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1. Introduction. In 1945 Ingham (3) proved the following Tauberian 
theorem: if/ is a non-decreasing, non-negative function on [1, oo) and 

(1) 2 fixrT1) = ex log x + c'x + o(x), as x —> <», 
n<x 

then/(x) ~ ex. His proof is based on the non-vanishing of the Riemann zeta-
function, f (s), on the line 9?(s) = 1, and uses Pitt 's form of Wiener's Tauberian 
theorem; (see, e.g., 5, Theorem 109, p. 211). By modifying Ingham's proof to 
take account of suitable weighting functions a(n), I can deduce (Theorem 1) 
the "fine" behaviour of a function/ if its "gross" behaviour is known, and if 
HLn<x a{n)f{xn~1) has an estimate similar to the right-hand side of (1). In the 
proof of this theorem I use a modified zeta-function, £a(s), which for 9?(s) > 1 
has the Dirichlet series representation 

oo 

f«0) = Z oi{n)n-\ 
l 

The prime number theorem without error term can be stated in many 
equivalent forms, for example: 

X} fi(n) = M{x) = o(x) 
n<x 

and 

y^ A(n) = ty(x) ~ x, 
n<x 

where JU, A are the Môbius and von Mangoldt functions respectively. To obtain 
the analogues of these results I use properties of the Dirichlet convolution 

f*g(n) = Z fidMnd-1) 
d\n 

of the arithmetic functions/, g, as follows. Let a be an arithmetic function (i.e. 
a function from the positive integers to the reals) such that a(l) 5* 0. Define 
Hat Aa by 

(2) (Ma * a)(n) = b(n) for all n > 1, 

(3) (Aa * a) in) = a(n) log n for all n > 1, 
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where 5(1) = 1, d(n) = 0 tor all n > 1. /xa, Aa can equally well be thought of as 
the coefficients of the formal Dirichlet series l/fa, f'«/fa-

For all x > 0 define Afa, ^a by 

(4) Ma(x) = X M«(«), 

(5) ¥„(*) = £ A„(w). 

In Theorems 2 and 3 I state sufficient conditions under which Ma(x) = o(x), 
and \pa(oc) ~ x. These results are deduced (as are the results for M and \{/ in 
Ingham's paper) from Theorem 1, and from the easily verified identities 

(6) S aWMaixtT1) = 1 for all x > 1, 
n<x 

(7) X) a(n)^a{xn~l) = ^ a(k) log k, for all x > 1. 

I shall now briefly outline the organization of the paper. In §2 I define what 
is meant by a suitable weighting function a, and I state the three theorems 
which are proved in §§3, 4, 5 respectively. The final section (§6) is devoted to 
examples and some concluding remarks. The notation throughout is standard, 
in particular I use 0, o, ^ to refer to behaviour as x —» °° . 

2. Statement of results. Let a be an arithmetical function. For x > 0 
put A(x) = Xn<z a(n). (Thus A(x) = 0 for x < 1.) 

Definition, a is admissible if 
I. ^4(x) ^ ax, where a > 0. 

Put i£(x) = A(x) — ax for x > 1, and R(x) = 0 for x < 1. 
II. The function x~sR(x) 6 £K0, °°) for all 5 in an open connected subset 

of C containing dt(s) > 1 (i.e. 

r x
 sR(x)x dx fo 

is finite in such a domain). Moreover, we require that the above integral rep­
resent a function holomorphic in a domain containing 9î(s) > 1. 

III. Put 

J»oo 
x"'R(x)x"1dx. 

0 

We require that fa(l + it) ^Oiort 6 R. Note that for 91 (s) > 1, 

f« (̂ ) = ^ I x~s~xA(x)dx 

and so 
00 

ta(s) = YJ oi{n)n~s 

1 
by a routine summation. 
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THEOREM 1. Suppose that a is admissible. Iff is a real-valued function on 
(1, °°) satisfying 

(i) fi(x) = x-1/(x) when x > 1, and 0 otherwise, is bounded and slowly 
decreasing on (0, °°), 

(ii) F(x) = J^n<x oc(n)f(xn~1) = ex log x + c'x + #(x), where c, c' are con­
stants, then f(x) ~ ca~lx. 

