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Mean field electrodynamics (MFE) facilitates practical modelling of secular, large
scale properties of astrophysical or laboratory systems with fluctuations. Practitioners
commonly assume wide scale separation between mean and fluctuating quantities, to
justify equality of ensemble and spatial or temporal averages. Often however, real
systems do not exhibit such scale separation. This raises two questions: (I) What
are the appropriate generalized equations of MFE in the presence of mesoscale
fluctuations? (II) How precise are theoretical predictions from MFE? We address both
by first deriving the equations of MFE for different types of averaging, along with
mesoscale correction terms that depend on the ratio of averaging scale to variation
scale of the mean. We then show that even if these terms are small, predictions of
MFE can still have a significant precision error. This error has an intrinsic contribution
from the dynamo input parameters and a filtering contribution from differences in
the way observations and theory are projected through the measurement kernel.
Minimizing the sum of these contributions can produce an optimal scale of averaging
that makes the theory maximally precise. The precision error is important to quantify
when comparing to observations because it quantifies the resolution of predictive
power. We exemplify these principles for galactic dynamos, comment on broader
implications, and identify possibilities for further work.
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1. Introduction
Mean field electrodynamics (MFE) is a powerful tool for semi-analytical modelling

of large scale or secular behaviour of magnetic fields and flows in magnetohydrody-
namic and plasma systems with spatial or temporal disorder (e.g. Roberts & Soward
1975; Krause & Rädler 1980; Ruzmaikin, Sokoloff & Shukurov 1988; Brandenburg &
Subramanian 2005a; Kleeorin & Rogachevskii 2008; Kleeorin et al. 2009; Blackman
2015). As its name indicates, in MFE physical variables such as the magnetic
field B and velocity U are decomposed into mean and fluctuating parts and the
equations for the means are derived. The ubiquity of turbulence in astrophysics
renders MFE essential for practical comparison between theory and observation.
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2 H. Zhou, E. G. Blackman and L. Chamandy

Mean field magnetic dynamo theory is a prominent example of MFE. Standard
axisymmetric accretion disk theory with ‘turbulent’ transport is another example,
although many practitioners use the theory without recognizing that it is only valid
as a mean field theory, and in fact one that should be coupled to mean field dynamo
theory (Blackman & Nauman 2015). By itself, the term MFE does not specify a
single set of approximations or method of averaging. If a system shows large scale
field or flow patterns the question is not whether MFE is correct but what is the
most appropriate MFE.

Specific averaging methods include the ensemble average (over a very large number
of accessible microstates), spatial averages (like box or planar averages) and time
averages. Calculations are usually simplified by utilization of Reynolds rules, namely,
the linearity of averaging, the interchangeability of differential and average operations,
and that averaged quantities behave like constants in averages (e.g. an averaged
quantity is invariant if averaged more than once, and the average of the product of
a quantity and a mean quantity is equal to the product of the mean of these two
quantities.) The ensemble average respects the full Reynolds rules, and is commonly
favoured (e.g. Roberts & Soward 1975; Brandenburg & Subramanian 2005a). In the
ensemble average, means are obtained by averaging over an ensemble consisting of
a large number of identical systems prepared with different initial states. Fluctuations
then have zero means by definition, and statistical properties of all mean physical
quantities, such as the turbulent electromotive force (EMF), are determined once the
partition function is known. There might seem to be no need to invoke the assumption
of large scale separation, but the detailed statistical mechanics and partition function
are rarely discussed in the MFE context,1 so it is unclear how to calculate variations
of these systems from first principles.

Correlation functions in magnetohydrodynamics (MHD) are usually computed from
the equations of motion, either in configuration space or Fourier space (e.g. Pouquet,
Frisch & Leorat 1976; Ruzmaikin et al. 1988; Blackman & Field 2002). Spatial or
temporal averages are the most directly relevant choices when analysing simulations,
laboratory experiments or astrophysical observations. These averages can however,
explicitly break the Reynolds rules in the absence of large scale separation. For
example, a planar average in the horizontal plane will destroy any spatial dependence
in, say, the x–y plane and leave physical quantities solely a function of z, therefore
variant when interchanged with ∂x or ∂y unless the boundary conditions are periodic.
Another example is a weighted averaging over a local small volume, which retains
full coordinate dependence at the price of a double-averaged quantity which is
generally unequal to its single-averaged value as we will later discuss in detail. To
avoid these complications, MFE practitioners typically assume that the system to
which the theory is being compared has a large scale separation between fluctuating
and mean quantities. The Reynolds rules are then quasi-justified for spatial and
temporal averages, and are deemed to be good approximations to the ensemble
average (Brandenburg & Subramanian 2005a).

