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ON THE PLETHYSM OF ^-FUNCTIONS 

S. P. O. P L U N K E T T 

1. Introduction. Many authors have studied the theory and calculation 
of the plethysms of S-functions. The significance of S-functions lies in their 
relationship [9] to the characters of the continuous groups, and plethysms play 
a crucial role in the determination of branching rules associated with the 
decomposition of a continuous group into its subgroups [2 ; 14 ; 16]. Tables have 
been published for the plethysm {X} (x) {/*}, where (X) and (ju) are any parti­
tions of / and m, respectively, with Im ^ 18. These tables have been drawn up 
both with [1] and without [5] the aid of computers and some results are also 
known for Im > 18 [3; 4; 7]. 

The method given here deals with the notion of g-quotients and is based on 
a theorem of Littlewood's relating these to plethysms of 5-functions with 
symmetric power sums. Use is made of some results concerning modular 
congruences between the symmetric power sums. A general rule is obtained for 
{/} ® {/xj, where {/} is a symmetric 5-function and (/z) is any partition of 3. 
In addition, the method has been used for the computation of {/} (x) {/*} 
beyond the range currently available. 
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for his careful reading of the manuscript, for many helpful suggestions, and 
for his continuous advice and encouragement. 

2. 5-functions and plethysm. 5-f unctions, or Schur functions, {X}, are 
defined [9] in terms of symmetric power sums St of independent variables 
au a2j . . . oin given by 

(2.i) sl = é «A 

For any partition p = (la2&3c . . .), the product Sp is denned by 

(2.2) Sp = S1
aS2»S3

c 

and the Schûr function {X} corresponding to the partition (Xi, X2, . . .) of / may 
then be expressed in the form 

(2.3) {X} = )• £ W X X 

where xP
(X) is the character of the class p of size hp in the irreducible representa-
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tion of the symmetric group specified by (X). The inverse of (2.3) is the 
relationship 

(2.4) S, = L XP(X>{X|. 
X 

The outer product of two S-functions, {X} {/*}, may be evaluated by means of 
the well known Littlewood-Richardson rule [10]. Powers of S-iunctions may be 
split into parts corresponding to some degree of symmetry between the factors. 
Thus, 

{ \ p = {X} (g) {2} + {X) ® { P j , 

where the square is divided into its symmetrised and anti-symmetrised parts; 
and 

{X}' = {X} <g> {3} + 2{X} <g> {21} + {X} <g> {1«}, 

etc. In general [13], 

(2.5) {xr= Eri^w, 
ft 

where (fx) is a partition of m for which the symmetric group representation is 
of degree/^, and {X} (x) [fi] defines the operation of plethysm. This operation 
was introduced by Littlewood [6] who also established its algebra, which is such 
that 
(2.6) {x} <g> ({M} + M ) = {x} ® M + {x} <g> M , 
and 

(2.7) {x} ® ({„} W) = ({x} ® M)({\\ ® {,}). 

3. g-residues and g-quot ients . The notions of g-residue, g-sign, and 
^-quotient were introduced by Robinson [11 ; 12; 13] and developed by Little-
wood [8]. With every partition (X) = (Xi, X2, . . . X*) of / into i parts, there is 
associated a g-quotient, which is a sum of partitions of s, with an associated 
sign, and a g-residue or g-core, which is a partition of r, where s and r are such 
that / = sq + r. The definitions of these quantities are best illustrated by an 
example. Consider the partition (954221) of 23, and let q = 3. The numerical 
working consists of a series of lines: 

A 9 5 4 2 2 1 
B 5 4 3 2 1 0 
C 14 9 7 4 3 1 
D 2 3 7 4 0 1 
E 7 4 3 2 1 0 
F 2 0 0 0 0 0 

A is the partition, B the numbers i— 1, £ — 2 , . . . , 1,0, and C the sum of A and 
B. D is obtained from C by reducing each number (mod 3) to the smallest non-
negative integer so far unused, working from the right. E contains the numbers 
in D rearranged in descending order, and F is the difference between E and B. 
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The partition in F, i.e., (2), is the 3-residue. The sign of the permutation 
by which E is obtained from D, here positive, is the 3-sign. To obtain the 
3-quotient, consider the decrease between C and D, in multiples of 3, of terms 
congruent to 0 (mod 3): 

(9,3) — ( 3 , 0 ) : (2,1), 

of terms congruent to 1: 

(7, 4, 1 ) - * (7, 4, 1) : (0), 

and of terms congruent to 2: 

(14) - (2) : (4). 

