A NOTE ON APPROXIMATION OF DISTRIBUTIONS
BY QUASI-ANALYTIC FUNCTIONS

S. R. HARASYM1V
(Received 28 August 1967, revised 3 March 1968)

1. Introduction and notation

Throughout this note R™ denotes the #-dimensional Euclidean space.
Addition and multiplication in R" are defined component-wise. If 2 < »
is a positive integer and x € R*, we write z; for the k-th component of z.
The set {x € R* : x; # 0 for each ¢ < n} is designated by R#.

We shall use the standard notations of the calculus of # variables;
see, for example, Hormander [5], p. 4. If « is a multi-index, then j* is the
function on R" defined by j*(x) = 271 - - - «f» for all x € R™

Suppose that W is an open subset of R*. We write D (W) for the space
of functions which are indefinitely differentiable and have compact support
in W; and the space of distributions with support in W is denoted by D’ (W).
The spaces of rapidly decreasing indefinitely differentiable functions and
temperate distributions on R” are denoted by S(R"®) and S’(R"), respec-
tively. In what follows, 8'(R") is always assumed to have the strong topology
B(S", S).

Finally, let ¢ € D(R"). If b € R*, then the function ¢, € D(R") defined by

é,(x) = d(x+b) forall zeR"
is called a translate of . If a € R#, then the function ¢¢ € D(R") defined by
#%(x) = $(ax) forall xze R"

is called a dilation of ¢. The translate u, and dilation u* of an arbitrary
distribution # € D’'(R") are defined via the adjoints of the mappings ¢ — ¢,
and ¢ — ¢°7"; we write u,(¢) = u($,) and u®($) = |1/j(a)| - u($*™") for all
¢ € D(R"). A vector subspace F of D'(R") is said to be dilation-invariant
[resp. tramslation-invariant] if w*e Flu,e F] for all ueF and all
a € R#[be R".

In Harasymiv [3], the following problem was considered: if E is a
dilation-invariant and translation-invariant locally convex space of tem-
perate distributions and # € E, what is the closed vector subspace T'[#] of
E generated by the set of distributions {(#,)%:a e R#, be R"*}. It was
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shown that if we make certain assumptions about the topology on E, then
Tu] coincides with the whole of E provided that the support of the Fourier
transform of # is sufficiently ‘thick’. Moreover, it was found that we could
replace the parameter sets R and R” by a dense subset 4 of R# and a
dense subset B of R™ without altering the conclusions in [3]. In this note
we remark on a condition which allows us to restrict still further the size
of the parameter sets 4 and B.

2. Preliminaries

In this section we derive some results which we shall need to prove the
approximation theorem in § 3. Throughout, the term space of temperate
distributions will mean a vector subspace of S’(R") which contains S(R").
We begin with two definitions.

2.1. DEFINITION. 4 locally convex space E of temperate distributions is
said to be an admissible space of it satisfies the following two conditions.

(i) S(R") is dense in E.

(il) The injections S(R") — E — S’'(R") are continuous.

REMARK. It is very easy to verify that the topological dual space E’

of an admissible space E can be identified with a space of temperate distri-
butions in such a way that

(2.1) {uh, > =ux¢(0) forall uekE
(2.2) {d, v> =¢=*v(0) forall vekFE’

whenever ¢ € S(R"). [If E is an admissible space, then the symbol (,>
will always denote the bilinear form on E X E’ induced by the natural
pairing of E and E'.]

2.2 DEFINITION. Suppose that E is an admissible space. We say that E
is c-admissible if it satisfies conditions (i)-(iil) below.

(i) E is translation-invariant.

(ii) For each x € R", the mapping w — u, of E (with its usual topology)
into E (with the weak topology o(E, E')) is continuous.

(iii) For each uw e E and each v e E', the mapping x — {u,, v)> defines
a continuous function which is a temperate distribution on R".

A c-admissible space which satisfies conditions (iv)-(vi) below is called a
dilation space.

(iv) E is dilation-invariant.

(v) For each x € R7, the mapping u — u® of E (with its usual topology)
into E (with the weak topology o(E, E')) is continuous.
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(vi) For each u € E, the mapping x — u* of R# into E is continuous
for the o(E, E') topology on E.

REMARK. Suppose that E is a translation-invariant barrelled admissible
space such that for each x € R, the mapping # — u, of E (with its usual
topology) into E (with the weak topology o(E, E’)) is continuous, and
for each # € E the mapping # — #, of R* into E is continuous for the weak
topology on E. In this case it can be shown that if for each # € E and each
v € E’ the convolution # # v is defined (in the general sense of Chevalley [1])
and is a temperate distribution on R®, then E is c-admissible.

