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1. Introduction and notation

Throughout this note Rn denotes the M-dimensional Euclidean space.
Addition and multiplication in Rn are defined component-wise. If k ^ n
is a positive integer and x e Rn, we write xk for the &-th component of x.
The set {x e Rn : xk =£ 0 for each k ^ n) is designated by R#.

We shall use the standard notations of the calculus of n variables;
see, for example, Hormander [5], p. 4. If a is a multi-index, then ja is the
function on Rn defined by ja(x) = x^1 • • • x%> for all x s Rn.

Suppose that W is an open subset of Rn. We write D(W) for the space
of functions which are indefinitely differentiable and have compact support
in W; and the space of distributions with support in W is denoted by D'(W).
The spaces of rapidly decreasing indefinitely differentiable functions and
temperate distributions on Rn are denoted by S(Rn) and S'(R"), respec-
tively. In what follows, S' (Rn) is always assumed to have the strong topology
P(S', S).

Finally, let <f> e D(Rn). libe Rn, then the function (f>b e D(Rn) defined by

j,b{x) = <f>{x+b) for all x e Rn

is called a translate of <f>. If a e R&, then the function <f>" e D (Rn) defined by

<f>*(z) = <t>(az) for all x e R"

is called a dilation of <f>. The translate ub and dilation ua of an arbitrary
distribution u e D'(Rn) are defined via the adjoints of the mappings <j> ~> cj>b

and (f> -> <l>a~K, we write ub(<f)) = u((/>„) and ua(<f>) = |1//(«)| • M^ 0 " 1 ) for all
<̂  eD(Rn). A vector subspace i7 of D'(Rn) is said to be dilation-invariant
[resp. translation-invariant] if M" e F[M6 e F] for all u e F and all
a e R#[b e i?"].

In Harasymiv [3], the following problem was considered: if E is a
dilation-invariant and translation-invariant locally convex space of tem-
perate distributions and u e E, what is the closed vector subspace T[u] of
E generated by the set of distributions {(ub)

a : a e R&, b e Rn}. It was
95
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shown that if we make certain assumptions about the topology on E, then
T[u] coincides with the whole of E provided that the support of the Fourier
transform of u is sufficiently 'thick'. Moreover, it was found that we could
replace the parameter sets R& and i?" by a dense subset A of JR# and a
dense subset B of Rn without altering the conclusions in [3]. In this note
we remark on a condition which allows us to restrict still further the size
of the parameter sets A and B.

2. Preliminaries

In this section we derive some results which we shall need to prove the
approximation theorem in § 3. Throughout, the term space of temperate
distributions will mean a vector subspace of S'(Rn) which contains S(Rn).
We begin with two definitions.

2.1. DEFINITION. A locally convex space E of temperate distributions is
said to be an admissible space of it satisfies the following two conditions.

(i) S(Rn) is dense in E.
(ii) The injections S(Rn) -> E —> S'(Rn) are continuous.

REMARK. It is very easy to verify that the topological dual space E'
of an admissible space E can be identified with a space of temperate distri-
butions in such a way that

(2.1) O , <£> = M*(£(0) for all ueE

(2.2) <<£, v} = </>#v{0) for all v e E'

whenever c/>eS(Rn). [If E is an admissible space, then the symbol <,>
will always denote the bilinear form on ExE' induced by the natural
pairing of E and £'.]

2.2 DEFINITION. Suppose that E is an admissible space. We say that E
is c-admissible if it satisfies conditions (i)-(iii) below.

(i) E is translation-invariant.
(ii) For each x e Rn, the mapping u -+ uxof E (with its usual topology)

into E (with the weak topology a(E, E')) is continuous.
(iii) For each u e E and each v e E', the mapping x -> (ux, v} defines

a continuous function which is a temperate distribution on Rn.

A c-admissible space which satisfies conditions (iv)-(vi) below is called a
dilation space.