The outer product of S-iunctions corresponding to these three partitions is 
found: 

(3.1) {21}{4}{0} = {61} + {52} + {511} + {421}, 

and the 3-quotient is the corresponding set of partitions with the 3-sign 
appended: 

+ (61) + (52) + (511) + (421). 

The g-quotient is a sum of partitions of, say, n which is obtained from outer 
products of ^-functions. The 5-functions {n} and {ln} can occur only with 
coefficient ± 1 (or 0) in such a product. For example, if n = 4 all possible 
quotients correspond to the 5-functions: 

{4}; {31}; {2*}; {21*}; {l4}; 
{3}{1} = {4} + {31};{21}{l} = {31} + {2*} + {21*};{l»}{l} ={21*} + {1<}; 
{2}{2} = {4} + {31} + {2*};{2}{1*} = {31} + {212}; {l2} {l2} = 

{22} + {2P} + { 1 4 } ; 

{2}{1}{1} = {4} +2{31} + {2̂ } + {2P};{P}{1}{1} = 
{31} + {2̂ } + 2{2P} + {14}; 

{1}{1}{1}{1} = {4} + 3{31} + 2{22} + 3{212} + {l4}. 

So the partitions (n) and (ln) can occur in a g-quotient only with coefficient 
± 1 or 0. 

The g-residue, g-sign, and g-quotient may also be obtained in a graphical 
manner. From the tableau for the partition (X), hooks are removed whose 
length is a multiple of g. This multiple is denoted by Uj for a hook starting on 
the j th row, and each tij is made as large as possible subject to three conditions. 
Each hook must (i) start from the right hand end of a row, each row being 
tried in turn starting at the bottom, (ii) move only to the left and down, and 
(iii) leave a regular tableau. Figure 1 illustrates this process for the tableau for 
(954221). The g-residue is the partition of the tableau which remains. If nij is 
the number of rows covered by the hook starting at the end of thejth row, the 
g-sign is II^( —l)TOj'+1. To find the g-quotient, the quantity j — \j is found for 
each hook. If, for hooks starting on the rows ji,J2,jz • . . , this quantity is 
congruent (mod g), then the 5-function {nnnhnu . . .} is constructed. The 
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outer product of these 5-functions, one for each congruence class, is found as 
before, giving the g-quotient. In Figure 1, the first square of each hook is 
marked with the value of j — X̂ . Since — 8 = l (mod3) , —3 = 3 = 0(mod 3), 
and tii = 4, n2 = 2, nh = 1, the 3-quotient is {4}{21}{0}, in agreement with 
(3.1). 

I \—r~ i—r 8 

JJ I r-L-âl 

3 

The removal of hooks of length 3, 6 and 12 from the tableau for (954221) leaving the tableau 
for (2). 

FIGURE 1 

4. Application to the calculation of plethysms. Littlewood [8] proves 
the theorem that if the g-residue of (y) is null and the g-quotient is ^&x„(X), 
then 

{xj ®sQ = E M " ) . 
This result can be used to calculate plethysms of the form {X} ®{/z}. 
Littlewood has two methods to suggest, but both involve fairly lengthy 
calculations and the establishing of tables of prior results. One method uses the 
symmetric function identity 

\m\ 
1 m— 1 

to obtain 
m r=o 

m—l 

{ X } ® M = ^ Z «X}®Sm_r)({X}®{r}), 
Tri T==o 

by means of (2.6) and (2.7). The evaluation of this expression involves the 
finding of {X} (x) ST, for 2 ^ r ^ m, and {X} (g) {r}, for 2 ^ r < m. Then 
further calculations are necessary to find {X} (x) {/*}• 

The other method uses (2.3) in conjunction with (2.6) and (2.7) to obtain 

(4.1) {\}®M = ~ Z hx,MM®s, 
7YI. p 

ml 
Here, again, {X} ®Sr for 2 ^ r S ni must be known, and also ({X} ® 5 i ) r , 
i.e. {X}r, for 2 g r ^ m. This second method can be greatly simplified by 
observing a relationship between these products. 

https://doi.org/10.4153/CJM-1972-047-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-047-7


PLETHYSM OF S-FUNCTIONS 545 

For p prime, 

(4.2) S/b = («ia + af -

= a^" + a2
ap' 

= >Oapb. 

