either w1 = «, w2 = b, w3 = 0 or iy = « + b, p» = py = 0. Supposc
lu| (Us) £ 0. Choose I € C(S) with support in Uj such that /7(h) # 0 and
[|h]| < 1. Consider ¢ = kxy, + h where k is in R, & > 2(Ja| + |b])|« 4+ b|7".
Then for s, t, s, ' ¢S, ah(s) + bh(t) = F(h) = F(g) = k(a + D) + «h(s)
+ bh (). From kle + ] = |a(h(s) — h(s")) +0(h(t) — h('))| = 2(|«| + |0]),

we obtain a contradiction.

Lemya 2. Let I be « linear functional, on the real Banach space C(S), that is
gtven by a point muss «t x.
1. If condition (+) holds, then I satisfies (**) if and only if x is not « Gj.
2. If condition (0) holds, then I' cunnot satisfy (**).
3. If condition (=) holds, then I' satisfies (**) if and only if one of the following
hold:
1) The point x 15 not a Gs.
i) The point x # C,, the component of x.

Proof. Suppose condition (4) holds. If x is not a G, then for any f there is
a point { # x with f(1) = f(x); thus F(f) = «f (x) 4+ bf(t) with { # x. Con-
versely, if x is a G;, there is a continuous f, 0 < f < 1, with f~1(0) = {x}
[2, p. 248]; then I°(f) = f(x) = 0 #= «f(s) 4+ bf(¢) for any two points s and {.

Suppose condition (0) holds. /* cannot satisfy (**), for /(1) # 0.

Suppose condition (—) holds. If x is not a G, then (**) follows as above.
If {x} # C,, then for FF(f) = 0, the only difficulty occurs when f(y) # 0 for
vy # x. In this case f(C,) is a nondegenerate interval containing zero. For any
non-zero f(y) in f(C,), (—b/u)f(y) also belongs to f(C,), i.e., «f (y) + bf (1) =
0 = I'(f) for some ¢t # y. Conversely suppose that neither i) nor ii) hold; /7 is
a point mass at x, x is a G5, and {x} = C,. Because C, is the intersection of all
the clopen sets which contain x and because x is a G5, there is a countable nested
collection U; 2 Us D Uz 2D ... of clopen sets with N U, = {x}. If —b/a is
rational, consider f = > (1/n?)xU, — #/6. For this f, F'(f) = [(x) = 0 and
J(y) # 0fory # «x. For any y # x, y does not belong to U, for large n and so
f(y) = r — /6, » a rational number. Thus we cannot have «f(y) + bf(z) = 0
else 2 would be rational. In the event that —«/b is irrational the function
> (1/2" %, — 1 shows similarly that (**) cannot hold.

THEOREM 2. Let F be « linear functional, with associated measure w, on the
real Banach space C(S), and suppose that Fis not « point mass. If F satisfies (¥*),
then when condition (+) holds I’ must be « positive linear functional of norm 1;
and when condition (—) holds I' must be « continuous linear functional with
[|FI| £ 1 and F(1) = « + b. In either case, F will satisfy (**) if and only if,
in addition, one of the following holds:

1. The support of p1s contained in « connected set,

2. The support a(p) S Cy\J Cs, the union of lwo disjoint connected sets, with
w(Cy) = aand u(Cy) = b
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Proof. First suppose that condition (4) holds. If F satisfies (**) with « and
b positive and « 4 0 = 1 then [ is a positive linear functional with ||/
F(1) = 1.

Suppose that the measure u associated with /% has support ¢(u) contained
in a connected set (. Because I is not a point mass, for x in ¢ there is an open
neighborhood U of x with 0 < p(U) < 1. We have, by Theorem 1,

| =

f fdu = fle)u(U), c¢1in C, and
unc

f Jdp = [(co)u(U), c¢2in C.
vene

Thus F(f) = p(U)f(cr) + (I — w(U))f(c2) is a point on the line joining
fler) to f(ca). As [(C) is an interval, if f(ci) # f(c.) there are points s and ¢
in C with F(f) = af(s) +0f(t). If f(c:) = f(c2), then we have F(f) =
(1/u(U)) J'U fdu. If this fails to hold for any neighborhood of x of measure less
than one, then we can write /' in the desired form. On the other hand, if this
holds for every such neighborhood of x then, by the regularity of u, F(f) =
S(x). A similar argument applied to a point ¥ # x in ¢(u) shows that we are
done unless we also have /(f) = f(y). But in this final case, F(f) = f(x) =
J@) = af(x) + bf (v).