Remark. If/ is non-negative and non-decreasing on (1, œ ), and if furthermore 
/(x) = O(x) then/ i as defined above is bounded and slowly decreasing. (When 
a = 1 the fact tha t / (x) = O(x) can be deduced from condition (ii) and the 
non-decreasing of/.) 

THEOREM 2. Suppose that a is admissible, and that a{\) ^ 0. Let fia be defined 
by (2); and assume that Ma(x) (defined in (4) ) is 0(x). If there is a function 0 with 
B(x) = Yln<x P(n) ~ bx for some b > 0, and 

2 a * (3(n) = abx log x + b'x + o(x), 
n<x 

such that n<x(n) + Kfi(n) > 0 for all n > 1 a?zd a fixed K, then Ma{x) = #(x). 

COROLLARY. Le/ //&e hypothesis on a be as above. Assume in addition that 
R(x) = 0(xu) for some 0 < u < 1. If either ^a{n) = 0(1) or a{n) > 0 for all n 
and na(n) = 0{a(n)), then Ma{x) = o(x). 

Remark. In applications we usually have A(x) = ax + 0(xw) with 0 < w < 1. 
In the cases detailed above we choose /3 = 1, /3 = a respectively, and apply 
Theorem 2. 

THEOREM 3. Suppose that a is admissible and that a( l ) ?£ 0. Suppose further 
that R(x) = o(x/\ogx). Let Aa, ^a be defined by (3), (5) respectively. If ^fa 

satisfies the hypothesis on fin Theorem 1 then ^a(x) ~ x. 

Remark. It is not difficult to give a partial converse of this result (cf. 1, 
Theorem 6, 23), namely: assume a has all the properties of an admissible 
function except that no hypothesis is made about the non-vanishing of f«- Then 
we have: if ^a(x) ~ x, then fa(l + it) ^ 0 for all / £ R. 

3. Proof of Theorem 1. We note first the trivial (i.e. purely formal) 
identity: 

f*x nx 

I A {xv~1)f{v)v~1dv = I y~1F(y)dy. 

Substituting our estimate from (ii) for F{y) into the right-hand side, and 
dividing both sides by x, we obtain 

x - 1 I A{xv~1)f{v)v~1dv = c logx + (c' — c) + o(l). 
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Thus, after noting that A (xv1) = 0 for all v > x, we have 

••oo 

(8) x~lvA (xv'^Mv^dv = c log x + (c' - c) + o(l) . 
J o 

The left-hand side of (8) is now in the form of a convolution over the 
topological group formed by the positive reals under multiplication, with Haar 
measure v~ldv. We want to transform (8) into a form to which Pitt 's theorem 
can be applied. To this end define A i for all x > 0 by 

xAi{x) = 2A(x) — riA{xri~l) — r2A{xr2~
l) 

where rx > 1, r2 > 1 are to be restricted later. It is clear that for x > max(>i, r2) 
we can replace A by R in the definition of Ai; thus Ai £ L^O, oo) since 
x_1i£(x) 6 L1^, oo) by the admissibility of a. It is straightforward to check 
that 

(9) (œ A1(xv~1)f1(v)v~1dv = c login n) + o(l). 

The manipulations performed so far have depended (as far as / is concerned) 
only on the fact that the weighted sum F of / has a certain estimate. The 
function g(x) = carlx has a weighted sum which obeys a similar law of growth, 
but with c + ca'or1 in place of c', where 

a! = I x~1R(x)x~1dx = I x~2(A(x) — ax)dx. 

Thus by replacing / by g in (9) we can evaluate the right-hand side, to 
obtain 

/•oo /»oo 

(10) Aiixv'^fi^v^dv = caT1 Ai(v)dv + o(l). 
Jo Jo 

We next discuss the Fourier transform of A\. To do so, we consider the 
Laplace transform ol A for dt(s) > 1. We have 

J»oo 

v-'Aiv^dv = s-'uis) 
0 

by the definition of fa. Thus for 9? (s) > Owe have 

r v-sA,{v)v-ldv = (2 - rrs ~ r2~
s)(l + s)'1^ + s) 

= T(s) say. 