(iv) E is dilation-invariant.
(v) For each x e R7^, the mapping u -> ux of E (with its usual topology)

into E (with the weak topology a(E, E')) is continuous.
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(vi) For each u e E, the mapping x -> ux of R7^ into E is continuous
for the a(E, E') topology on E.

REMARK. Suppose that £ is a translation-invariant barrelled admissible
space such that for each x e Rn, the mapping u -» ux of E (with its usual
topology) into E (with the weak topology a(E, E')) is continuous, and
for each u e E the mapping x -> ux of Rn into E is continuous for the weak
topology on E. In this case it can be shown that if for each u e E and each
v e E' the convolution u * v is defined (in the general sense of Chevalley [1])
and is a temperate distribution on Rn, then E is c-admissible.

Assume that £ is a c-admissible space and that u e E and v e E'. In
what follows, we shall use the symbol u ® v to denote the temperate
distribution on Rn generated by the function x -> (ux, v} (x e Rn), as in
condition (iii) of Definition 2.2. If we consider %®n a s a function, then
in view of Theorem 2.2 (a) in Harasymiv [3], we have

u ® v(x) = (uz, v} = (u, vx} for all x e R".

If £ is a dilation space, then we shall write u v v for the function on R#
defined by u v v(x) = (ux, v)(x e R#). By condition (vi) in Definition 2.2,
M V v is continuous on R&; and by Theorem 2.2 (b) in Harasymiv [3],
u v v(x) = |l//(z)| • <«, v*'1} for all x e R#.

We now list several results about dilation spaces which we shall need
in what follows.

2.3 LEMMA, (a) Suppose that E is a barrelled c-admissible space and that
M is a weakly bounded subset of E. Then for each v e E' and each compact set
K C Rn, there exists a positive constant m {depending on v and K) such that

u®v(x)\^m for all xeK

simultaneously for all u e M.
(b) Suppose that E is a barrelled dilation space and that M is a weakly

bounded subset of E. Then for each v e E' and each compact set K C R& there
exists a positive constant M (depending on v and K) such that

u V v(x)\ ^ m' for all x eK

simultaneously for all u e M.

PROOF. We shall restrict ourselves to establishing (b); a very similar
argument will prove (a). Thus, assume that £ is a barrelled dilation space,
v e E' and that K is a compact subset of R&. The continuity of the mapping
x -> v*'1 of R& into E' (for the weak topology on E') entails that the set
{vx~l : x eK} is a weakly compact, and hence weakly bounded subset of E'.
Theorem 7.1.1 (b) in Edwards [2] now tells us that the set {vx~ : x eK} is
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equicontinuous, and so this set is uniformly bounded on each bounded
subset of E. Since any weakly bounded subset of a locally convex topological
vector space is necessarily bounded (Edwards [2], Theorem 8.2.2), we infer
the existence of a constant m > 0 such that

(2.3) \ ( u , v"'1}] < : m for a l l ueM a n d a l l xeK.

In view of the definition of u V v, relation (2.3) is easily seen to lead to the
desired boundedness property.

In order to abbreviate the stements of the results below, we introduce
the following terminology.

2.4. DEFINITION. Let E be an admissible space, and suppose that F is an
algebraic subspace of E which is admissible relative to some topology such that
the injection F -> E is continuous. We then say that F is a subspace of type
(F) if for each u e F and each pair of multi-indices a and (1 such that /S fS a,
we have jfiDau e F and the following condition is satisfied.

(i) For each pair of multi-indices a and ft such that /3 ^ a, the mapping
u —>• j^Dau of F into F is continuous.

REMARK. Obviously, each admissible space contains at least one sub-
space of type (F); namely, S(Rn).

2.5. LEMMA. Suppose that E is a barrelled dilation space and that F is a
subspace of E of type (F). Then the following assertions are true.