+ ...+an
apb (modp) 

Special cases of this result are particularly useful. For a = b = 1, 

for a = 1, 

and for 6 = 1. 
Si*6 = 5/ , 

9 v = 9 

Thus, 

(4.3) {X} ®SV= {X} ® V = {Xp, 

(4.4) {X} ®SP* = {X} ® 5 / = \\}v\ 

(4.5) {X} ® 5 a , = {X} ® 5 / = ({X} <g)Sfl)*. 

So we have 
{X} ® 5 2 ^ {X}2 (mod 2), 

{X} <g)S8 = {X}8 (mod 3), 
{X} (x)54^ {X}4 (mod 2), 
{X} ® 5 5 = {X}5 (mod 5), 

{X} ® 5 6 ^ ({X} ®5 3 ) 2 (mod 2), 
etc. 

These congruences are not in themselves sufficient to obtain {X} (g) Sr from 
{X}7", but in certain cases the result can be determined. Rewriting Littlewood's 
theorem: if 

{x} ®sr = 2>x,M, 
then the r-quotient of (v) contains k\v(\). But we have shown that an r-quotient 
can contain (/) or (V) only with coefficient ± 1 or 0. So kîv and k\iv are =bl or 0. 
Therefore, the coefficients of the 5-functions appearing in {/} ®Sr and 
{1*} ®ST are simply the r-signs of the corresponding partitions. Thus, the 
modular congruences give the coefficients kîv and k\iv unambiguously except 
for congruences (mod 2), for which + 1 = — 1 . But in these cases the f-sign is 
easily determined. 

The method for finding {/} (x) j^u}, for all partitions (JJL) of m, is as follows. 
First, {l)m is calculated, noting the {I}7, 2 = r < m, on the way. From these, the 
{1} (x) Sr can easily be found as shown above. Then the character-class-size 
products are used to complete (4.1). It is important to emphasize that the 
characters involved are only those for J^m and not for the much larger group 

This method has been used for the machine calculation of {/} (x) j/x} on the 
University of London's CDC 6600 computer. With m — 4, the values of I 
range up to 10; and for m — 5, up to 6. Table 3 shows a typical set of plethysms. 
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5. Symmetrized squares of S-functions. As a simple illustration, the 
result for {/} (g) {2} and {/} (x) {l2} can easily be established. First of all 

(5.1) j / } 2 = {21} + {21 - 1, 1J + {21 - 2, 2} + {2/ - 3, 3} + . . . . 

In order to find {/} (x) S2, we must know the 2-sign of each partition. It is clear 
diagramatically that for partitions into even parts, hooks of length 2 can be 
removed from the two rows separately giving a positive 2-sign, while for 
partitions into two odd parts, one 2-hook must cover the two rows giving a 
negative 2-sign (see Figure 2). So we have 

(5.2) {/} <g)S2 = {21} - {21 - 1, 1} + {21 - 2, 2J - {21 - 3, 3} + . . . , 

and also 

(5.3) {1} <g>Si2 = {/}2 = {2/} + {21 - 1, 1} + {21 - 2, 2} 

+ {21- 3,3} + . . . . 
Hence, the well-known results [7]: 

(5.4) {/} ®{2} = {/} ®[HSi2 + S2)] 

= {21} + { 2 / - 2 , 2} + . . . , 
and 

(5.5) {/} ®{1*} = {/} ®[HSi2-S2)] 

= {21 - 1, 1} + {21 - 3, 3} + . . . . 

(a) (b) 

FIGURE 2 

Removal of 2-hooks from two-rowed tableaux with (a) rows of even numbers of boxes (b) 
rows of odd number of boxes. 

6. Symmetrized cubes of 5-functions. Thrall [15] produced a simple 
rule for writing down the plethysm {/} ® {3}. We can re-derive this result and 
also produce similar rules for immediately obtaining {/} (x) {21} and {/} ® {l3}. 

Again, an illustration makes the method clearest. We take / = 4 and find 

(6.1) {4p = {8} + {71} + {62} + {53} + {44}, 

and 

(6.2) {4}8 = {12} + 2(11.1} + 3{10.2} + 4{93} + 5{84} + 3{75} + {66} 
+ {10.1.1} + 2{921} + 3{831} + 4{741} + 2(651} 
+ {822} + 2{732} + 3(642} + {552} 
+ {633} + {543} 
+ {444}. 
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The result has been set out so that the pattern of the coefficients in {4}3 is 
clear. It will be observed that the coefficient of {v} = {viv2v^} is 

Mv = 1 + min {v\ — v2l v2 — v%). 