Both sides of this equation represent functions holomorphic in some domain of 
C containing the half-plane 9î(s) > 0 (by our assumption on a), and so equality 
still holds for dt(s) = 0, with T(0) = a log r\ r2 as the removable singularity of 
the right-hand side. So 

J»oo 

»"'Ui(t>)i>_1<to = T(it). 
o 
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Now JT(0) = a log rir2 5e 0 since ri r2 > 1, a > 0; and T(it) = 0 for / ^ 0 if, 
and only if 2 — rru •— r2~" = 0 (since fa(l + i/) T^ 0 for ail /). To ensure the 
impossibility of this we choose ru r2 such that (log fi)/(log r2) is irrational. 
Thus Ai(t) 9^ 0 for alU Ç R and we can apply Pitt 's theorem to (10) (since/i 
is bounded and slowly decreasing by hypothesis) to obtain the result that 

l i n v ^ / i ^ ) = car1, as desired. 

4. Proof of Theorem 2. Let 0, i£ be chosen as in the hypothesis of the 
theorem. Put 

G(x) = £ (/*«(*)+*#(»))• 

Then G(x) = 0(x), and G is non-negative and non-decreasing; thus by our 
remark in §2 following Theorem 1 we see thatGi(x) = x~lG(x) when x > 1 and 
0 otherwise is bounded and slowly decreasing on (0, oo ). Moreover 

£ a{n)G{xn~l) = £ ai^Maixn"1) +K J2 a*P(n) 
n<x n<x n<x 

= 1 + Kabx log x + i£&'x + o(x) 

for all x > 1. Application of Theorem 1 to G now gives us the result that 
G(x) ~ Kbx ; but 

G(x) = Ma{x) + KB(x) ~ M«(*) + i£&x 

and so Ma(x) = o(x). 
The proof of the corollary is immediate upon noting that 

X) a*l(n) = ax log x + (a7 + a')x + 0(x(1+M)/2), 
»<a; 

and 

]T a # a ( w ) = a
2 * l o g * + (a2 + 2aa!)x + 0(x (1+w)/2). 

5. Proof of Theorem 3. Using the identity (7), we have 

X) a{n)^a{xn~l) = £ a(n)\ogn. 
n<x n<x 

We can estimate the right-hand side (cf. 2, Theorem 421 ) to obtain 

£ a(n)^a(xn~1) = ax log x — ax + 0(R(x) log x) + o(x), 

which by our hypothesis on 1̂  gives us (ii) of Theorem 1 for \£a. Since a is 
admissible, and ^fa satisfies requirement (i) on /o f Theorem 1, we deduce that 
\fa(x) ~ aa~xx = x, as desired. 

6. Examples. The function a(n) = \ix(n)\ is admissible since 

Us) = r(*)/r(2*) 
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for $l(s) > 1/2 ; and fia(n) = \(n) is the Liouville function. Clearly X(n) = 0(1) ; 
hence by Theorem 2 we have 

X) X(») = o(x), 
n<x 

which is, of course, a well-known corollary of the prime number theorem (see, 
e.g., 4, II, §167). By using a(n) = xo(?0, where xo is the principal character 
mod k for some k > 1, we can deduce that 

2^ fx(n) = o(x) and 22 A ( w ) ~ # . 
n<x n<x 

(rc,fc)=l (n,ft)=l 

We can combine both these examples by putting a(n) = XO(^)|M(W)| and 
deduce that 

n<a: 
(n,k)=l 

As a final example is exhibited an a for which fxa is unbounded, namely 

a(n) = n~l<j(n), 

where <r(n) is the sum of the divisors of n. In this case 

( - ( 1 + ^ - 1 ) i f * = 1, 
Va(P*) = ) P'1 if * = 2, 

( 0 if k > 3, 

and so /xa(w) = 0(a:(n)). By Theorem 2, we still have Ma(x) = o(x). 

I wish to thank Professor J. H. H. Chalk for his many helpful comments 
during the initial stages of the preparation of this paper, which constitutes part 
of my Ph.D. thesis submitted to the University of Toronto in April 1965. 
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