(a) For each u e F and each v e E', the function u © v is indefinitely
differentialbe on Rn and for each multi-index a

Da{u ® v) (x) = (Dau) © v{x) for all x e Rn.

(b) For each u e F and each v e E', the function u V v is indefinitely
differentiable on R7^ and for each multi-index a

Da(u V v)(x) = [llja(x)] • 2 Cfl{jfiDfu) V v(x) for all x e R#.

where C£ = a!//3! (a—/?)!.

PROOF. Once again we content ourselves with proving (b). The proof
of (a) is similar but simpler.

Assume that u and v are as in part (b) in the statement of the lemma.
It is evident that our proof will be complete if we succeed in showing that
if W is an arbitrary relatively compact subset of Rn such that W C R&,
then u V v is indefinitely differentiable in W and for each multi-index a

(2.4) D*(u V v)(x) = [llja{x)] 2 CffiDfu) V v(x) for all x e W.

Now, in view of Theoreme VII in Chapitre II of Schwartz [7] and the

https://doi.org/10.1017/S1446788700006923 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006923


[5] Approximation of distributions 99

continuity of the functions (j^Dfiu) v v, it is easy to see that relation (2.4)
is equivalent to the demand that Dx(u V v) and [l//a] ^,fiSaC^(fD^u] v v
should coincide as distributions on W. In other words, the validity of (2.4)
will be assured if we show that for each rp e D(W)

(2.5) f M V v(x) • Daxp{-x)dx = f [l//«(a:)] 2 CffiD*u) V v(x) • y>(-x)dx.
JW JW /?Sa

With this end in view, we argue as follows. Since F is admissible, we
can extract a net (<£,) from D(Rn) such that l im^, = u in F. Then, by
virtue of the continuity (for each multi-index /S) of the mapping
w -> jfiDfiw of F into F, it is also true that limt- fD

fi<f>( = fD#u in F for
each multi-index /? ̂  0. Since the topology on F is stronger than that
induced by E (see Definition 2.4), this entails that for each multi-index /?

(2.6) lim,. j'Dfifa = j'Dtu in E.

Next we notice that since W is compact, the set {vx~ : x e W} is weakly
compact, and hence weakly bounded in E'. This is a consequence of the
continuity (for the weak topology on E') of the mapping x -> v*'1 of R&
into E'. Theorem 7.1.1(b) in Edwards [2] now tells us that the set
{v1"1 : x e W) is equicontinuous. If we bear this fact in mind, then the
remark on p. 504 (third paragraph) of Edwards [2], together with (2.6),
leads us to the conclusion that for each multi-index /?

*'1lim,. (jfDPfc, v*'1} = (jPDPu, v^y uniformly for xeW.

In view of the definition of the functions (jfiDfiu) v v, and the fact that / is
bounded away from zero on W, we may now assert that for each multi-
index /?

(2.7) l i m ^ Z ) ^ v v(x) = jffDfiu V v(x) uniformly for x e W.

It is now easy to verify that (2.5) holds. Consider an arbitrary function
y> e D(W). Then, because of (2.7), we have

(2.8)
u V v(x) • Dxy)(—x)dx = lim. <f>t V v(x) • Day)(—x)dx

Jw Jw

= lim. Da(<f>{ v v)(x) • f(—x)dx.
Jw

Now, each <j>t belongs to D(Rn). Therefore, if we use relation (3.1) in
Harasymiv [4], it is easily demonstrated that for each i

(2.9) Z>»(̂ . V v)(x) = [l//a(x)] ^ CHi'Wh) V v(x) for all x e W

Relations (2.7), (2.8) and (2.9) together entail that
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U V v(x) • Daip(—z)dx
W

= lim^ [ l / / "^ ) ] 2 C/>(JfiDfi<f>i) v v(x) ' ^>{.—x)dx

f

This establishes (2.5), which is what we set out to do.