This can be shown in general as follows. The coefficient of \v\ is the number of 
ways \v\ can be obtained from terms in {X}2 by multiplication with {X}. This 
is equal to the number of ways in which I c's can be placed in the tableau for \v) 
following the usual rules and completely filling the third row. This leaves 
n c's to be distributed between the first and second rows, where 

(6.3) Zn = 2{v2 - vz) + Oi - v2). 

(See Figure 3(a).) From this, it is clear that the greater of (v2 — vz) and 
(vi — v2) cannot be less than n, so the number of ways of distributing the c's 
is one more than the lesser of (y2 — v$) and (vi — v2). See Figure 3(b), (c). 

J 

(a) 

I | | | 1 1 \c\c\c  

c\c\c\ 

I I \c\c 

T f \c\ 
c\c\c\ 

I N K 
I I \c\c\  

c\c\c\ 

(b) 

\c\ c\c\c 
c\c 

1 1 1 1 1 lcl 
1 1 ^ l c l c l 

Lc[c 

I I I I I I K K 
| | \c\c\  

c \c\ 

(c) 

The number of ways of placing six c's in the tableaux (10 5 3) and (9 7 2). In both cases, the 
result is three, which equals 1 + min(Vi — V2, V2 — vz). 

FIGURE 3 

Continuing with the calculation, 

(6.4) {4} ® 5 2 = {8} - {71} + {62} - {53} + {44}, 

so 

(6.5) {4} ®5 2 5 x = ({4} ®52){4} = {12} + {10.2} + {84} - {75} + {66} 

- {10.1.1} - {831} 
+ {822} + {642} - {552} 

- {633} 

+ {444}. 
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Each term in {4} (£) S2Si is obtained from a series of successive terms in 
{4} ® 5 2 , just as those in {4}3 came from {4}2. The alternation in signs in 
{4} ® S2 means that a coefficient in {4} ® S2Si must be 0 if an even number of 
terms contribute, and ± 1 if an odd number. In the latter case, the sign will 
be that of the first (or last) of the series of contributing terms in {4} ® £ 2 . 
If (v2 — ̂ 3) is less than (or equal to) (vi — v2), this sign will be positive (nega­
tive) if v2 is even (odd). If (v\ — v2) is less than {v2 — ^3), the sign will be 
similarly determined by v\. But {vi — v2) must be even in order to give an 
odd number of terms, so v\ = v2 (mod 2). See Figure 3. So the terms which 
occur in {X} ® S2S\ have coefficient ± 1 , according as v2 is even or odd. 

{4} (g)Sz is obtained by reducing the coefficients in {4}3 (mod 3) to ± 1 or 0: 

(6.6) {4} ® S 3 = {12} - {11.1} + {93} - {84} + {66} 

+ {10.1.1} - {921} + {741} - {651} 

+ {822} - {732} + {552} 

+ {633} - {543} 

+ {444}. 

Now, 

(6.7) {4} ® {3} = J[{4} ® 5 i 8 + 2.{4} ® S3 + 3.{4} ® S A ] . 

The coefficient of each 5-function in the sum in square brackets must be 
divisible by 6. Since {4} ® S2Si can only contribute coefficients ± 1 or 0, and 
this entry is multiplied by 3, the coefficients obtained from the sum of the first 
two terms must be divisible by 3 and, further, if even, will receive no contribu­
tion from the third term but, if odd, will receive ± 3 as v2 is even or odd. The 
coefficients in {4} ® S3 are also ± 1 or 0, so the contribution from the second 
term will be ± 2 or 0. The coefficients in the first term are the Mv. So we have 
Thrall's rule: {/} ® {3} = ^kv{i>}, summed over all partitions of 3/ with 3 or 
fewer parts, where kv is obtained by adding dz 2 or 0 to Mv to give a result 
divisible by 3, then if even, dividing by 6, but if odd, first adding (subtracting) 
3 if v2 is even (odd) and then dividing by 6. 

Similarly for {/} ® {l3}. We have 

(6.8) {/} ® {l3} = \\\l\ ® Si3 + 2{/} ® 5 3 - 3{/} OSaSiL 

so the only alteration in the above rule is the interchanging of "adding" and 
<<subtracting,\ 

Also, 

(6.9) {/} ® {21} = \\\l\ ®5x3 - {/} ® S3]. 

