TRANSLATIVITY FOR STRONG BOREL SUMMABILITY
Lee Lorch

(received July 10, 1966)

1. Introduction, It is an obvious property of convergence
that lim s =8 implies that lim S +k exists and equals s
n--ow n--c
for k = -1 (left translativity) and for k =1 (right translativity).

Not so for summability.

G.H. Hardy pointed out in 1903 [cf. 3,p.183 (Theorem 127),
p.196] that summation by Borel's exponential means is trans-
lative to the left, but not to the right. However, for sequences
{ sn} whose rate of growth with n is restricted suitably, the

Borel method is also right-translative. This was shown to be
K
true when Sh =0O(n ), K an arbitrary fixed quantity, by V. Gar-
ten [2], and under more general circumstances by J. Karamata
[4] and D. Gaier[1].
Summability by Borel's exponential means (i.e., B-lim sn =3)

is defined by

0
(1) lim e =~ =
X~ 0 n=0

A discussion of this and related methods is found, e.g., in [3,
Chapters 8 and 9].

On this concept can be superimposed that of "strong summ-
ability" in the usual way. A sequence {o’n} will be said to be

"strongly summable by Borel's exponential method, with (posi-
tive) index k , to the value o, " if
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< 0 ]o’ -0 n
(2) lim e T —S——x =0.
X~ n=0 )
This will be written
(3) SkB—lim o'n = .

The SkB method can be shown to be translative both to the

right and to the left. That it is translative to the left follows from
the corresponding result for Borel summability [3, p.183 (Theo-
rem 127)]. What remains then is to prove:

THEOREM. If SkB-hm G'n = ¢ , then SkB—llm 0_n+1

exists and equals o .

Two proofs will be provided: A direct elementary one,
based on the law of the mean for derivatives ( § 2), and another
obtained by showing that the hypothesis SkB—lim C =0 implies

K
that sn = lO‘n -0 lk =0O(n ), in fact, 9_(n1/2) , Treducing the

above Theorem to a special case of Garten's [2] (§ 3).

The main point of this note is really the direct proof, be-
cause of its simplicity and elementary character, avoiding the

delicate calculations of [2] and the function-theoretic methods of
[1] and [4].

2. Direct Proof of the Theorem. The result will follow
at once from the second lemma below, itself a consequence of
the mean-value theorem for derivatives.

LEMMA 1. I G'(x)>0, 0<x<ow; if G'(x) is a non-
decreasing function of x; and if

(4) G(x+1) - G(x) = o(e) as x—w,
then G'(x) :3(ex) as x-—>o ,

Proof. The mean-value theorem establishes the existence
of £, x<§<x+1, suchthat G'(§) = G(x+1) - G{(x). Hence

0<e "G (x)< e TGE) = e X {G(x+1) - G(x)} >0, as x— o
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A special case of the foregoing is what is really required
for the proof of the Theorem:

LEMMA 2. If G'(x) is a positive non-decreasing function
of x, 0<x<o, andif G(x) =3(e’s, as x-+w, then G'(x) =

X
ofe) as x—+owo.

Proof. It suffices to note that

G(x+1) - G(x) _ eG(x+i) _ G(x) = o
x

x x+1 o(1),
e e e

and apply Lemma 1.

The Theorem follows from Lemma 2 on defining

k
o |o -0 A
Glx)= = ——— x,
-0 n!
since K K
® Io-n-(rl n-1 ® I(rnH,-o—l n
G'(x) = = —(;‘_—1)7- = Z ; x .
1 ' 0 n!

3. Reduction to Garten's Theorem. Alternatively, the
Theorem of this note can be subsumed under Garten's. To this

k
end, define s = |o-n- o'l , so that {sn} is summable to 0 by

Borel's exponential means, snz 0, n=0,1,... .
We need

LEMMA 3. If s >0 and B-lims_=0, then s = o(N'n),

n-+o .,

Preliminary remark. In the proof, use is made of the ine-
quality

n n-n—i/Z <

n'! e <e, n=1,2,...

This is an elementary result established, e.g., in the course of
the proof of Lemma 16.2 of (7, p.384], where it is shown that the
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left member decreases as n increases.

Proof of Lemma 3. Obviously, for x>0,

S [¢o] S
n n n n

- x < z -

n. - n.