REMARK. If £ is a Incomplete module over S(R") then in part (a) of
Lemma 2.5 it is sufficient to merely assume that u e E is such that D"u e E
for each multi-index a; the result still holds. However, we shall nowhere
make use of this fact, and mention it only in passing.

2.6. DEFINITION. Let E be an admissible space and ( a * ) ^ a sequence of
complex numbers. For each multi-index a, let aa = aa • • • aa . We shall write
M(ak) for the set of all u e E which have the following properties.

(i) If a and j3 are multi-indices such that /? 5g a then jfiDau e E.

(ii) The set {aaj
fiDau : ft ^ a, |a| = 1, 2, • • •} is weakly bounded in E.

With the above notation, we state the following corollary to Lemmas
2.3 and 2.5.

2.7. LEMMA. Suppose that E is a barrelled dilation space and that F is a
subspace of E of type (F). Let u e F and assume that {a^^L^ is a monotonic
non-increasing sequence of positive numbers such that u e M (ak). Then the
following two assertions are true.

(a) For each v e E' and each compact set K C Rn, there exists a positive
constant m [depending on v and K) such that

\Da(u ® v)(x)| ^ mjaa for all xeK

simultaneously for all multi-indices a ^ 0.

(b) For each v e E' and each compact set K C R#, there exist positive
constants m' and p (both depending on v and K) such that

\D*[(DyU) V v](x)\ £ m' • pw\ay+a for all xeK

simultaneously for all multi-indices a ^ 0 and y ^ 0.

PROOF. The proofs of parts (a) and (b) of Lemma 2.7 are very similar;
we shall only give the argument for part (b).

Suppose that v e E' and that if is a compact subset of K&. In view of
the definition of M(ak) and Lemma 2.3(b), we infer that there exists a
constant m' > 0 (depending on v and K) such that

(2.10) |(/£>7+%) v v(x)\ ^mrlay+fi for all xeK
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simultaneously for all multi-indices /S and y. Now suppose that a and y
are arbitrary, but fixed, multi-indices. Since the sequence (ak) is non-
increasing, we deduce from (2.10) that

(2.11) \{j^Dy+»u)v v{x)\^m'lay+a for all xeK

simultaneously for all multi-indices (5 ^ a. Write

P = 2 sup {\xt\ :xeK,l^i^n}.

Using Lemma 2.5 and relation (2.11), it is easy to verify that for each xeK

\D*[(Dru) V v](x)\ ^ \llj«(x)\ gq |( / 'Z)r+>«) V v(x)\

since 2^<x^!» = 2|a'. This completes the proof of Lemma 2.7.
The following result is a straight-forward consequence of the theorem

stated at the foot of p. 75 in Mandelbrojt [6]. We omit its proof.

2.8 LEMMA. Suppose that (alc)^L1 is a monotonic non-increasing sequence
of positive numbers such that the sequence («£'*) J^ is also monotonic non-
increasing. Moreover, suppose that the series 2*Li *it'* diverges. Let W be an
open subset of Rn and suppose that f is a function which is indefinitely differ-
entiable in W and has the following properties.

(i) For each compact subset K of W, there exist constants m > 0 and
p > 0 (depending on K) such that

\D*f(x)\ < m • pl«l/aa for all xeK

simultaneously for all multi-indices a ^ 0. [Here, as elsewhere, we write
aa = ax • • • aa for each multi-index a.]

(ii) There exists a point xoe W such that Daf(x0) = 0 for each multi-
index a.

Then f vanishes identically throughout W.

3. Some approximation results

Throughout this section, we shall adopt the following notation. Suppose
that E is a dilation space and let A and B be subsets of R# and Rn, respec-
tively. If M e E, then we denote by T^[u] the closed vector subspace of E
generated by the set of distributions {(ub)

a : a e A,b e B}. In the case
when A coincides with R^ and B coincides with Rn, we drop the superscript
and subscript, and write T[u] for T^[u].
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The results which we derived in the last section enable us to prove the
following theorems.

