TRANSLATIVITY FOR STRONG BOREL SUMMABILITY

Lee Lorch

(received July 10, 1966)

1. Introduction. It is an obvious property of convergence that $\lim_{n\to\infty} s = s$ implies that $\lim_{n\to\infty} s = s$ exists and equals s = s for k = -1 (left translativity) and for k = 1 (right translativity). Not so for summability.

G.H. Hardy pointed out in 1903 [cf. 3, p. 183 (Theorem 127), p. 196] that summation by Borel's exponential means is translative to the left, but not to the right. However, for sequences $\{s_n\}$ whose rate of growth with n is restricted suitably, the Borel method is also right-translative. This was shown to be true when $s_n = O(n)$, K an arbitrary fixed quantity, by V. Garten [2], and under more general circumstances by J. Karamata [4] and D. Gaier[1].

Summability by Borel's exponential means (i.e., B- $\lim_{n} s = s$) is defined by

(1)
$$\lim_{x \to \infty} e^{-x} \sum_{n=0}^{\infty} \frac{s - s}{n!} x^{n} = 0.$$

A discussion of this and related methods is found, e.g., in [3, Chapters 8 and 9].

On this concept can be superimposed that of "strong summability" in the usual way. A sequence $\{\sigma_n\}$ will be said to be "strongly summable by Borel's exponential method, with (positive) index k, to the value σ ," if

Canad. Math. Bull. vol. 9, no. 5, 1966

(2)
$$\lim_{x \to \infty} e^{-x} \sum_{n=0}^{\infty} \frac{\left|\sigma_{n} - \sigma\right|^{k}}{n!} x^{n} = 0.$$

This will be written

(3)
$$S_k B - \lim_n \sigma_n = \sigma.$$

The S_kB method can be shown to be translative both to the right and to the left. That it is translative to the left follows from the corresponding result for Borel summability [3, p.183 (Theorem 127)]. What remains then is to prove:

THEOREM. If $S_k B - \lim \sigma_n = \sigma$, then $S_k B - \lim \sigma_{n+1}$ exists and equals σ .

Two proofs will be provided: A direct elementary one, based on the law of the mean for derivatives (§ 2), and another obtained by showing that the hypothesis S_kB -lim $\sigma_n=\sigma$ implies that $s_n=|\sigma_n-\sigma|^k=\underline{O}(n^K)$, in fact, $\underline{O}(n^{1/2})$, reducing the above Theorem to a special case of Garten's [2] (§ 3).

The main point of this note is really the direct proof, because of its simplicity and elementary character, avoiding the delicate calculations of [2] and the function-theoretic methods of [1] and [4].

2. <u>Direct Proof of the Theorem</u>. The result will follow at once from the second lemma below, itself a consequence of the mean-value theorem for derivatives.

LEMMA 1. If G'(x) > 0, $0 < x < \infty$; if G'(x) is a non-decreasing function of x; and if

(4)
$$G(x+1) - G(x) = o(e^{x}) \text{ as } x \to \infty,$$

then $G'(x) = \underline{o}(e^x)$ as $x \to \infty$.

<u>Proof.</u> The mean-value theorem establishes the existence of ξ , $x < \xi < x + 1$, such that $G'(\xi) = G(x+1) - G(x)$. Hence

$$0 < e^{-x} G'(x) \le e^{-x} G'(\xi) = e^{-x} \{G(x+1) - G(x)\} \to 0$$
, as $x \to \infty$.

A special case of the foregoing is what is really required for the proof of the Theorem:

LEMMA 2. If G'(x) is a positive non-decreasing function of x, $0 < x < \infty$, and if $G(x) = o(e^{x})$, as $x \to \infty$, then $G'(x) = o(e^{x})$ as $x \to \infty$.

Proof. It suffices to note that

$$\frac{G(x+1) - G(x)}{e^{x}} = e^{\frac{G(x+1)}{e^{x+1}}} - \frac{G(x)}{e^{x}} = o^{(1)},$$

and apply Lemma 1.

