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Abstract
In this article, we study the complexity of weighted team definability for logics with team semantics. This
problem is a natural analog of one of the most studied problems in parameterized complexity, the notion
of weighted Fagin-definability, which is formulated in terms of satisfaction of first-order formulas with
free relation variables. We focus on the parameterized complexity of weighted team definability for a fixed
formula ϕ of central team-based logics. Given a first-order structure A and the parameter value k ∈N as
input, the question is to determine whether A, T |= ϕ for some team T of size k. We show several results
on the complexity of this problem for dependence, independence, and inclusion logic formulas. Moreover,
we also relate the complexity of weighted team definability to the complexity classes in the well-known
W-hierarchy as well as paraNP.

Keywords: Parameterized complexity; descriptive complexity; weighted definability; team semantics; dependence logic;
independence logic; inclusion logic

1. Introduction
In this article, we study the parameterized complexity of weighted team definability for log-
ics in team semantics. Team definability is a natural analog of the notion of Fagin-definability
whose weighted version can be used to characterize the W-hierarchy in parameterized complex-
ity (Downey et al. 1998).We give several results on the complexity of this problem for dependence,
independence, and inclusion logic formulas.

The birth of the nowadays established logics of dependence and independence can be traced
back to the introduction of dependence logic in 2007 (Väänänen 2007). In team semantics, for-
mulas are interpreted by sets of assignments (teams) instead of a single assignment as in Tarski’s
semantics of first-order logic. Syntactically dependence logic extends first-order logic by new
dependence atomic formulas (dependence atoms) dep(x;y) expressing that the values of variables
x functionally determine the value of the variable y in the team under consideration. Independence
and inclusion logics are further extensions of first-order logic by independence atoms x⊥zy and
inclusion atoms x⊆ y which essentially correspond to embedded multivalued dependences and
inclusion dependences from database theory (Galliani 2012; Grädel and Väänänen 2013).

For the applications, it is important to understand the complexity theoretic aspects of team-
based logics. During the past ten years, the expressivity and complexity theoretic aspects of logics
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in first-order (also propositional Yang and Väänänen 2017, modal Hella et al. 2019, 2020, tem-
poral Gutsfeld et al. 2022 and probabilistic Durand et al. 2018) team semantics have been studies
extensively (see, e.g., Hannula et al. 2018, Lück 2019, Hannula et al. 2020, Durand et al. 2022). The
baseline for these studies is the well-known results stating that the sentences of dependence logic
and independence logic are equivalent to existential second-order logic (Grädel and Väänänen
2013), while inclusion logic corresponds to positive greatest fixed point logic and thereby cap-
tures P over finite (ordered) structures (Galliani and Hella 2013). In team semantics results for
sentences of the logic do not immediately extend to open formulas. In particular, the open formu-
las of dependence logic correspond in expressive power to sentences of ESO with an extra relation
encoding the team that occurs only negatively in the sentence (Kontinen and Väänänen 2009). For
independence logic, the requirement of negativity can be lifted (Galliani 2012). For inclusion logic
an analogous result shows that any first-order sentence ϕ(R) whose truth is preserved under R-
unions can be expressed by an inclusion logic formula ϕ∗(x). In other words, for all A and teams
T �= ∅:

A, T |= ϕ∗(x)⇔A |= ϕ(rel(T)/R),

where rel(T) is a relation encoding the team T (Galliani and Hella 2013). These results can be used
to relate weighted team definability to weighted Fagin-definablity. However, it is instructive to
note that, due to higher expressive power of the logics considered in this article, the syntactic com-
plexity of a formula does not in general correlate with the complexity of the model-checking of the
formula. In particular, any formula of dependence and independence logic is logically equivalent
to a formula with ∀∃-quantifier prefix (Väänänen 2007, Theorem 6.15) (Kontinen and Väänänen
2009, Theorem 4.9).

A formalism to enhance the understanding of the inherent intractability of computational
problems is brought by the framework of parameterized complexity (Downey and Fellows 2013).
Here, one aims to find parameters relevant for practice allowing to solve the problem by algo-
rithms running in time f (k) · nO(1), for some computable function f , where k is the parameter value
and n is the input length. Problems with such a running time are called fixed-parameter tractable
(FPT) and correspond to efficient computation in the parameterized setting. The problems solv-
able within the runtimes of the form f (k) · nO(1) with respect to nondeterministic machines
belong to the complexity class paraNP⊇ FPT. Moreover, restricting the amount of nondeter-
minism allows to study a subclass W[P]⊆ paraNP. The complexity class W[P] is defined via
nondeterministic machines that have at most h(k) · log n many nondeterministic steps, where
h is a computable function. In between FPT and W[P], a presumably infinite W-hierarchy is
contained: FPT⊆W[1]⊆W[2]⊆ · · · ⊆W[P]. It is unknown whether any of these inclusions is
strict. Showing W[1]-hardness of a problem in parameterized world intuitively corresponds to
being intractable in this setting. Moreover,W[1] contains problems that can be solved by an algo-
rithm whose nondeterministic steps are bounded in terms of the parameter and occur at the end
of the computation.

Our contributions. We define and study the parameterized complexity of weighted team
definability with respect to formulas of several team-based logics. Moreover, we establish the rela-
tionship between our framework and the problem of weighted Fagin definability. In more details,
we explore the complexity of weighted team definability in parameterized setting for dependence,
independence, and inclusion logic formulas as well as sentences. Thereby, we prove and obtain
novel logical characterizations of, and new complete problems for, the aforementioned central
parameterized complexity classes, i.e., theW-hierarchy,W[P], and paraNP. Table 1 gives a partial
overview of our results concerning weighted team definability.