So {/} ® {21} = ^kv{v), where kv is obtained by adding ± 1 or 0 to Mv to 
obtain a multiple of 3, and then dividing by 3. 

Thus, Mv = 1 + min^i — v2, v2 — v$) and the "parity" of v2 determine the 
coefficient of {v\ in {/} ® {/xj, (p) a partition of 3. These coefficients are given 
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in Table 1 for Mv ^ 1 1 which suffices for / ^ 10. Table 2 lists the partitions of 
12 into not more than three parts with their Mv and v2 "parity", and tabulates 
theplethysms {4{ ®{3},{4} ®{21},{4} ®{13}. 

TABLE 1 

{/}®{3} {/}®{21} {/}®{13} 
Mv vi even vi odd V2 even V2 OC 

1 1 0 0 0 1 
2 0 0 1 0 0 
3 1 0 1 0 1 
4 1 1 1 1 1 
5 1 0 2 0 1 
6 1 1 2 1 1 
7 2 1 2 1 2 
8 1 1 3 1 1 
9 2 1 3 1 2 
10 2 2 3 2 2 
11 2 1 4 1 2 

ikf„ = 1 + min(Vi — V2, vi — vz) determines the coefficient 
of {v\ in the three plethysms {/} ® (3), {/} ® {21 j , {/} ® {l3} 
except that if Mv is odd it is necessary to know also the 
"pari ty" of v2 for {/j ® (3} and {/} ® {l3}. 

TABLE 2 

M Mv i>2(mod2) {4}® {3} {4}® {21} {4}® 

{12} 1 0 1 0 0 
{ 1 1 1 } 2 1 0 1 0 
{10 2| 3 0 1 1 0 
{93| 4 1 1 1 1 
{84} 5 0 1 2 0 
{75} 3 1 0 1 1 
{66} 1 0 1 0 0 
{10 1 1} 1 1 0 0 1 
{921} 2 0 0 1 0 
{831} 3 1 0 1 1 
{741} 4 0 1 1 1 
{651} 2 1 0 1 0 
{822} 1 0 1 0 0 
{732} 2 1 0 1 0 
{642} 3 0 1 1 0 
{552} 1 1 0 0 1 
{633} 1 1 0 0 1 
{543} 2 0 0 1 0 
{444} 1 0 1 0 0 

Theplethysms {4} ® {3}, {4} ® {21} and {4} ® {l3} calculated from 
Table 1. 
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TABLE 3 

{5}® {4} {5)® {31} {5} (g) {22} {5}®{2P} {5}® 

20} 
19 1} 
18 2} 
18 1 1} 
17 3} 
17 2 1J 
17 1 1 1} 
16 4} 
16 3 1} 
16 2 2} 
16 2 1 1} 
15 5} 
15 4 1} 
15 3 2} 
15 3 1 1} 
15 2 2 1} 
14 6} 
14 5 1} 
14 4 2} 
14 4 11} 
14 3 3} 
14 3 2 1} 
14 2 2 2} 
13 7} 
13 6 1} 
13 5 2} 
13 5 1 1} 
13 4 3} 
;13 4 2 1} 
13 3 3 1} 
13 3 2 2} 
12 8} 
12 7 1} 
12 6 2} 
12 6 1 1} 
12 5 3} 
12 5 2 1} 
12 4 4} 
12 4 3 1} 
12 4 2 2} 
12 3 3 2} 
11 9} 
11 8 1} 
ill 7 2} 
[11 7 1 1} 
11 6 3} 
[11 6 2 1} 
11 5 4} 

1 
0 
1 
0 
1 
0 
0 
2 
0 
1 
0 
1 
1 
1 
0 
0 
2 
1 
2 
0 
0 
0 
1 
1 
2 
2 
0 
1 
1 
0 
0 
2 
1 
3 
0 
1 
1 
2 
0 
1 
0 
0 

1 
2 
1 
2 
1 
1 

0 
1 
1 
0 
2 
1 
0 
2 
2 
1 
0 
4 
3 
2 
0 
1 
3 
4 
4 
1 
1 
1 
0 
4 
5 
6 
1 
3 
2 
0 
1 
2 
5 
6 
2 
5 
3 
2 
2 
1 
0 
3 
4 
6 
1 
6 
4 
5 