If the condition of 2 holds, then ( follows directly from Theorem 1.

Suppose that /7 satisfies (**) and that ¢(u) is not contained in a connected
set. Assume that there are three points x, v, and z in ¢ with disjoint components
C,, C,and C,. As in Theorem 1, there is a clopen partition of S, U,, U,, U,,
with ¢, C U,, ¢, C U, and (,C U,. By Lemma 1, the measure of one of
U, U, U, must be zero, which contradicts the corresponding point being in
the support of u. So, say ¢ € (', U (,. I'rom (**), the only possible values for
I'(xv,) and F(xp,) are 0, «, b, and 1. Since 1°(1) = F(x¢,) + F(xu,), 2 follows.

Second, suppose that condition (—) holds. (In this case the measurc p is
not necessarily a positive measure. This creates technical problems not present
under condition (+).)

If J* satisfies (**), then /7 is bounded with |
« + b.

I't suffices to show that (**) holds for ¢ in the null manifold of /7, since for
any f, ¢ = [ — (1/(« 4+ 0))FF(f) is in the null manifold, and if FF(g) = 0 =
ag(s) + bg(t), s # t, then F(f) = af(s) + bf ().

Suppose that ¢(p) is contained in a connected set . Let [ be given with
F(f) = 0 and define g on ¢ X C by g¢(s, t) = «f(s) + bf(t). Set m = inf
{f(s) s in C} and M = sup {f(s): s in C}. Let u = uy — po be the Ilahn
decomposition of u into the difference of two positive measures with |u,| +
[wel = Ju| = |F|]] £« — b =1, and note that |[wm| — |p.| = F(1) =« + D,
and so |u)] £ ¢vand |u:] £ —0b. Forsand tin C,um + DM = g(s, 1) = oM +

bm. Also am + bM < am + DM + (m — M) (ju| — @) = mlu| — E[lug‘ <

**)

Je

<u—0>0=1and I'(l) =

A
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J‘ fdm e ﬁ f(l,u‘: < A‘[iﬂll - 771’#2
aM + bm.

Continuity of g on the connected set C X C yields s and ¢ in C with 0 =
F(f) = ffdul — f fdus = g(s, 1) = «f(s) + bf(t). If the points s and ¢ arc
distinct, F7(f) satisfies (**). If the points s and ¢ are not distinct, then f(s) = 0.
If there is a point u 5 s with f(u) = 0, then I'(f) = «f(s) + bf («); if there is
no such « then f(C) is a nondegenerate interval which contains zero and an
argument as in the first part of this proof establishes (**) .

If condition 2 holds, then « — b = |u| = |u[(C)) + [[(Cs) = |u(Ch)| +
|w(C2)| = @ — b, from which it follows that u is a positive measure on C; and
a negative measure on Cs. That is to say that u; is the restriction of g to Cy and
wo 1s the restriction of —u to Cy. From Theorem 1 (**) follows.

It remains to show that if /' satishes (**) and u does not have support con-
tained in a connected set, then condition 2 holds.

Suppose that /< satisfies (¥**) and the measure u does not have support con-
tained in a connected set. Assume that x, v, and z are three points in the
support of u which belong to disjoint components C,, C,, and C,. As above there
is a clopen partition U,, U,, and U,of Swith U, 2 C,, U, 2 C,,and U, D (..
For any clopen set U, FF(x,) must be one of the numbers 0, «, b, or « + b by
(**). By Lemma 1 one of sets U,, U,, and U, must have variation zero, con-
trary to the assumption that all of the points belonged to the support of u.
So it must be that, say o (x) € C, U C,; withu(U,) # 0 # u(U,). Asu + b =
w(U,) + u(U,), the restrictions on the values for the measures of the clopen
sets show that, say p(U,) = « and u(U,) = b. As above, since |u| £ « — ),
we can conclude that « is positive on U, and negative on U,; so p(C,) = «

and u(C,) = .

=M + bm + (M — m)(Jus) + ) =

The last case, case (0), is quite distinctive as it has a different character on
and off the real line.