Related work. The complexity of counting/enumerating satisfying teams for a fixed first-
order formula of team-based logic has been studied before (Haak et al. 2019, 2022). Furthermore,
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Table 1. Partial overview of our results concerning weighted team definability with pointers to the respective theorem or
corollary

Logic ∃ ϕt s.t. p-WTϕt is Condition Result

FO in TC0 unparameterized, all formulas Thm. 9

FO(⊆ ) in FPT/W[P] all sentences/all formulas Thm. 10/Thm. 17

W[1]-hard, ∈W[2] any quantifier-free formula, without∨ Cor. 12

W[t]-complete for all even t ∈N Cor. 16

FO(dep) W[t]-complete for all odd t ∈N Cor. 22

paraNP-complete sentence/formula Thm. 18/Thm. 23

FO(⊥) W[t]-complete for all t ∈N Thm. 24 (1.)

W[P]-complete formula Thm. 24 (2.)

paraNP-complete sentence/formula Thm. 24 (3.) / (4.)

there are also recent works on the parameterized complexity model-checking and satisfiability for
propositional and first-order team-based logics (Kontinen et al. 2022; Mahmood and Meier 2022;
Mahmood and Virtema 2021; Meier and Reinbold 2018). Regarding the descriptive complexity,
Downey et al. (1998) explored the logical characterization of the classes in theW-hierarchy.

2. Preliminaries
We require a basic knowledge of standard notions from classical complexity theory
(Papadimitriou 1994). The classical complexity classes we encounter mostly in this work are P and
NP together with their respective completeness notions, employing polynomial time many-one
reductions (≤P

m). Moreover, we assume the reader is familiar with the basic first-order (predi-
cate) logic (Ebbinghaus and Flum 1995). In the following, we define a few important classes of
first-order formulas that are relevant to the results in this work.

FO-Formula Classes. The class of all first-order formulas is denoted by FO. Let τ be a
relational vocabulary and R ∈ τ be a relation symbol of arity r. An atomic formula is a formula of
the form x= y or R(x1, . . . , xr). A literal is an atomic or a negated atomic formula. A quantifier-
free formula is a formula that contains no quantifiers and a formula is in negation normal form
(NNF) if the negation symbols occurs only front of atoms. A formula ϕ is in prenex normal form
if ϕ has the form Q1x1 . . .Qnxnψ , where ψ is quantifier free and Q1, . . . ,Qn ∈ {∃, ∀}. The classes
�0 and �0 both consist of quantifier-free formulas. Then, for t ≥ 0, the class �t+1 includes all
formulas of the form ∃x1 . . . ∃x�ϕ, where ϕ ∈�t . Similarly, �t+1 includes all formulas of the
form ∀x1 . . . ∀x�ϕ, where ϕ ∈�t .

Fagin Definability. The first-order variables range over individual elements of the universe.
In second-order logic, one also quantifies relation variables which range over relations on the
universe. We now introduce first-order formulas where we also allow relation variables. Let τ
be a vocabulary, Xi for i≤ n be free relation variables of arity si and ϕ(X1, . . . , Xn) be a FO-
formula with free relation variables in τ . Notice that ϕ(X1, . . . , Xn) does not contain free first-
order variables. Moreover, let A be a τ -structure and Si ⊆Asi be relations over A for i≤ n. Then
we say that the tuple S̄= (S1, . . . , Sn) is a solution for ϕ in A if A |= ϕ(S̄). We call the following
decision problem, the problem Fagin-defined by ϕ.
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Problem: FDϕ – Fagin definability for fixed ϕ ∈FO

Input: A τ -structureA.
Question: Is there a solution for ϕ inA?

Let�⊆FO be a class of formulas, then by FD-�we denote the class of all problems FDϕ such
that ϕ ∈�. The following result regarding FO is known.

Proposition 1. (Flum and Grohe 2006, Cor. 4.35). NP= FD-FO = FD-�2.

Next we introduce the following weighted version of Fagin definabilty, where we restrict our
solution to have a specific size for a single free relation symbol S of arity s. Notice that the inclu-
sion of a single free relation variable is without loss of generality as allowing more than one such
variables does not increase the complexity (see Flum and Grohe 2006, p.87).

Problem: WDϕ – weighted Fagin definability for fixed ϕ ∈FO

Input: A τ -structureA and k ∈N.
Question: Is there a solution for ϕ of cardinality k?

As before, for a class�⊆FO of formulas, we denote by WD-� the class of all problemsWDϕ
such that ϕ ∈�.

Example 2. We assume standard graph theoretic notation and consider loop-free graphs. The
problem CLIQUE is defined as follows. Given a graph G := (V , E) and k ∈N. Is there a set S⊆V
such that |S| = k and (u, v) ∈ E for every x, y ∈ S? Then CLIQUE is WDϕc , where

ϕc(X) := ∀x∀y((X(x)∧ X(y)∧ x �= y)→ E(xy)
)
.

Consequently, CLIQUE is in WD-�1.
Moreover, Let DOMINATINGSET be the problem to determine if a graph G contains a set S⊆V

such that |S| = k and every vertex in V \ S is incident to some vertex in S? Then DOMINATINGSET
is in WD-�2 since the problem is WDϕd , where

ϕd(X) := ∀x∃y(X(y)∧ (E(x, y)∨ x= y)
)
.