Assume that E is a c-admissible space and that # € E and v e E’. In
what follows, we shall use the symbol # & v to denote the temperate
distribution on R"™ generated by the function - {#,,v> (x € R*), as in
condition (iii) of Definition 2.2. If we consider # ® v as a function, then
in view of Theorem 2.2(a) in Harasymiv [3], we have

u® o) = (u,, v) =<u, v,y forall xeR"

If E is a dilation space, then we shall write # v » for the function on R#
defined by u v v(x) = {u?, v)(x € R#). By condition (vi) in Definition 2.2,
# v v is continuous on R#; and by Theorem 2.2(b) in Harasymiv [3],
u v v(x) = |1/j(®)] - <w, v*7) for all x € R#,

We now list several results about dilation spaces which we shall need
in what follows.

2.3 LEMMA. (a) Suppose that E is a barrelled c-admissible space and that
M 1is a weakly bounded subset of E. Then for each v € E' and each compact set
K C R~ there exists a positive constant m (depending on v and K) such that

lu®v(x) <m forall zeK

simultaneously for all w e M.

(b) Suppose that E is a barrelled dilation space and that M is a weakly
bounded subset of E. Then for each v € E’ and each compact set K C R# there
exists a positive constant M (depending on v and K) such that

luv o) <m' forall zeK

stmultaneously for all w e M.

Proor. We shall restrict ourselves to establishing (b), a very similar
argument will prove (a). Thus, assume that E is a barrelled dilation space,
v € E" and that K is a compact subset of R#. The continuity of the mapping
x —v* ' of R# into E’ (for the weak topology on E’) entails that the set
(=" : x € K} is a weakly compact, and hence weakly bounded subset of E".
Theorem 7.1.1(b) in Edwards [2] now tells us that the set {+*" :x e K} is
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equicontinuous, and so this set is uniformly bounded on each bounded
subset of E. Since any weakly bounded subset of a locally convex topological
vector space is necessarily bounded (Edwards [2], Theorem 8.2.2), we infer
the existence of a constant m > 0 such that

(2.3) [{u,v*">| <m forall ueM andall zeK.

In view of the definition of # v v, relation (2.3) is easily seen to lead to the
desired boundedness property.
In order to abbreviate the stements of the results below, we introduce

the following terminology.

2.4. DEFINITION. Let E be an admissible space, and suppose that F is an
algebraic subspace of E which is admissible relative to some topology such that
the injection F — E is continuous. We then say that F is a subspace of type
() if for each w € F and each pair of multi-indices a and B such that § < «,
we have j#D*u € F and the following condition is satisfied.

(i) For each pair of multi-indices a and f such that § < o, the mapping
wu — j#D%u of F into F is continuous.

REMARK. Obviously, each admissible space contains at least one sub-
space of type (I'); namely, S(R").

2.5. LEMMA. Suppose that E is a barrelled dilation space and that F is a
subspace of E of type (I'). Then the following assertions are true.

(a) For each we F and each v e E’, the function u ® v is indefinitely
differentialbe on R™ and for each multi-index o

D*(u ®v)(r) = (D*u) ® v(zx) forall xze R"

(b) For each we F and each v e E’, the function u vV v is indefinitely
differentiable on R% and for each multi-index «

D*(u v v)(x) = [1/j*(x)] - 3 C5(#D?u) v v(x) for all xe R*.

bga

where Cg = al[f! (x—p) 1.

Proor. Once again we content ourselves with proving (b). The proof
of (a) is similar but simpler.

Assume that # and v are as in part (b) in the statement of the lemma.
It is evident that our proof will be complete if we succeed in showing that

if W is an arbitrary relatively compact subset of R" such that W C R#,
then # v v is indefinitely differentiable in W and for each multi-index «

(2.4) D*(u v v)(x) = [1/j*(x)] 3 C3(*Dfu) v v(xr) forall zeW.
Bsa

Now, in view of Théoréme VII in Chapitre II of Schwartz [7] and the
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continuity of the functions (j#Dfu) v v, it is easy to see that relation (2.4)
is equivalent to the demand that D*(» v v) and [1/j*] ¥, C3(7ADfu] v v
should coincide as distributions on W. In other words, the validity of (2.4)
will be assured if we show that for each v € D(W)

(2.5) f w9 vfe) - Dry(—z)dz = fW 1 /j“(x)]ﬁgaCj(jﬂDﬂu) v v(x) - (- 2)dx.