THEOREM 3. Let I be « linear functional on the real Banach space C(S). Then
F satisfies (**) in the case « = 1 and b = —1, 1.e. for euch f in C(S) there are
two distinct poinls s and t, which may depend on f, with I(f) = [(s) — [(1),
if and only if I is « bounded lineur functional with || F|| £ 2 and I'(1) = 0 and:

I. When S 1s not homeomorphic to « subset of the real line R, then the additional
conditions on the measure w associated with I’ are either

1. The support o(u) € C,\J C,, the union of two disjoint components with

w(Cy) = 1Lund u(C)) = —1, 0r

2. The u-measure of each component is zero.

I1. In the alternate situation where S is homeomorphic to a subset of R, the
additional conditions on u are either

1. The same as 1.1 above, or

2. Here the support o(u) € C, C « component. The condition on p may be

phrasedbyidentifying C with the unit interval [0,1),to whichitis homeomor phic.
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Then u corresponds to a normalized function e of bounded variation on [0, 1]
with F(f) = [ fdu = ﬂ)fda. Such « functional F (with ||F|| £ 2 and F(1)
= 0) has the desired form if and only if either a(x) = 0 for all x in [0, 1] or
a(x) £ 0forall xin [0, 1].

Proof. From F(f) = f(s) — f(t) we see that ||F|| £ 2 and F(1) = 0.

Suppose that p(C) # 0 for some component C. By the regularity of u there
is a neighborhood 17 of C with w(W — C) £ u(C)/2 for C C W C T1". By the
usual separation argument, using the compactness of C and 17° and the fact
that C'is a component, there is a clopen set U between C and 17, and so u(U) #
0. The only possible values for F(xy) are 0, +1, and —1, so p(U) =1 or
p(U) = —1. Because F(1) = 0, u(U) = —u(U°®). Suppose then that u(U) =
1 and p(U) = —1. The norm of u is bounded by two, so u is positive on U
and negative on U*. Since p of a clopen subset of U (or U¢) must be zero or
one (zero or minus one), it follows that ¢(u) N U C C, and o(u) N U C
C, for two disjoint components C, and C,,i.e.a(u) C C,\J C, with u(C,) =
1 and u(C,) = —1. Conversely, if I has this form, then F(f) = [ C,fdu +
[ Cfdu = f(s) — f(t), with s in C, and ¢ in C,, by Theorem 1.

It remains to consider u with the property that the measure of each com-
ponent is zero. FFor the collection {Cs} of disjoint components of S, ||u|| =
> |u|(Cs), so there are only countably many components C;, Cs, ... with
[ul(C;) 5 0; and ||| = X |w/(C)). For fin C(S), Xifxe, converges to f
p — a.e. Thus, given f and ¢ > 0, there is an N with

HOEDY f  fdu

Using the Ilahn decomposition u = u; — po for g, 0 = u(C)) = w, (Cy) —
pa(Ci)ys0o i (Cy) = ua(Cy) = || (Cy)/2. Using Theorem 1,

< e

fmﬂ“ - fc, Jdur — fm\/d#: = wm(Cf(s) — u2(CHf (),

with s and ¢ in C;. Then

f(‘ Jdp = (lu[(C)/2)(f(s) = 1) = (Il (C)/2)(&);

&, belonging to the interval I, = |m; — M, M; — m;}, where m: = inf
{f(s) :sin C} and M, = sup { f(s) : s in C;}. Let j be chosen so that [; D I,
for 1 <4 = N. Noting that 0 belongs to I, >V (|u[(C;)/2) (&) is a convex
combination of points from I, as 37 |u[(C;)/2 = [[ul|/2 = ||F]|/2 £ 1. Thus
the sum Z;‘(E,)M (C;)/2 belongs to I; and so by Theorem 2 can be written in
the form f(s) — f(¢) for s and ¢ in the connected set C;. Finally for e = 1/n,
there are points {s,} and {¢,} with [F(f) — (f(s,) — f@t.))| = 1/n. If s is a
cluster point of {s,} and #y a cluster point of {¢,}, then FF(f) = f(s0) — f(lo).
If F(f) # 0, then the s and ¢ so obtained are distinct. In general they may not
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be distinct if F(f) = 0. If C(S) contains no one-to-one functions, then for any
f, in particular for f with F(f) = 0, there are distinct points s and ¢ with
f(s) — f(t) = 0 = I'(f). Under these circumstances, if the measure of every
component is zero, then [ satisfies (**).