Parameterized Complexity Theory. A parameterized problem (PP) P ⊆�∗ ×N is a subset
of the cross-product of an alphabet and the natural numbers. For an instance (x, k) ∈�∗ ×N, k is
called the (value of the) parameter. A parameterization is a polynomial-time computable func-
tion that maps a value from x ∈�∗ to its corresponding k ∈N. The problem P is said to be
fixed-parameter tractable (or in the class FPT) if there exists a deterministic algorithm A and a
computable function f such that for all (x, k) ∈�∗ ×N, algorithm A correctly decides the mem-
bership of (x, k) ∈ P and runs in time f (k) · |x|O(1). The problem P belongs to the classXP ifA runs
in time |x|f (k) on a deterministic machine. Abusing a little bit of notation, we write C-machine
for the type of machines that decide languages in the class C, and we will say a function f is
C-computable if it can be computed by a machine on which the resource bounds of the class C
are imposed. The class paraNP includes problems decidable by a nondeterministic algorithm A
which runs in time f (k) · |x|O(1) for some computable function f . One can define a parameter-
ized complexity class paraC corresponding to a complexity class C via a precomputation on the
parameter.

https://doi.org/10.1017/S0960129524000033 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000033


Mathematical Structures in Computer Science 379

Definition 3. Let C be any complexity class. Then paraC is the class of all PPs P ⊆�∗ ×N such
that there exists a computable function π : N→
∗ and a language L ∈ C with L⊆�∗ ×
∗ such
that for all (x, k) ∈�∗ ×N we have that (x, k) ∈ P ⇔ (x, π(k)) ∈ L.

Notice that paraP= FPT and the two definitions of paraNP are equivalent.
A problem P is in the complexity class W[P], if it can be decided by a NTM running in time

f (k) · |x|O(1) steps, with at most g(k)-many nondeterministic steps, where f , g are computable
functions. Moreover, W[P] is contained in the intersection of paraNP and XP (for details see
the textbook of Flum and Grohe 2006).

Let c ∈N and P ⊆�∗ ×N be a PP, then the c-slice of P, written as Pc is defined as Pc := { (x, k) ∈
�∗ ×N | k= c }. Notice that Pc is a classical problem then.

Definition 4. Let P ⊆�∗ ×N,Q⊆ �∗ be two PPs. One says that P is fpt-reducible to Q, P≤FPTQ,
if there exists an FPT-computable function f : �∗ ×N→ �∗ ×N such that

• for all (x, k) ∈�∗ ×N we have that (x, k) ∈ P ⇔ f (x, k) ∈Q,
• there exists a computable function g : N→N such that for all (x, k) ∈�∗ ×N and f (x, k)=
(x′, k′) we have that k′ ≤ g(k).

Finally, in order to show that a problem P is paraC-hard for some complexity class C, it is
sufficient to prove that for some c ∈N, the slice Pc is C-hard in the classical setting (Flum and
Grohe 2006, Thm. 2.14).

To define the complexity classes in W-hierarchy, the parameterized version of the problem
WDϕ is now defined as follows.

Problem: p-WDϕ – parameterized weighted Fagin definability for fixed ϕ ∈FO

Input: A τ -structureA and k ∈N.
Parameter: k.
Question: Is there a solution for ϕ of cardinality k?

The complexity classes of theW-hierarchy are characterized via the following definition.

Definition 5 (Flum and Grohe 2006, Def. 5.1). For every t ≥ 1, we let W[t] := [p-WD-�t]FPT.
The classW[t] forms the t-th level of theW-hierarchy.

Alternatively, theW-hierarchy can be defined via the weighted satisfiability problem for propo-
sitional formulas. Let I be a nonempty index set and d ∈N. Consider the following special
subclasses of propositional formulas:

�0,d = {�1 ∧ · · · ∧ �c | �1, . . . , �c are literals and c≤ d},

0,d = {�1 ∨ · · · ∨ �c | �1, . . . , �c are literals and c≤ d},
�t,d =

{ ∧
i∈I
αi

∣∣∣∣ αi ∈
t−1,d for i ∈ I
}
,


t,d =
{ ∨

i∈I
αi

∣∣∣∣ αi ∈ �t−1,d for i ∈ I
}
.

Finally, �+
t,d (resp. �

−
t,d) denote the class of all positive (negative) formulas in �t,d.

The parameterized weighted satisfiability problem (p-WSAT) for propositional formulas is
defined as below. The parameter weight of an assignment s is the number of variables mapped
to 1 by s.
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Figure 1. Landscape of relevant parameterized complexity classes with complete problems. The definition of several of
these complete problems is mentioned in the relevant proofs.

Problem: p-WSAT(�t,d) – parameterized weighted satisfiability

Input: a �t,d-formula α with t, d ≥ 1 and k ∈N.
Parameter: k.
Question: is there a satisfying assignment for α of weight k?

The classes of theW-hierarchy are defined equivalently in terms of these problems.

Proposition 6 (Flum and Grohe 2006, Thm. 7.1). For every t ≥ 1 the following problems areW[t]-
complete under fpt-reductions.

• p-WSAT(�+
t,1) if t is even and p-WSAT(�−

t,1) if t is odd.
• p-WSAT(�t,d) for every t, d ≥ 1.

Fig. 1 draws the complexity landscape with complete problems in parameterized complexity
that are relevant.

Team-based Logics. We assume basic familiarity with predicate logic (Ebbinghaus and
Flum 1995). We consider first-order vocabularies τ that are sets of function symbols and relation
symbols with an equality symbol =. Let VAR be a countably infinite set of first-order variables.
Terms over τ are defined in the usual way, and the set of well-formed formulas of first-order logic
(FO) in negation normal form is defined by the following EBNF:

ψ ::= t1 = t2 | R(t1, . . . , tk) | ¬R(t1, . . . , tk) |ψ ∧ψ |ψ ∨ψ | ∃xψ | ∀xψ ,
where ti are terms 1≤ i≤ k, R is a k-ary relation symbol from σ , k ∈N, and x ∈VAR. If ψ is
a formula, then we use VAR(ψ) for its set of variables, and Fr(ψ) for its set of free variables.
We evaluate FO-formulas in τ -structures, which are pairs of the form A= (A, τA), where A is
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the domain ofA (when clear from the context, we write A instead of dom(A)), and τA interprets
the function and relational symbols in the usual way (e.g., tA〈s〉 = s(x) if t = x ∈VAR). If t=
(t1, . . . , tn) is a tuple of terms for n ∈N, then we write tA〈s〉 for (tA1 〈s〉, . . . , tAn 〈s〉).