With this end in view, we argue as follows. Since F is admissible, we
can extract a net (¢,) from D(R") such that lim;¢, = # in F. Then, by
virtue of the continuity (for each multi-index g) of the mapping
w — j#Dfw of F into F, it is also true that lim, j#Df¢, = j#Dfu in F for
each multi-index § = 0. Since the topology on F is stronger than that
induced by E (see Definition 2.4), this entails that for each multi-index g

(2.6) lim, j#D#$, = j#D?u in E.

Next we notice that since W is compact, the set {v*" : 2z e W} is weakly
compact, and hence weakly bounded in E’. This is a consequence of the
continuity (for the weak topology on E’) of the mapping z — v* of R#
into E’. Theorem 7.1.1(b) in Edwards [2] now tells us that the set
{v*" 1z e W} is equicontinuous. If we bear this fact in mind, then the
remark on p. 504 (third paragraph) of Edwards [2], together with (2.6),
leads us to the conclusion that for each multi-index g

lim, (A D?;, v*> = (j#DPu,v*"y uniformly for ze W.

In view of the definition of the functions (#Dfu) v v, and the fact that § is
bounded away from zero on W, we may now assert that for each multi-
index 8

(2.7) lim,j#D#¢, v v(x) = #D?u v v(z) uniformly for ze W.
It is now easy to verify that (2.5) holds. Consider an arbitrary function
y € D(W). Then, because of (2.7), we have

fW u v v(x) D*y(—zx)dx = lim,.fw é; vV v{z) - D*p(—x)dx
(2.8)

—tim, [ D7 0)(a) - p(—2)d.

Now, each ¢, belongs to D(R"). Therefore, if we use relation (3.1) in
Harasymiv [4], it is easily demonstrated that for each ¢

(2:9) D4, v 0)(e) = [1j*@)] 3 C5#D/4) ¥ o(e) for all =T

Relations (2.7), (2.8) and (2.9) together entail that
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J. u Vv v(x) - D*y(—x)dx
w
— lim, f [1/j*(@)] S C2(# DPy) ¥ v(z) - p(—a)dx
w fsa
= [ i@ 3 G2 D) ¥ 0(e) - p(—a)a.

This establishes (2.5), which is what we set out to do.

REMARK. If E is a B,-complete module over S(R") then in part (a) of
Lemma 2.5 it is sufficient to merely assume that # € £ is such that D*u e E
for each multi-index «; the result still holds. However, we shall nowhere
make use of this fact, and mention it only in passing.

2.6. DEFINITION. Let E be an admissible space and (a)n., @ sequence of
complex numbers. For each multi-index o, let a, = a, - - - a, . We shall write
M (ay) for the set of all w € E which have the following properties.

() If « and B are multi-indices such that 8 < « then j#D*u e E.

(i) The set {a,/8D*u:B < a, |a| = 1,2, -} is weakly bounded in E.

With the above notation, we state the following corollary to Lemmas
2.3 and 2.5.

2.7. LEMMA. Suppose that E is a barvelled dilation space and that F is a
subspace of E of type (I'). Let w € F and assume that (a,)z., ©S a monotonic
non-increasing sequence of positive numbers such that w e M(a). Then the
following two assertions are true.

(@) For each v e E' and each compact set K C R™, there exists a positive
constant m (depending on v and K) such that

[D*(u ® v)(x)] = mfa, forall zekK
stmultaneously for all multi-indices o = 0.

(b) For each v e E' and each compact set K C R#, there exist positive
constants m’ and p (both depending on v and K) such that

ID*[(D?u) v v](x)| < m' -pl*a,,, for all zeK
stmultaneously for all multi-indices o = 0 and y = 0.

ProoF. The proofs of parts (a) and (b) of Lemma 2.7 are very similar;
we shall only give the argument for part (b).

Suppose that v € E’ and that K is a compact subset of R#. In view of
the definition of M (a,) and Lemma 2.3(b), we infer that there exists a
constant m’ > 0 (depending on v and K) such that

(2.10) [(78DY+u) v v(x)| = m'la,,, for all zeK
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simultaneously for all multi-indices # and y. Now suppose that « and y
are arbitrary, but fixed, multi-indices. Since the sequence (a;) is non-
increasing, we deduce from (2.10) that

(2.11) (2D u) v v(x)| < m'fa,,, for all zeK
simultaneously for all multi-indices § = a. Write
p=2sup{lz,| :2eK, 1 <17 =<n}
Using Lemma 2.5 and relation (2.11), it is easy to verify that for each z ¢ K
ID[(D7w) 9 w)@)| = V@) 3 G312 D7) 9 via)
= pH- 2"'“' (' ay.,) - Z Cs

<m - Pia]/ay+a

since 3;,C5 < 21°l. This completes the proof of Lemma 2.7.
The following result is a straight-forward consequence of the theorem
stated at the foot of p. 75 in Mandelbrojt [6]. We omit its proof.