=0

since s '> 0. Putting x = n, it follows that
n>

s
n n n
—7 n < e e , where ¢ -0 as n— o,
n! — n n
©
. . n
since B-lims =0, i.e., Z (sn/n'.)x = o(ex).
n o

0
From the preliminary remark, we have now that

n -n
0<s <e¢ e n'n <e¢ eln.
ha n— n - n

This proves Lemma 3.

The Theorem of this note now follows from Garten's re-

sult, since the SkB summability of ¢ to ¢ is equivalent to
n

the B-summability of sn to 0, with s > 0, and Lemma 3 im-
n=
plies (in view of Garten's result) that B-lim 5 44 exists and is

0.

4. Additional Remarks. Some miscellaneous comments
follow.

(a) The definition (2) of strong Borel summability does not
appear in the general literature, so far as I know, but it was
given in the lectures of Otto Szdsz at the University of Cincinnati
in 1936-37 or 1937-38.

(b) The method, clearly regular, is stronger than conver-
gence. The divergent sequence {o—n} , where 0'rl =1 for n=m".
m =0,1,.. .,crn = 0 otherwise, is SkB summeable to o = 0 for
all indices k.
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To see this, let s = IO' -0| =o¢ . Then
n n n

1/3

sgt... ts = [n""7]+1, where [x] denotes, as usual, the

largest integer < x. Hence the (C, 1) means of {sn} are

o so+...+sn ) [ni/3]+1 o
n+1 - n+1 T =

-2/3 -1/2
n n

) = of ).

The Borel summability of {sn} to 0 (and hence the SkB sum-
mability of {crn} to ¢ = 0), then follows from a theorem of

Hardy [3,p.213, (Theorem 149)].

Another divergent sequence having this property is o =1,
m . o
n=2 |, m=0,1,...,crn=0 otherwise, as may be seen, e.g.,

from a result of G. Pélya [5], that

0 Zm
s X

lim Nx e-x

1
X=> 00 m=0 2! N 2w
as well as from the aforementioned theorem of Hardy.

An example of an unbounded divergent sequence which is

1/3 12
n

S, B-summable is o*n= , n=m , m=0,1,...,0 =0
n

k
otherwise, ¢ =0, when k = 1. Obvious modifications lead to
analogous sequences for other values of k.

(c) In the above examples, SkB-li_m ¢ = implies

(5) lim inf ¢ =0 .
n—+w

This is a common property of strong summability methods. To

establish it for all sequences summable by SkB methods is

quite straightforward.

. k .
We may write s = ,0’ - o‘l so that B-lim s =0, and
n n n

suppose that s >e> 0 for all n>N . Then
€
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® S € S ©0 s
e-X z —? xn=e-X b '—?' xn+e_X z __1'11_ xn
n=0 n=0 N_+1 o
N
- € S - «© n
>e ¥ % - X +ee z X
=0 NE+1 n'!
€ S Ne n
=e_X = ——I}xn+e—ee_ Z'z—'
n=0 ‘ 0 :

= € to(1), x>,
a contradiction.
(d) Lemma 3 can be sharpened (as is clear from the proof
given) to the following:

s
If (i) s > 0, (ii) e Z—n-r-l <" = w (1/x), then

snsw(i/n) eNn , n=1,2,...;thus, sn»Oif w(1/n)=g(1/~/’n).

The inequality gives the correct order of magnitude for s

as may be seen from Pélya's function in (b). There

w(1/x) = 1 + o 4 ) as x=> o,
2mTx x
Thus, the inequality gives
sn < = +o(1),
N2w

which is the proper order, since infinitely many s equal 1.

(e) The non-translativity of Borel's exponential method
is what underlies O. Szisz's example of a pair of regular sum-

mability methods T1 and T2 having the property that ’I'1 - T

does not include T1, i.e., such that the T1 transform of the

2
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T2 transform of a series need not converge even if the T1

transform of the series converges [6, § 6, pp.81-82]. This be-
comes particularly clear if his example is simplified by taking,
as he does, T1 to be Borel's exponential means, but replacing

his binary transformation given by Tz(sn) =3 (sn + s ) by

+1

the translation TZ(Sn) =5 -

A still simpler example of the phenomenon described by
Szdsz is provided by R.P. Agnew [Math. Reviews, vol. 15 (1954),
p.26] in his report on [6].
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