Dependence logic FO(dep) extends FO by dependence atoms of the form dep(t;u) where t
and u are tuples of terms. Inclusion logic FO(⊆ ) is obtained by adding to FO the inclusion
atoms of the form t⊆ u for tuples t and u of terms. Finally, independence logic FO(⊥) extends
FO by independence atoms of the form t⊥vu for tuples t, u, and v of terms. We call expressions
of the kind t1 = t2, R(t), dep(t; u), t⊆ u and t⊥vu atomic formulas.

The semantics is defined through the concept of a team. Let A be a structure and X ⊆VAR,
then an assignment s is a mapping s : X →A.

Definition 7. Let X ⊆VAR. A team T inA with domain X is a set of assignments s : X →A.

For a team T with domain X ⊇ Y define its restriction to Y as T�Y := { s�Y | s ∈ T }. If s : X →A
is an assignment and x ∈VAR is a variable, then sxa : X ∪ {x} →A is the assignment thatmaps x to a
and y ∈ X \ {x} to s(y). Let T be a team inAwith domain X. Then any function f : T →P(A) \ {∅}
can be used as a supplementing function of T to extend or modify T to the supplemented team
Tx
f := { sxa | s ∈ T, a ∈ f (s) }. For the case f (s)=A is the constant function, we simply write Tx

A for
Tx
f . The semantics of formulas is defined as follows.

Definition 8. Let τ be a vocabulary, A be a τ -structure and T be a team over A with domain
X ⊆VAR. Then,

A, T |= t1 = t2 iff ∀s ∈ T : tA1 〈s〉 = tA2 〈s〉,
A, T |= t1 �= t2 iff ∀s ∈ T : tA1 〈s〉 �= tA2 〈s〉,
A, T |= R(t1, . . . , tn) iff ∀s ∈ T : (tA1 〈s〉, . . . , tAn 〈s〉) ∈ RA,
A, T |= ¬R(t1, . . . , tn) iff ∀s ∈ T : (tA1 〈s〉, . . . , tAn 〈s〉) �∈ RA,
A, T |= dep(t;u) iff ∀s1, s2 ∈ T : tA〈s1〉 = tA〈s2〉 =⇒ uA〈s1〉 = uA〈s2〉,
A, T |= t⊆ u iff ∀s1 ∈ T, ∃s2 ∈ T : tA〈s1〉 = uA〈s2〉,
A, T |= t⊥vu iff ∀s1, s2 ∈ T : vA〈s1〉 = vA〈s2〉 then ∃s3 ∈ T :

vtA〈s3〉 = vtA〈s1〉 and uA〈s3〉 = uA〈s2〉,
A, T |= ϕ0 ∧ ϕ1 iff A, T |= ϕ0 andA, T |= ϕ1,
A, T |= ϕ0 ∨ ϕ1 iff ∃T0∃T1 : T0 ∪ T1 = T andA, Ti |= ϕi for i= 0, 1,
A, T |= ∃xϕ iff A, Tx

f |= ϕ for some f : T →P(A) \ {∅},
A, T |= ∀xϕ iff A, Tx

A |= ϕ.

For a structureA and a team T over X inA, we let rel(T) denote the relation defined by T. That
is, rel(T) := { a | s(x)= a, s ∈ T }. Moreover, we say that a formula ϕ is flat if for any team T over
Fr(ϕ) we have thatA, T |= ϕ if and only ifA, {s} |= ϕ for every s ∈ T. TheFO-formulas satisfy this
flatness property. Notice that, for FO-formulas, by singleton equivalence, team semantics and
classical Tarski semantics coincide, i.e., A, {s} |= ϕ if and only if A |=s ϕ. Furthermore, note that
A, T |= ϕ for all ϕ when T = ∅ (this is also called the empty team property). Finally, C-formulas for
every C ∈ {FO(dep),FO(⊆ ),FO(⊥)} are local, that is, for a team T in A over domain X and a
FO(dep)-formula ϕ, we have thatA, T |= ϕ if and only ifA, T�Fr(ϕ) |= ϕ.

We now extend the formulas classes (�t and �t) to the logics under consideration. To this
end, FO(dep)-�t ⊆FO(dep) (resp., FO(dep)-�t) denotes the collection of formulas ϕ of the
form ϕ :=Q1x1Q2x2 . . .Qtxtψ such that ψ is a quantifier free FO(dep)-formula, Qi ∈ {∀, ∃} and
Q1 = ∀ (Q1 = ∃). In other words, ϕ is a FO(dep)-formula that starts with a ∀-quantifier (resp., ∃)
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and has t-alternations of quantifiers. The classes FO(⊆ )-�t ⊆FO(⊆ ) (resp., FO(⊆ )-�t) for
FO(⊆ ) and FO(⊥)-�t ⊆FO(dep) (resp., FO(⊥)-�t) for FO(⊥) are similarly defined.

Weighted TeamDefinability. Nowwe introduce a novel version of the weighted definability
problem for formulas in team-based logics. Let C ∈ {FO(dep),FO(⊆ ),FO(⊥)}, ϕ be a fixed C-
formula over free variables Fr(ϕ) and k ∈N. Then given a structureA, theweighted-team definable
problemWTϕ asks if there is a team of size k for ϕ over Fr(ϕ) inA.