3.1 THEOREM. Let E be a barrelled dilation space. Let F be a subspace
of E of type (T) and let u e F be such that the following condition is satisfied.

(i) ueM(ak) for some sequence (ak)%°=1 of positive numbers such that
for each integer m 2i 0, the sequence {a]^+k)^x is monotonic non-increasing
and the series 2£OL am+k diverges.

In the above circumstances, the following assertion is true: If H is a closed
vector subspace of E such that

(ii) j0Dau e H for each pair of multi-indices x and (3 such that ft ^ a
then HDT[u].

PROOF. Our proof will be complete if we succeed in showing that
H D T[u] whenever if is a closed vector subspace of E which satisfies
condition (ii) in the statement of Theorem 3.1; and according to the Hahn-
Banach theorem, this is equivalent to showing that

(3.1) <(«J*)W> = o for all xeR* and all y e Rn

whenever v e E' is such that

(3.2) (w, v} = 0 for all w e H.

Thus, suppose that H is a closed vector subspace of E which satisfies
condition (ii) above; and suppose that v e E' is such that (3.2) holds. Then

(3.3) (fDxu, v} = 0

for each pair of multi-indices a and fi such that ft j5 a. Let y be an arbitrary
multi-index. Then from Lemma 2.5 (b) it follows that

V

(3.4) = 2 C? • (j'Dr+'u, v}

= 0

the last equality being a consequence of relation (3.3). Next we notice that
Lemma 2.7 (b) ensures that if K is a compact subset of R&, then there exist
constants m' > 0 and p > 0 (depending on K) such that

(3.5) |D«[(Z)y«) V w](*)| ^ m' • p'MlaY+a for all xeK

holds simultaneously for all multi-indices a ^ 0. Equipped with the
knowledge that (3.4) and (3.5) hold (and bearing in mind the hypotheses
about the sequence {a^^) we may turn to Lemma 2.8 and deduce that
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(3.6) (Dru) v v(x) — 0 for all x e R*.

Relation (3.6) holds for each multi-index y. Now consider an arbitrary, but
fixed, x e R#. If we refer to Lemma 2.5 (a) and Theorem 2.2 (b) in Harasymiv
[3], we easily verify that for each multi-index y

® v*'1) (0) = (D?u) ® vx'\0)

(3.7) = \j{x)\
= \j{x)\ • (D?u) V v{x)
= 0

the last equality following immediately from (3.6). Next, we appeal to
Lemma 2.7 (a) to assure ourselves that if if is a compact subset of Rn, then
there exists a constant m > 0 (depending on K) such that

(3.8) \Dv(u ® vx~l)(y)| ^ m \ a y f o r a l l y e K

simultaneously for all multi-indices y 2; 0. Relations (3.7) and (3.8) allow
us to appeal to Lemma 2.8 and find that

(3.9) u®vx'1(y) = 0 for all y e R".

Now, the point x e R& which figures in (3.9) was arbitrarily chosen; hence
relation (3.9) is easily seen to entail that for each x e R& and each y e Rn

= \\lj{x)\-u®v*-\y)
= 0.

This establishes (3.1) and so completes the proof of the theorem.

3.2 COROLLARY. Let E be a barrelled dilation space. Suppose that
<f> e S{Rn) is such that the set {{ljix.\)^Da<j> : fi ^ a, |a| = 1, 2, • • •} is weakly
bounded in E. Then the closed vector subspace of E generated by the set of
functions {j^Dxcf> : /? ^ a, |a| = 1, 2, • • •} contains the whole of T[<f>].

PROOF. We recall that S(Rn) is a subspace of E of type (F); and the
boundedness of the set {(1/a!)/^!)01^ : /3 ^ a, |a| = 1, 2, • • •} entails that
4>eM{llk\).