Some effects of turbulence on astrophysical observables have been discussed (Burn
1966; Spangler 1982; Eilek 1989a,b; Tribble 1991; Sokoloff et al. 1998), but the
mean or ordered fields were typically defined explicitly or implicitly via ensemble
averages. Here we focus on the problem that real systems do not typically have
a large scale separation between fluctuations and large scale quantities, and thus

1For hydrodynamic ensembles, see Kraichnan (1973); Frisch et al. (1975) has studied MHD ensembles at
absolute statistical equilibrium; more applications of ensembles in MHD systems can be found in Shebalin
(2013) and the references therein.
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equating ensemble and spatial averages above can be questioned. If ls and lL are the
characteristic lengths of small- and large scale fields, galaxies, for example, may have
lL ' 1 kpc and 0.05 6 ls 6 0.1 kpc so that ls/lL > 1/20 which is not infinitesimal.
As another example, in one of their solar dynamo models, Moss et al. (2008) have
introduced a dynamo coefficient with long-term variations and a correlation time
of turbulent fields set to be of the same order as the period of the solar magnetic
activity. In this case, the ratio of the mean to fluctuating time scales would be ∼1.
Finite scale separation in time scales is equivalent to 〈B〉 6= ∫ t+T

t dt B(t) where T is
a time scale much greater than the eddy turnover time, but still much smaller than
the time scale of mean fields. This implies the system is non-ergodic. For more
detailed discussions about non-ergodicity of MHD systems, see Shebalin (1989, 2010,
2013) and the references therein. We are thus led to two specific questions: (I) In
the presence of intermediate or mesoscale fluctuations what are the correction terms
to standard ensemble-averaged MFE? And (II) what precision does this imply when
comparing the theory to observations?

To address question (I), we compare the standard MFE equations from ensemble
averaging to those formally derived using a spatially local average when the scale
of averaging is not arbitrarily smaller than the mean field gradient scales. We define
spatial averages as convolutions between the total field and a kernel with a prescribed
scale of averaging l such that ls < l < lL (Germano 1992). Such ‘coarse-graining’
techniques have been applied to hydrodynamic turbulence (Leonard 1974; Meneveau
& Katz 2000; Eyink & Aluie 2009), as well as MHD turbulence (Aluie & Eyink
2010; Aluie 2017). Gent et al. (2013) used a Gaussian kernel for averaging in
simulations to explore scale separation of magnetic fields. Frick et al. (2001) used
a mathematically similar method, wavelet transforms, for the analysis of galactic
images. Relevant kernels are localized in both configuration and Fourier space to
filter out small scales. Here we go beyond previous work and derive corrections to
standard MFE which depend on the ratio (l/lL)

c, where the power c depends on the
choice of kernel. For l/lL� 1 the standard MFE equations are recovered.

Another way to describe the importance of mesoscale fluctuations for MFE is that
contributions to averages are non-local, requiring weighing over a kernel of finite
spatial or temporal range. In this respect, what we do here differs from Rheinhardt &
Brandenburg (2012), even though they also motivate their work by recognizing a need
to account for non-locality. Their focus is on empirically extracting from simulations
the kernel of proportionality relating the turbulent EMF and the mean magnetic field,
and constraining an ansatz for that kernel when the mean magnetic field is defined
with a planar average. In contrast, we derive corrections that directly arise from
the mean field averaging procedure itself, and identify the lowest-order correction
terms resulting from distinct choices of the averaging kernel when Reynolds rules are
violated. As we discuss later, the approach of Rheinhardt & Brandenburg (2012) can
actually be viewed as semi-empirically testing the turbulent closure in MFE.