Problem: WTϕ – weighted team definability for fixed ϕ

Input: A τ -structureA and k ∈N.
Question: Is there a team T over Fr(ϕ) such that |T| = k andA, T |= ϕ?

Then the analogous parameterized version of WTϕ is defined as follows.

Problem: p-WTϕ – parameterized weighted team definability for fixed ϕ

Input: A τ -structureA and k ∈N.
Parameter: k.
Question: Is there a team T over Fr(ϕ) such that |T| = k andA, T |= ϕ?

Note that the problem WTϕ references the set of free variables Fr(ϕ) of the formula ϕ. As a
consequence, our parameterization is trivial for sentences since there are only two teams ∅ and
{∅} with the empty team domain. As before, for a set�⊆ C of formulas, we denote by WT-� the
class of problems WTϕ such that ϕ ∈�.

3. Complexity Results for Weighted Team Definability
3.1 First-order formulas
We begin our study of the complexity for p-WTϕ in the case ϕ is a pure FO-formula under team
semantics. Notice that the consequence of disallowing free relation variables in ϕ is that p-WTϕ
is different than the weighted Fagin definability p-WDϕ . The following theorem establishes that
the two problems are also different from the classical complexity theoretic point of view. Here, we
assume basic familiarity about the circuit complexity classes TC0 and AC0 (for an introduction
into this area, see the textbook of Vollmer 1999).

Theorem 9. For any FO-formula ϕ the problemWTϕ is in DLOGTIME-uniform TC0.

Proof. The proof uses the flatness property of FO-formulas under team semantics:

A, T |= ϕ⇔ ∀s ∈ T : A |=s ϕ.

It is well known thatA |=s ϕ can be decided by AC0-circuits, whence the original question reduces
to counting the number t of satisfying assignments of ϕ and checking whether t ≥ k. This can be
easily simulated by DLOGTIME-uniform TC0 circuits as we can hardcode all possible assign-
ments into the circuit. Here, notice that ϕ is fixed and thereby the number of free variables are
fixed to some constant c ∈N. Then, the input is the structure A of size n yielding O(nc) many
assignments.
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3.2 Inclusion logic
In this section, we relate the W-hierarchy and W[P] to weighted team definability for inclusion
logic formulas. First, observe that if ϕ is anFO(⊆ )-sentence, then the problem p-WTϕ is in FPT.
This is due to the reason that the data complexity of fixed FO(⊆ )-sentences is in P (Galliani and
Hella 2013).

Theorem 10. Let ϕ be an FO(⊆ )-sentence, then p-WTϕ is in FPT.

Proof. Recall that an FO(⊆ )-sentence ϕ has a satisfying team T in A if and only if A, {∅} |= ϕ

due to the locality property. Then ϕ is true in A if and only if there is a team T such that |T| = 1
andA, T |= ϕ.

Now we prove, that p-WTϕ can already be W[1]-hard when ϕ is a quantifier-free FO(⊆ )-
formula with free variables.

Theorem 11. There is a quantifier-free FO(⊆ )-formula ϕ such that the problem p-WTϕ isW[1]-
hard and inW[2].

Proof. We present a reduction from the W[1]-complete problem p-CLIQUE to p-WTϕ such that
ϕ is a quantifier free FO(⊆ )-formula. Let G := (V , E) be a graph and k ∈N. Then, we let ϕ :=
E(x, y)∧ x �= y∧ y⊆ x∧ x⊆ y. We claim that G has a clique of size k if and only if G, T |= ϕ for a
team T of size (k2 − k). It is easy to check that the existence of a k-clique is equivalent to ϕ having
a satisfying team of cardinality k(k− 1). Clearly, a clique of size k contains k(k− 1)-many edges.
Then the variables x and y take same values under each assignment in the resulting team which
form a clique.

For containment in W[2], it suffices to note that the formula ϕ can be expressed as an FO-
sentence ψ(S) with a ∀∃-quantifier prefix where the auxiliary binary predicate S encodes the team
T. This gives an FPT-reduction between p-WTϕ and p-WDψ . The result follows since W[2] :=
[p-WD-�2].

This result can be strengthened to more general formulas as witnessed by the following
corollary.

Corollary 12. For any quantifier-free FO(⊆ )-formula ϕ without ∨, the problem p-WTϕ is in
W[2].

Proof. For containment in W[2], it suffices to note that the any quantifier-free formula with-
out disjunction can be expressed as an FO-sentence ψ(S) with a ∀∃-quantifier prefix where the
auxiliary binary predicate S encodes the team T.

Theorem 13. There is an FO(⊆ )-formula ϕ with ∀∃-quantifier prefix for which the problem
p-WTϕ isW[2]-complete.

Proof. We present a reduction from theW[2]-complete problem p-DOMINATINGSET to p-WTϕ
such that ϕ is a FO(⊆ )-formula with ∀∃-quantifier prefix. Let G := (V , E) be a graph and k ∈
N. Then we let, ϕ := ∀x∃y(y⊆ z ∧ (E(x, y)∨ x= y)). It is straightforward to check that G has a
dominating set of size k if and only if G, T |= ϕ for a team T with domain {z} of size k.

ForW[2]-membership, notice that for all graphs G and teams T:
G, T |= ϕ⇔ (G, rel(T)) |= ϕd(X),

where ϕd(X) is the first-order sentence encoding the problem DOMINATINGSET (see Example 2).
A formal proof for the above equivalence is similar to the one given in Theorem 19.