The Theorem follows from Lemma 2 on defining

$$G(x) = \sum_{n=0}^{\infty} \frac{\left|\sigma_{n} - \sigma\right|^{k}}{n!} x^{n},$$

since

$$G'(x) = \sum_{1}^{\infty} \frac{\left|\sigma_{n} - \sigma\right|^{k}}{(n-1)!} x^{n-1} = \sum_{0}^{\infty} \frac{\left|\sigma_{n+1} - \sigma\right|^{k}}{n!} x^{n}.$$

3. Reduction to Garten's Theorem. Alternatively, the Theorem of this note can be subsumed under Garten's. To this end, define $s_n = |\sigma_n - \sigma|^k$, so that $\{s_n\}$ is summable to 0 by Borel's exponential means, $s_n \ge 0$, $n = 0, 1, \ldots$.

We need

LEMMA 3. If $s_n \ge 0$ and B-lim $s_n = 0$, then $s_n = o(\sqrt{n})$, $n \to \infty$.

Preliminary remark. In the proof, use is made of the inequality

$$n! e^{n} n^{-n-1/2} \le e, n = 1, 2, ...$$

This is an elementary result established, e.g., in the course of the proof of Lemma 16.2 of [7, p. 384], where it is shown that the left member decreases as n increases.

Proof of Lemma 3. Obviously, for x > 0,

$$\frac{s}{\frac{n}{n!}} x^{n} \leq \sum_{n=0}^{\infty} \frac{s}{\frac{n!}{n!}} x^{n}, n = 0, 1, 2, \dots,$$

since $s_n \ge 0$. Putting x = n, it follows that

$$\frac{s}{n!}$$
 $n < \epsilon$ $n < \infty$,

since B-lim
$$s_n = 0$$
, i.e., $\sum_{0}^{\infty} (s_n/n!) x^n = \underline{o}(e^x)$.

From the preliminary remark, we have now that

$$0 \le s_n \le \epsilon_n e^n n! n^{-n} \le \epsilon_n e^{\sqrt{n}}.$$

This proves Lemma 3.

The Theorem of this note now follows from Garten's result, since the S_kB summability of σ_n to σ is equivalent to the B-summability of s_n to 0, with $s_n \geq 0$, and Lemma 3 implies (in view of Garten's result) that B-lim s_{n+1} exists and is 0.

- 4. Additional Remarks. Some miscellaneous comments follow.
- (a) The definition (2) of strong Borel summability does not appear in the general literature, so far as I know, but it was given in the lectures of Otto Szász at the University of Cincinnati in 1936-37 or 1937-38.
- (b) The method, clearly regular, is stronger than convergence. The divergent sequence $\{\sigma_n\}$, where $\sigma_n=1$ for $n=m^3$. $m=0,1,\ldots,\sigma_n=0$ otherwise, is S_kB summable to $\sigma=0$ for all indices k.

To see this, let $s_n = |\sigma_n - \sigma|^k = \sigma_n$. Then $s_0 + \ldots + s_n = [n^{1/3}] + 1$, where [x] denotes, as usual, the largest integer $\leq x$. Hence the (C, 1) means of $\{s_n\}$ are

$$0 < \frac{s_0 + \ldots + s_n}{n+1} = \frac{\left[n^{1/3} \right] + 1}{n+1} = \underline{O}(n^{-2/3}) = \underline{o}(n^{-1/2}).$$

The Borel summability of $\{s_n\}$ to 0 (and hence the S_kB summability of $\{\sigma_n\}$ to $\sigma=0$), then follows from a theorem of Hardy [3, p.213, (Theorem 149)].

Another divergent sequence having this property is $\sigma_n = 1$, $n = 2^m$, $m = 0, 1, ..., \sigma_n = 0$ otherwise, as may be seen, e.g., from a result of G. Pólya [5], that

$$\lim_{x\to\infty} \sqrt{x} e^{-x} \sum_{m=0}^{\infty} \frac{z^m}{z^m!} = \frac{1}{\sqrt{2\pi}},$$

as well as from the aforementioned theorem of Hardy.

An example of an unbounded divergent sequence which is $S_k B$ -summable is $\sigma_n = n^{1/3}$, $n = m^{12}$, $m = 0, 1, \ldots, \sigma_n = 0$ otherwise, $\sigma = 0$, when k = 1. Obvious modifications lead to analogous sequences for other values of k.