2.8 LEMMA. Suppose that (a)ie, is a monotonic non-increasing sequence
of positive numbers such that the sequence (al*)X, is also monotonic non-
increasing. Moreover, suppose that the sevies 32, all* diverges. Let W be an
open subset of R* and suppose that f is a function whzch is indefinitely differ-
entiable in W and has the following properties.

(i) For each compact subset K of W, there exist constants m >0 and
p > 0 (depending on K) such that

|D*f(x)| < m - p™ja, for all zeK

simultaneously for all multi-indices o« = 0. [Here, as elsewhere, we write
Ay = Gy """ Ay for each mulbi-index o.]

(ii) There exists a point xy€ W such that D*f(x,) = O for each multi-
index o.
Then f vanishes identically throughout W.

3. Some approximation results

Throughout this section, we shall adopt the following notation. Suppose
that E is a dilation space and let 4 and B be subsets of R# and R", respec-
tively. If w € E, then we denote by T4[u] the closed vector subspace of E
generated by the set of distributions {(#,)®:a4e€ 4,be B}. In the case
when 4 coincides with R# and B coincides with R", we drop the superscript
and subscript, and write T[] for T5[u].
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The results which we derived in the last section enable us to prove the
following theorems.

3.1 THEOREM. Let E be a barrelled dilation space. Let F be a subspace
of E of type (I') and let w € F be such that the following condition is satisfied.

(i) u e M(a,) for some sequence (a)y, of positive numbers such that
for each integer m = 0, the sequence (ay:,)e, is monotonic non-increasing
and the series 3w, d},{’ik diverges.

In the above circumstances, the following assertion is true: If H is a closed

vector subspace of E such that

(i) #D*u e H for each pair of multi-indices a and B such that f < a
then H D Tu].

Proor. Our proof will be complete if we succeed in showing that
H D T[u] whenever H is a closed vector subspace of E which satisfies
condition (ii} in the statement of Theorem 3.1; and according to the Hahn-
Banach theorem, this is equivalent to showing that

(3.1) ((u,)*,v> =0 for all zeR* and all yeR"
whenever v € E’ is such that
(3.2) {w,v> =0 for all weH.

Thus, suppose that H is a closed vector subspace of E which satisfies
condition (ii) above; and suppose that v € E’ is such that (3.2) holds. Then

(3.3) ¥D*u, vy = 0

for each pair of multi-indices « and g such that § < «. Let ¥ be an arbitrary
multi-index. Then from Lemma 2.5(b) it follows that

D[(D7u) v v](1) = 3 C3(D7+u) ¥ v(1)
p=a
(3.4) = 3C}- (j*D7*u, v)

B<a

=0

the last equality being a consequence of relation (3.3). Next we notice that
Lemma 2.7(b) ensures that if K is a compact subset of R7, then there exist
constants m’ > 0 and p > 0 (depending on K) such that

(3.5) |D*[(D?u) v v](x)] < m' - p'*/a for all zeK

y+a

holds simultaneously for all multi-indices « = 0. Equipped with the
knowledge that (3.4) and (3.5) hold (and bearing in mind the hypotheses
about the sequence (4;)52;) we may turn to Lemma 2.8 and deduce that
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(3.6) (D*u) v v(x) = 0 for all xe R#

Relation (3.6) holds for each multi-index y. Now consider an arbitrary, but
fixed, x € R#. If we refer to Lemma 2.5(a) and Theorem 2.2(b) in Harasymiv
[3], we easily verify that for each multi-index y

DY(u®v")(0) = (DYu) @ v (0)

= (Du, v*

(3.7) = [j(z)] - {(DYu)*, v)
= lj ()| * (DYu) v v(z)
=0

the last equality following immediately from (3.6). Next, we appeal to
Lemma 2.7(a) to assure ourselves that if K is a compact subset of R*, then
there exists a constant » > 0 (depending on K) such that

(3.8) ID?(u ® v* ) (y)| < mfa, for all yeK

simultaneously for all multi-indices y = 0. Relations (3.7) and (3.8) allow
us to appeal to Lemma 2.8 and find that

(3.9) u®v* ' (y) =0 for all yeR™

Now, the point # € R# which figures in (3.9) was arbitrarily chosen; hence
relation (3.9) is easily seen to entail that for each € R and each y € R"

1

(w,)®, vy = (L @)] - <y, v
= [1/j (@)} u® v (y)
= 0.