The next lemma sets the stage for generalizing the two previous theorems to arbitrary levels
of theW-hierarchy. To formulate the result, we assume an encoding of a formula ψ ∈ �+

t,d (and a
truth assignment) by its syntax circuit defined as follows.
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Definition 14. Let ψ ∈ �+
t,d be a propositional formula. We define the syntax circuit for ψ by

Aψ = (A, E, I, o), where A is the set of subformulas of ψ , E is the immediate subformula relation,
I ⊆A are the variables of ψ , and o is a constant symbol interpreted by ψ . Moreover, we use a free
relation variable S⊆ I to represent a truth assignment for the variables of ψ .

Note that our encoding of ψ works for any t ∈N but for the definability result below t has to
be fixed.

Lemma 15. Let t ∈N. Then there exists a fixed formula ϕt ∈FO(⊆ ) with one free variable z such
that for all ψ ∈ �+

t,d and k≥ 1: ψ has a satisfying assignment of weight k if and only if Aψ , T |= ϕt ,
for some team T of cardinality k.

Proof. Without loss of generality, we assume d = 1. For higher d-values, the presented proof easily
generalizes via a conjunction/disjunction of arity d. By the results of Galliani and Hella (2013), it
suffices to show that the required formula can be expressed by a first-order sentence θ(S) in which
the relation symbol S occurs only positively. Then the existence of ϕt(z) satisfying

Aψ , T |= ϕt ⇔Aψ |= θ(S), (1)

for all nonempty T and rel(T)= S follows. Note that θ(S) is not true under the assignment setting
all the variables to false, but on the other hand ϕt is always satisfied for T = ∅ by the empty team
property. It is easy to check that, for an even t, θ(S) can be expressed as follows:

θ(S) := ∀x1
(¬E(o, x1)∨ ∃x2(E(x1, x2)∧ · · ·Qxt(E(xt−1, xt)∧ I(xt)∧ S(xt)) · · ·

)
.

In the case t is odd the conjunction after E(xt−1, xt) has to be replaced by an implication. The
relation symbol S has only one occurrence in the formula and it is positive. Now by Proposition
20 of Galliani and Hella (2013), there exists anFO(⊆ )-formula ϕt such (1) holds for the sentence
∀�x(S(�x)→ θ(S)) for all A and all T. It is easy to see that θ(S) is equivalent with ∀�x(S(�x)→ θ(S))
modulo the cases when S= ∅. In fact, it is straightforward to show that ϕt can be obtained from
θ(S) simply by replacing S(xt) by the inclusion atom xt ⊆ z. The proof then is analogous to the
proof of Theorem 19.

Notice further that the translation of the formula θ to an FO(⊆ )-formula only introduces
inclusion atoms and, in particular, does not require any further quantification. Therefore, the
following corollary follows immediately from the proof in Lemma 15.

Corollary 16. Let t ≥ 2 be even. Then there is an FO(⊆ )-�t-formula ϕt for which the prob-
lem p-WTϕt is W[t]-complete. Moreover, W[t]⊆ [p-WT-FO(⊆ )-�t]FPT for all even t ≥ 1 and⋃

t≥1 W[t]⊆ [p-WT-FO(⊆ )]FPT.

Proof. For the W[t]-membership of p-WTϕt , notice that the translation between θ and the
FO(⊆ )-formula ϕt in the proof of Lemma 15 preserves a one-to-one correspondence between
the solutions S for θ and satisfying teams T for ϕt . In other words, θ has a solution of size k if
and only if ϕt has a satisfying team of size k. This yields W[t]-membership since θ ∈�t for each
t ≥ 1 (see Def. 5). The W[t]-hardness and the containment W[t]⊆ [p-WT-FO(⊆ )-�t]FPT for
all even t ≥ 1 follows from Proposition 6.

We conclude this section by presenting the upper bounds for WTϕ when ϕ is an arbitrary
FO(⊆ )-formula.

Theorem 17. [p-WT-FO(⊆ )]FPT ⊆W[P].

Proof. We prove this via the machine characterization of the class W[P], analogous to the proof
for FO-formulas (Flum and Grohe 2006, Prop. 5.3). Let ϕ be a FO(⊆ )-formula with s free
variables. An algorithm for the problem p-WTϕ proceeds as follows: Given a structure A and
a k, nondeterministically guess k times an assignment (i.e., an s-tuple of elements of A), then
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deterministically verify that the team T has cardinality k and A, T |= ϕ. Guessing T requires
s · k · log |A| nondeterministic bits, and the verification thatA, T |= ϕ can be done in deterministic
polynomial time in |A| (Galliani and Hella 2013). Thus, p-WTϕ is inW[P] because the formula ϕ
is fixed and s is a constant. Moreover, the containment [p-WT-FO(⊆ )]FPT ⊆W[P] holds since
p-WTϕ ∈W[P] for an arbitrary but fixed FO(⊆ )-formula ϕ.

3.3 Dependence logic
First observe that if ϕ is a FO(dep)-sentence, then the problem p-WTϕ is paraNP-complete.
This is due to the reason that the data complexity of certain FO(dep)-sentences is already NP-
complete (Väänänen 2007).

Theorem 18. There is a FO(dep)-sentence ϕ, such that the problem p-WTϕ is paraNP-complete.

Proof. Recall that by the locality property a FO(dep)-sentence ϕ is satisfied by all teams T over
A if and only if A, T∗ |= ϕ for some nonempty team T∗. Let now ϕ be a sentence of dependence
logic expressing an NP-complete problem. Then, for any fixed k> 0, the problem: given a model
A, determine whether there exists a team with k elements satisfying ϕ in A is NP-complete. This
immediately implies that the problem p-WTϕ is paraNP-complete.

Now, we relate the W-hierarchy to the weighted definability for dependence logic. This also
settles the complexity of p-WT for FO(dep)-formulas. In the following, we prove that already
one universal quantifier is enough in FO(dep) to defineW[1]-complete problems.