3.3 THEOREM. Let E be a barrelled dilation space. Let F be a subspace
of E of type (F) and let u e F be such that the following condition is satisfied.

ueM(ak) for some sequence (ak)™=1 of positive numbers such that the
sequence (a]!k)k

xL1 is monotonic non-increasing and the series 2£ . i akk diverges.
In the above circumstances, the following assertion is true: If A is a

non-meagre subset of R7^ and B is a non-meagre subset of Rn, then
TA

B[u] = T[u].
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PROOF. It is sufficient to show that T^[u] D T[u]. Thus, suppose that
v e E' is such that

(3.10) <K) a . w> = 0 for all aeA and all beB.

Now consider a fixed aeA. In view of Theorem 2.2(b) in Harasymiv [3],
relation (3.10) is easily seen to entail that u®v"~1(b) = 0 for all beB.
Since B is a non-meagre subset of Rn and the function u ® v"'1 is continuous,
it follows that u ® va"1 must vanish on some non-void open subset W of Rn.
Hence there exists a point yoeW such that

(3.11) Da(u®va'1)(y0) = 0 for all multi-indices y ^ 0.

Secondly, we observe that if K is a compact subset of Rn, then Lemma
2.7 (a) implies the existence of a constant m > 0 (depending onK) such that

(3.12) \D«(u®va~1){y)\ ^m\aa for all yeK

simultaneously for all multi-indices a 2; 0. In view of (3.11) and (3.12),
we may apply Lemma 2.8 and deduce that

(3.13) (u ® v"'1) (y) = 0 for all y e Rn.

Now from (3.13) and Theorem 2.4(b) in Harasymiv [3] it follows that
ua ® v(y) = 0 for all y e Rn; whence (since the point a e A is arbitrary)
we infer that

(3.14) <M°, vyy = 0 for all aeA and all y e Rn.

Choose an arbitrary, but fixed y e Rn. Relation (3.14) asserts that the
continuous function « v » , vanishes on the non-meagre subset A of R&.
If we now use reasoning similar to that which led to relation (3.11), we
deduce the existence of a point x0 e R^ such that

(3.15) Da(u V vy)(x0) = 0 for all multi-indices a ^ 0.

Moreover, Lemma 2.7 (b) asserts that corresponding to each compact set
K C R#, there exist constants m' > 0 and p > 0 (depending on K) such
that the relations

(3.16) \Da{u v vy){x)\ <, m' • pwjaa for all xeK

hold simultaneously for all multi-indices a S: 0. In view of (3.15) and (3.16),
Lemma 2.8 now tells us that u v vy(x) = 0 for all x e R#. Since y e Rn

was arbitrarily chosen, it is now evident that

(3.17) <(uy)
x, v} = 0 for all x e R* and all y e Rn.

We have therefore shown that (3.17) holds whenever v e E' satisfies
(3.10). An easy application of the Hahn-Banach theorem now shows that
Ti[u] D T[u]; hence T%\u\ = T[u].
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3.4. COROLLARY. Suppose that E is a barrelled dilation space. Let

</> e S(Rn) be such that the set {(llxl)jfiDa<j> : p ^ a, |a| = 1, 2, • • •} is weakly

bounded in E. Then Tj,[<f>] = T[<f>] whenever A is a non-meagre subset of

R7^ and B is a non-meagre subset of R".

REMARK. Suppose that n = 1, so that Rn reduces to the real line R.

Let £ be a barrelled dilation space of distributions on R, and suppose that

u e E satisfies the conditions of Theorem 3.3. Since the dual of any ad-

missible space on R contains D(R), Lemma 2.7 and relation (2.1) (together

with the hypotheses about the sequence {ak)^=1 in Theorem 3.3) entail that

u * <f> is a quasi-analytic function (in the sense of Mandelbrojt [6]) for each

<f> e D(R). An argument similar to that used to prove The"oreme XXIV in

Chapitre VI of Schwartz [8] now shows that u itself must be a quasi-analytic

function.
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