(c) In the above examples, $S_k B - \lim_{n \to \infty} \sigma_n = \sigma$ implies

(5)
$$\lim_{n\to\infty} \inf \sigma_n = \sigma.$$

This is a common property of strong summability methods. To establish it for all sequences summable by $S_k^{\ B}$ methods is quite straightforward.

We may write $s_n = \left|\sigma_n - \sigma\right|^k$ so that B-lim $s_n = 0$, and suppose that $s_n > \epsilon > 0$ for all $n > N_\epsilon$. Then

$$e^{-x} \sum_{n=0}^{\infty} \frac{s}{n!} x^{n} = e^{-x} \sum_{n=0}^{\infty} \frac{s}{n!} x^{n} + e^{-x} \sum_{\kappa=0}^{\infty} \frac{s}{n!} x^{\kappa}$$

$$> e^{-x} \sum_{n=0}^{N_{\epsilon}} \frac{s}{n!} x^{n} + \epsilon e^{-x} \sum_{N_{\epsilon}+1}^{\infty} \frac{x^{n}}{n!}$$

$$= e^{-x} \sum_{n=0}^{N} \frac{s}{n!} x^{n} + \epsilon - \epsilon e^{-x} \sum_{n=0}^{N} \frac{x}{n!}$$

$$= \epsilon + o(1), x \rightarrow \infty,$$

a contradiction.

(d) Lemma 3 can be sharpened (as is clear from the proof given) to the following:

If (i)
$$s_n \ge 0$$
, (ii) e^{-x} $\sum \frac{s_n}{n!}$ $x^n = \omega (1/x)$, then $s_n \le \omega (1/n) e^{\sqrt{n}}$, $n = 1, 2, ...$; thus, $s_n \to 0$ if $w(1/n) = \underline{o}(1/\sqrt{n})$.

The inequality gives the correct order of magnitude for s_n , as may be seen from Pólya's function in (b). There

$$\omega (1/x) = \frac{1}{\sqrt{2\pi x}} + \underline{o}(\frac{1}{\sqrt{x}}) \text{ as } x \to \infty.$$

Thus, the inequality gives

$$s_n \leq \frac{e}{\sqrt{2\pi}} + \underline{o}(1) ,$$

which is the proper order, since infinitely many s_n equal 1.

(e) The non-translativity of Borel's exponential method is what underlies O. Szász's example of a pair of regular summability methods T_1 and T_2 having the property that $T_1 \cdot T_2$ does not include T_1 , i.e., such that the T_1 transform of the

 T_2 transform of a series need not converge even if the T_1 transform of the series converges [6, § 6, pp.81-82]. This becomes particularly clear if his example is simplified by taking, as he does, T_1 to be Borel's exponential means, but replacing his binary transformation given by $T_2(s_n) = \frac{1}{2}(s_n + s_{n+1})$ by the translation $T_2(s_n) = s_{n+1}$.

A still simpler example of the phenomenon described by Szász is provided by R.P. Agnew [Math. Reviews, vol. 15 (1954), p.26] in his report on [6].

REFERENCES

- 1. D. Gaier, Zur Frage der Indexverschiebung beim Borel-Verfahren, Math. Zeitschr. vol. 58 (1953), pages 453-455.
- 2. V. Garten, Über den Einfluss endlich vieler Änderungen auf das Borelsche Limitierungsverfahren. Math. Zeitschr. vol. 40 (1936), pages 756-759.
- 3. G.H. Hardy, Divergent Series. (1949).
- 4. J. Karamata, Über die Indexverschiebung beim Borelschen Limitierungsverfahren. Math. Zeitschr., vol. 45 (1939), pages 635-641.
- 5. G. Pólya, Űber die kleinsten ganzen Funktionen, deren sämtliche Derivierten im Punkte z = 0 ganzzahlig sind. Tohoku Mathematical Journal, vol. 19 (1921), pages 65-69.
- 6. O. Szász, On the product of two summability methods. Ann. Soc. Polon. Math. vol. 25 (1952), pages 75-84.
- 7. D.V. Widder, Advanced Calculus. 2d. ed., (1961).

Summer Research Institute Canadian Mathematical Congress University of Alberta Edmonton, Alberta