Theorem 19. There is a FO(dep)-formula ϕ with only one universal quantifier such that the
problem p-WTϕ isW[1]-complete.

Proof. We present a reduction from the W[1]-complete problem p-INDEPENDENTSET to
p-WTϕ such that ϕ is FO(dep)-formula with only one universal quantifier. An input to
INDEPENDENTSET is a graph G := (V , E) and a number k ∈N. The question is whether there
is a set S of size k in G such that (a, b) �∈ E for every a, b ∈ S. We let τ := {N1, P1, I2} as our
vocabulary where N, P are unary relations and I is a binary relation symbol. Moreover, the τ -
structureA is such that: dom(A) :=V ∪ E, NA :=V , PA := E and IA simulates the edge relation
EG . That is, I := { (a, b), (c, b) | a, c ∈V , and b ∈ P denotes the edge (a, c) ∈ E }. Finally, we define
a FO(dep)-formula ϕ over a single free variable x as in the following.

ϕ(x) := ∀y(N(x)∧ (¬P(y)∨ ¬I(x, y)∨ dep(y;x)))
The correctness of our reduction is established via the following claim and also shows that the

formula ϕ is, in fact, equivalent to the familiar definition of independent sets via a �1-formula;
hence, p-WTϕ isW[1]-complete.

Claim 20. There is a team T over x in A such that |T| = k and A, T |= ϕ if and only if there is an
independent set in G of size k.

It remains to prove the claim. Suppose that T = { si | i≤ k } is a team over x for ϕ such that
si(x)= ai for ai ∈A. Moreover, letT′ = { si,j | i≤ k, j≤ |A| } denote the supplemented team, that is,
si,j(x)= ai and si,j(y)= aj for every aj ∈A. We prove that S= {ai | ∃s ∈ T, s(x)= ai} constitutes an
independent set in G. Let ai, aj ∈ S, then there are si, sj ∈ T such that si(x)= ai, sj(x)= aj. Suppose
further that (ai, aj)= e ∈ EG . Then, by our construction, there are si,j, sj,j ∈ T′ such that si,j(xy)=
aiaj and sj,j = ajaj. Moreover, the pair si,j, sj,j cannot be in the subteam for the first disjunct since e
is an edge and T′ |= P(e); it can also not belong to the subteam for the second disjunct since both
ai and aj appear in the edge e. As a result, si,j, sj,j must be in the subteam for the third disjunct,
but then it cannot satisfy the atom dep(y; x) since si,j(y)= sj,j(y) and si,j(x) �= sj,j(x). Consequently,
T′ �|= (¬P(y)∨ ¬I(x, y)∨ dep(y;x)) and T �|= ϕ, which is a contradiction.
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Conversely, if there is an independent set S of size k in G then we prove that T |= ϕ(x) for
T = {si | i≤ k, si(x) ∈ S}. Clearly, the supplemented team T′ over {x, y} has the following effect: for
every y that corresponds to an edge e between elements ai, aj ∈A, at most one of its endpoint ai
or aj is in T, which is the case if and only if S is in independent set.

Once again, we prove the next lemma that generalizes the previous theorem to arbitrary levels
of theW-hierarchy using the circuit representation of a formula (Def. 14).

Lemma 21. Let t ∈N. Then there exists a fixed formula ϕt ∈FO(dep)with one free variable z such
that for all ψ ∈ �−

t,d and k≥ 1: ψ has a satisfying assignment of weight k if and only if Aψ , T |= ϕt ,
for some team T of cardinality k.

Proof. Without loss of generality, we assume that d = 1. Otherwise, the presented proof will easily
generalize to larger values of d by a disjunction/conjunction of arity d. By the results of Kontinen
and Väänänen (2009), it suffices to show that the required formula can be expressed by a first-
order sentence θ(S) in which the relation symbol S occurs only negatively. Then the existence of
ϕt(z) satisfying

Aψ , T |= ϕt ⇔Aψ |= θ(S), (2)

for all nonempty T and rel(T)= S follows. Now (for t even) it is easy to check that θ(S) can be
expressed as follows:

θ(S) := ∀x1
(¬E(o, x1)∨ ∃x2(E(x1, x2)∧ · · ·Qxt(E(xt−1, xt)∧ I(xt)∧ ¬S(xt)) · · ·

)
.

In the case t is odd the conjunction after E(xt−1, xt) has to be replaced by an implication. The
relation symbol S appears only once in the formula and this appearance is negative.

Notice further that the translation of the formula θ to a FO(dep)-formula only introduces
dependence atoms and, in particular, does not require any further quantification. Therefore, the
following corollary (with proof analogous to Corollary 16) follows. Recall that every dependence
logic formula can be put into the ∀∃-normal form. As a result, tracking the quantifier prefix in
Lemma 21 is not useful and we get the much stronger statement that the whole W-hierarchy is
already contained inFO(dep)-�2. Yet, there is a trade-off one has to keep inmind while reaching
this normal form: each existential quantifier (beyond the first) then induces a dependence atom
in that case.

Corollary 22. Let t ≥ 1 be odd. Then there is an FO(dep)-�2-formula ϕt for which the problem
p-WTϕt isW[t]-complete. Moreover,

⋃
t≥1 W[t]⊆ [p-WT-FO(dep)-�2]FPT.

Finally, FO(dep) captures the class paraNP as established below.

Theorem 23. [p-WT-FO(dep)]FPT = paraNP.

Proof. Hardness follows from Theorem 18. For membership, we present the following nonde-
terministic algorithm that runs in polynomial time in the size of dom(A). Notice that since the
formula is fixed, we have fixed many connectives including disjunctions and quantifiers. The idea
of the algorithm is that it guesses a team T of size k, as well as, a sequence Ti for i ∈N of teams
which corresponds to the operations of supplementation and splits according to the formula ϕ.
In other words, let ϕ =Q1x1Q2x2 . . .Q�x�ψ be an FO(dep)-formula, where Q ∈ {∀, ∃} and ψ is
quantifier free. Then the algorithm performs the following steps.