This establishes (3.1) and so completes the proof of the theorem.

3.2 CoROLLARY. Let E be a barrelled dilation space. Suppose that
& € S(R™) is such that the set {(1/a!)jfD*¢ : B < a, |a| = 1, 2, - - -} is weakly
bounded in E. Then the closed vector subspace of E generated by the set of
functions {{D*¢ : < «, |a| = 1, 2, - - -} contains the whole of T[¢].

Proor. We recall that S(R") is a subspace of E of type (I'); and the
boundedness of the set {(1/a!)j?D*¢ :8 < a, |a| = 1,2, -} entails that
e M(1/k!). ‘

3.3 THEOREM. Let E be a barrelled dilation space. Let F be a subspace
of E of type (I') and let u € F be such that the following condition is satisfied.
u € M(ay) for some sequence (a,), of positive numbers such that the
sequence (al/*)z2, is monotonic non-increasing and the series S, ay* diverges.
In the above circumstances, the following assertion is true: If A is a
non-meagre subset of R# and B is a non-meagre subset of R", then

T4u] = Tlu).
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ProoF. It is sufficient to show that T4[«#] D T[«]. Thus, suppose that
v € E’ is such that

(3.10) {(u,)*, v> =0 for all aeA and all beB.

Now consider a fixed 2 € 4. In view of Theorem 2.2(b) in Harasymiv [3],
relation (3.10) is easily seen to entail that % @ v* " (b) = 0 for all b e B.
Since B is a non-meagre subset of R" and the function # ® v%”" is continuous,
it follows that # ® v* " must vanish on some non-void open subset W of R™.
Hence there exists a point y, € W such that

(3.11) D*(u ®v* ) (y,) = 0 for all multi-indices y = 0.

Secondly, we observe that if K is a compact subset of R* then Lemma
2.7(a) implies the existence of a constant m > 0 (depending on K such that

(3.12) |D*(u ® v* ") (y)| < mfa, for all yeK

simultaneously for all multi-indices « = 0. In view of (3.11) and (3.12),
we may apply Lemma 2.8 and deduce that

(3.13) (u®v*)(y) =0 for all yeR™

Now from (3.13) and Theorem 2.4(b) in Harasymiv [3] it follows that
u® @ v(y) = 0 for all y e R*; whence (since the point a € 4 is arbitrary)
we infer that

(3.14) {u®,v,> =0 for all aed and all yeR"

Choose an arbitrary, but fixed y € R*. Relation (3.14) asserts that the
continuous function # v v, vanishes on the non-meagre subset 4 of R¥.
If we now use reasoning similar to that which led to relation (3.11), we
deduce the existence of a point x, € R such that

(3.15) D*(u v v,) () = 0 for all multi-indices o« = 0.

Moreover, Lemma 2.7(b) asserts that corresponding to each compact set
K C R#, there exist constants m’ > 0 and p > 0 (depending on K) such
that the relations

(8.16) |D*(u v v,)(x)] < m' - pl*fa, for all zeK

hold simultaneously for all multi-indices « = 0. In view of (3.15) and (3.186),
Lemma 2.8 now tells us that # v v,(z) = 0 for all x € R*. Since y € R"
was arbitrarily chosen, it is now evident that

(3.17) {(u,)®,v> =0 for all ze R# and all ye R"

We have therefore shown that (3.17) holds whenever v € E’ satisfies
(3.10). An easy application of the Hahn-Banach theorem now shows that
T4u] D Tu]; hence T4[u] = T[u].
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3.4. COROLLARY. Suppose that E 1is a barrelled dilation space. Let
¢ € S(R™) be such that the set {(1/a!)jPD*¢ : < a, |a| = 1, 2, - - -} is weakly
bounded in E. Then T45[¢] = T[$] whenever A is a non-meagre subset of
R#* and B is a non-meagre subset of R™.

REMARK. Suppose that » = 1, so that R" reduces to the real line R.
Let E be a barrelled dilation space of distributions on R, and suppose that
u € E satisfies the conditions of Theorem 3.3. Since the dual of any ad-
missible space on R contains D(R), Lemma 2.7 and relation (2.1) (together
with the hypotheses about the sequence (a;)z2; in Theorem 3.3) entail that
u % ¢ is a quasi-analytic function (in the sense of Mandelbrojt [6]) for each
¢ € D(R). An argument similar to that used to prove Théoréme XXIV in
Chapitre VI of Schwartz [8] now shows that # itself must be a quasi-analytic
function.
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