The case which remains is that in which C(S) contains a one-to-one function,
i.e., as S is compact, where S is homeomorphic to a compact subset of K. And
the only measures u of interest are those which take every component to zero.
One distinguishing feature of the real line situation is that if [ satisfies (**),
there cannot be more than one component C with u(C) = 0 and [g|(C) # 0.
To see this we will first show that if U is clopen and u(U) = 0, then either
| (U) = 0 or [ul(U%) = 0. Suppose not. Then, for S € [c1, ¢2], consider
F((x — ¢1)"xy). If this were always zero, then F(P(x)xy) would be zero for
each polynomial 7 and, consequently, [u[(U) = 0. So for some n,
F((x — ¢1)"xy) # 0, that is to say there is a one-to-one function #; with
F(hixe) # 0. By symmetry there is a one-to-one function ks with F(haxye) #
0. Let

g = (a1 + bih)xo + (a2 + boho)xee,

where «1, «s, b1, and b, will be chosen shortly. By hypothesis, F(xy) = 0 =
Flxye), thus F(¢) = biF(hixe) + b2F(haxye). Since neither F(hixy) nor
I(hyxye) are zero, there are non-zero scalars by and 0. for which F(g) = 0;
let b1 and b, be so chosen. Choosing «; large and positive and «» large and nega-
tive makes g one-to-one. We then have /7(g) = 0 but cannot have g(s) —
¢(t) = 0 for s # {, contradicting property (**) for /. Suppose that x and v
belong to different components and to the support of u. Then we can find clopen
disjoint neighborhoods U, and U,. The measure of the clopen set U, must be 0,
1, or —1. It cannot be zero, for then, by what we have just shown, either
lul (U,) = 0, and x is not in the support of u, or |u|(U,) = 0 and y is not in
the support of u. Thus, say, u(U,) = landu(U,) = —1. Thisleads tou(C,) =
1 and p(C,) = —1, as in the first part of this proof; a case which we have
already handled and therefore have excluded, being now interested only in
those measures which are zero on each component. So we see that such a mea-
sure must have support in a single component C which, by identification via
homeomorphism we may take to be the closed interval [0, 1].

In the final case remaining we then have a linear functional / on the real
valued continuous functions on [0, 1] and we want to know under what condi-
tions I can, for each f, be written in the form F(f) = f(s) — f(¢) for distinct s
and ¢. Of course, as before, we have [|F|| < 2 and F(1) = 0. Given [ there is
a normalized function « of bounded variation on [0, 1] with F(f) = folfda 7].
In a previous part of the proof we have seen that if F(f) # 0, then FF(f) =
f(s) — f(t) for some s and f, which are necessarily distinct. Thus [ has the
property (**) if and only if its null manifold N(F) contains no one-to-one
function. We will show that this holds if and only if either « is non-positive on
[0, 1] or non-negative on [0, 1].
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Suppose that a(x) = 0 for x in [0, 1]. A one-to-one function f on [0, 1] is
either increasing or decreasing; by considering f or —f we may suppose that
it is increasing. Let a(x) = a;(x) — a2(x), the difference of two normalized
monotone functions. The left-continuity of @ guarantees that there is an inter-
val (¢, d] on which « is strictly positive, and so a;(x) > as(x) there. Then

F(f) = folfdal - j;ljdag = fol axdf — folaldf,

after an integration by parts, using the information that, by the normalization,
a(0) = a;(0) = a2(0) = 0,and FF(1) = a(l) = a;(1) — as(1) = 0. Then

F(f) = f e f adf f (e — an)df < 0.

Hence N (F) contains no one-to-one function. And similarly if a(x) < 0 for
xin [0, 1].

To complete the proof suppose that [ has property (**) on C[0, 1]. Let &
be strictly positive and continuous and set f(x) = fﬁ h(t)dt. Integrating by
parts,

F(f) = folj‘da = — fol adf = — fnla(t)h(t)d/.

The functional value /°(f) cannot be zero as [ is one-to-one. More is true. We
cannot have (f1) < 0 and (fs) > 0 for two such functions f; and f.; else
F(cfi + (1 — ¢)fs) = 0 for some 0 < ¢ < 1 and a one-to-one function ¢f; +
(I = ¢)fs. So, say, FF(f) < 0forall f's so given by strictly positive &’s. Then the
map G(g) = f(lya(f)g(f)df is a positive linear functional on C|0, 1]. Consequently
the measure «(/)d! is a positive measure and «(f) = 0 for all ¢ except perhaps
those in a set of Lebesgue measure zero. Because « is continuous from the left,
a(t) 2 0 for all ¢ in [0, 1]. If F(f) = 0 for all f of the type described, then
a(t) = O0forall tin [0, 1].

There are many variations and generalizations of our considerations which
lead to interesting problems in analysis. We mention characterizing those /I
on real C(S) which satisfy, for fixed «., ..., «,, I'(f) = > a.f(s;) for distinct
points si, . . ., s, which may vary with f, and characterizing those /*satisfying
(**) on complex C(S) or on a given function algebra.
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