• Guess a team T of size k over Fr(ϕ) inA.
• For each i ∈ {�, . . . , 1}, guess a team Ti over Fr(ϕ)∪ {x�, . . . , xi} in an inside-out order of
quantification, such that: if Qi = ∀, then Ti = PxA and if Qi = ∃, then Ti = Pxf where f : P →
P(A) \ ∅ and P = Ti+1 (we let T�+1 = T).
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Notice that |Ti| = |Ti+1| ifQi = ∃ (because FO(dep) is downward closed) and |Ti| = |Ti+1| ·
|A| otherwise. As a result, we have that |Ti| ≤ k · |A|�−i and the size of the team |T1| is
bounded by k · |A|�.
Once the team T1 has been guessed, the algorithm needs to determine whether T1 |=ψ . Since
the data complexity of FO(dep) is still NP-complete for quantifier free formulas, this step is
also nontrivial. Nevertheless, we can list recursively all the subformulas of ψ in terms of its
syntax tree. This helps in labeling a subteams of T1 according to the connectives of ψ .

• Guess subteams for subformulas in a top-down order of the syntax tree of ψ . To be precise,
let Tψ := T1. Then, for each subformula α = β ∧ γ of ψ , let Tβ = Tγ = Tα , and for each
α= β ∨ γ , let Tβ ∪ Tγ = Tα .
Clearly, the size of the subteam Tα for each α is atmost k · |A|�.

• Accept if Tα |= α for each atomic subformula α of ϕ.

Notice that for atomic formulas the truth evaluation Tα |= α can be determined in polynomial
time. Moreover, the intermediate steps including the verification of the team supplementation
can also be performed in polynomial time. Finally, the correctness follows from the fact that the
algorithm simulates the truth evaluation (see Def. 8) for ϕ. This results in paraNP-membership
of WTϕ for a fixed FO(dep)-formula ϕ.

3.4 Independence logic
In this section, we turn to independence logic. The following theorem is obtained from the results
in the previous sections and the fact that any ESO-sentence ψ(S) (with an extra relation encod-
ing the team) can be represented by an independence logic formula (Galliani 2012). It is worth
remarking that FO(⊥) has the empty team property and can therefore only represent an ESO-
sentence ψ(S) if ψ is also true for the empty relation. This is unproblematic since we implicitly
assume that k≥ 1.

Theorem 24. (1) For all t ∈N there is an FO(⊥)-formula ϕt such that p-WTϕt is W[t]-
complete.

(2) There is an FO(⊥)-formula ϕw such that p-WTϕw isW[P]-complete.
(3) There is a FO(⊥)-sentence ϕ, such that the problem p-WTϕ is paraNP-complete.
(4) [p-WT-FO(⊥)]FPT = paraNP.

Proof. The first and third claim follow immediately from the fact that the logics FO(dep) and
FO(⊆ ) are sublogics of FO(⊥) (Galliani 2012) together with Theorem 23. The containment of
FO(dep) (resp., FO(⊆ )) inside FO(⊥) yields the results for odd (even) t ∈N in conjunction
with Corollary 22 (Cor. 16), thereby proving the first claim for all t ≥ 1.

For the second claim, we use the fact that p-WSAT(CIRC+) is W[P]-complete (Flum and
Grohe 2006, Thm. 3.14), where CIRC+ is the class of negation-free propositional formulas
encoded as monotone Boolean circuits. Note that the circuit value problem can be readily
expressed by an ESO-sentence ψ(S), where S represents an input for the circuit. More pre-
cisely, assume we a given a DAG (A, E,D,K, I, o) encoding a Boolean circuit. Here A is the set
of nodes/gates, E is the edge relation, I ⊆A are the input gates of the circuit, o is the unique out-
put, D⊆A is the set of OR-gates, and K ⊆A is the set of AND-gates. A Boolean input for the
circuit is represented by a subset S⊆ I, i.e., a gate g gets input 1 if and only if g ∈ S. Now in ESO
we can existentially quantify a proof tree witnessing the circuit accepting the input S. In other
words, we quantify a subset P ⊆A such that

• o ∈A,
• P ∩ I = S,
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• for all g ∈ P ∩D there exists at least one g′ ∈ P such that E(g′, g),
• for all g ∈ P ∩K and all g′, if E(g′, g) then g′ ∈ P.

It is straightforward to check that the above conditions can be expressed in first-order logic.
Finally, the hardness for the last claim follows again from the fact that FO(dep) is a sublogic

of FO(⊥) and the membership proof is analogous to that of Theorem 23.

4. Conclusion
We have defined and studied the parameterized complexity of weighted team definability with
respect to formulas of several team-based logics. Our results show that for plain first-order for-
mulas weighted team definability differs greatly from weighted Fagin definability; the former
being computationally much simpler. For dependence, independence, and inclusion logic for-
mulas, the complexity of weighted team definability ranges between the classesW[t] and paraNP.
Now, these results provide a wide range of natural complete problems for the aforementioned
complexity classes enriching the landscape in a nontrivial way. Interestingly, the sentences in
the considered logics depict different complexities: namely, membership in FPT for FO(⊆ )
and paraNP-completeness for FO(dep) and FO(⊥). The main open question is whether the
converse directions of Corollary 16 or Theorem 17 can be proven, i.e., if one of the inclusions⋃

t∈N W[t]⊆ [p-WT-FO(⊆ )]FPT ⊆W[P] is in fact an equality.
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