0 
0 
1 
0 
0 
1 
0 
2 
1 
1 
0 
1 
2 
1 
1 
0 
3 
3 
3 
0 
0 
1 
0 
1 
3 
3 
2 
2 
1 
1 
0 
3 
3 
5 
1 
3 
2 
2 
1 
1 
0 
0 
3 
3 
2 
4 
2 
3 

0 
0 
0 
1 
1 
1 
0 
1 
2 
0 
1 
2 
3 
2 
1 
0 
2 
5 
2 
2 
2 
1 
0 
3 
5 
5 
2 
3 
2 
1 
0 
2 
5 
5 
3 
6 
3 
1 
2 
0 
1 
2 
4 
6 
2 
6 
3 
4 

0 
0 
0 
0 
0 
0 
1 
0 

1 
0 
0 
0 
1 
0 
1 
0 
1 
1 
1 
1 
1 
0 
0 
0 
2 
1 
2 
1 
0 
1 
0 
1 
2 
2 
0 
2 
1 
0 
1 
0 
0 
0 
1 
1 
2 
2 
1 
1 
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TABLE 3 {continued) 

{5}® {4} {5}® {31} {5}<g>{22} {5}® {21»} {5} ® l4} 

11 5 3 1} 1 2 3 4 2 
11 5 2 2} 1 2 0 1 0 
11 4 4 1} 1 2 0 1 0 
11 4 3 2} 0 1 1 1 0 
11 3 3 3} 0 0 0 0 1 
10 10} 1 0 2 0 1 
10 9 1} 1 2 1 3 1 
10 8 2} 2 4 4 3 2 
10 8 1 1} 0 2 0 2 0 
10 7 3} 1 5 3 6 2 
10 7 2 1} 1 3 2 3 1 
10 6 4} 3 5 4 4 2 
10 6 3 1} 1 4 2 4 1 
10 6 2 2} 1 1 2 1 0 
10 5 5} 0 2 1 4 1 
10 5 4 1} 1 3 2 3 1 
10 5 3 2} 0 2 1 2 1 
10 4 4 2} 1 1 1 0 0 
10 4 3 3} 0 0 0 1 0 
9 9 2} 0 2 0 2 0 
9 9 11} 0 0 2 0 1 
9 8 3} 1 3 2 3 1 
9 8 2 1} 1 2 1 2 0 
9 7 4} 1 4 2 4 1 
9 7 3 1} 1 2 3 3 2 
9 7 2 2} 0 2 0 1 0 
9 6 5} 1 3 2 3 1 
9 6 4 1} 1 4 2 3 0 
9 6 3 2} 1 2 1 2 1 
9 5 5 1} 0 1 2 2 2 
9 5 4 2} 1 2 1 2 0 
9 5 3 3} 0 0 1 1 1 
9 4 4 3} 0 1 0 0 0 
8 8 4} 1 1 2 1 0 
8 8 3 1} 0 2 0 1 0 
8 8 2 2} 1 0 1 0 1 
8 7 5} 0 2 1 2 1 
8 7 4 1} 1 2 1 2 1 
8 7 3 2} 0 1 1 2 0 
8 6 6} 1 1 1 0 0 
8 6 5 1} 1 2 1 2 0 
8 6 4 2} 1 2 2 1 1 
8 6 3 3} 0 1 0 1 0 
8 5 5 2} 0 1 0 2 1 
8 5 4 3} 0 1 1 1 0 
8 4 4 4} 1 0 0 0 0 
7 7 6} 0 0 0 1 0 
7 7 5 1} 0 0 1 1 1 
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TABLE 3 (concluded) 

{5}® {4} {5}® {31} {5}® {2̂ } {5}® {212} {5}® fl4} 

1 7 7 4 2} 0 1 0 1 0 
( 7 7 3 3 ) 0 0 1 0 1 
{ 7 6 6 1 } 0 1 0 0 0 
{ 7 6 5 2 } 0 1 1 1 0 
{ 7 6 4 3 } 1 1 0 1 0 
{ 7 5 5 3 } 0 0 1 1 1 
{ 7 5 4 4 } 0 1 0 0 0 
{ 6 6 6 2 } 1 0 0 0 0 
{ 6 6 5 3 } 0 1 0 0 0 
{ 6 6 4 4 } 0 0 1 0 0 
{ 6 5 5 4 } 0 0 0 1 0 
{ 5 5 5 5 } 0 0 0 0 1 
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