To address question (II) above, the precision of MFE in the presence of mesoscale
fluctuations, we identify two types of errors: (i) the ‘intrinsic error’ (IE) of the mean
fields that arises from the uncertainties to the input parameters of the mean field
equations, and (ii) the ‘filtering error’ (FE) that results if the theoretical averaging
procedure does not match that for values extracted from the observational data. As we
will see in § 4, when using ensemble averages, the IE vanishes and the FE is finite
but unquantifiable if partition functions are unknown. For the IE in our formalism, we
identify the importance of the ratio l/ls, where ls is the integral (energy dominating)
scale of the turbulent magnetic field. This ratio emerges because contributions to the
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error about the mean from fluctuations vary as ∼N−1/2 where N' (l/ls)
3 is the number

of eddies contained in an averaged cell. For the FE, the ratio L/ls is most important,
where L is the scale of average associated with the observation method, and in general
differs from l. Although ls increases with increasing l because ls is roughly the average
scale of modes with wavenumbers 62π/l, the dependence is weak if the small scale
turbulent spectrum of the magnetic field peaks near ls. As a result, the ratio l/ls is
roughly proportional to l whereas L/ls decreases as l increases. That the IE and FE
have complementary dependences on l implies that their sum may have an optimal
scale of averaging that minimizes the total error. We will show that both types of
precision errors are quantifiable, and can be significant in galaxies for example.

In § 2 we introduce the local spatial averages using kernels, and formally derive
correction terms when the Reynolds rules are not exactly obeyed. In § 3 we apply
these results to derive the generalized dynamo equations of MFE and show that
the mesoscale correction terms are in fact generally small using order-of-magnitude
estimates. We also contrast our method and compare our equations to the dynamo
equations of Rheinhardt & Brandenburg (2012). In § 4 we present a general discussion
on the two types of uncertainties aforementioned. In § 5 we show how to compute
the total error in the specific case of comparing MFE to Faraday rotation (FR)
measurements and apply this to different galactic viewing angles in § 6. We conclude
in § 7.

2. Averaging in MFE using kernels
In this section, we introduce the general formalism for averaging using kernels,

preparing for the reformulation of MFE in the next section.

2.1. General formalism

As per standard MFE practice, we separate any vector field A into a mean part A and
a fluctuation part a,

A(x)=A(x)+ a(x). (2.1)

The mean part is defined via

A(x)=Gl(x) ∗A(x)=
∫

d3x′Gl(x− x′)A(x′), (2.2)

where ‘∗’ denotes a convolution. The filtering kernel Gl(x) is a prescribed function
with a characteristic scale of averaging l, satisfying ls < leff(l) < lL, where leff can
be viewed as the configuration space dividing scale between large and small scale
fields. We define l such that l = leff for our analytic derivations.2 We have assumed
that the system under consideration is statistically homogeneous and isotropic on
scales 6l, so that l is independent of location and Gl(x) is isotropic. For anisotropic

2The choice of amplitude in the filter function that separates mean from fluctuations and defining the

relation between l and leff is not unique. For a Gaussian average, taking ∼G(k) = e−k2l2/8π2 = 1/2 as the

dividing line implies that leff = l/
√

2 ln 2 separates large and small scale fields in configuration space (as in
Gent et al. 2013). If instead we use ∼G(k)= 1/e, then leff = l/

√
2. We adopt leff = l, but note that different

criteria for the dividing line can lead to a constant multiplicative factor on l. If our averaging scale were based
on a real space choice such as telescope beam width for leff, leading us to set the exponent in (2.23) to say
1/2, then leff = l

√
ln 2/2/π= 1/2. Beam width may not however, determine the most appropriate theoretical

choice of leff for a given magnetic energy spectrum.
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or inhomogeneous systems, Gl(x) could be anisotropic and l could be a function of
spatial coordinates.

We use the following definition of the Fourier transform:

F [ f (x)](k)= ∼f (k)=
∫

d3x f (x)e−ik·x, (2.3)

and
F−1[∼f (k)](x)= f (x)= 1

(2π)3

∫
d3k∼f (k)e

ik·x, (2.4)

and therefore the Fourier transform of A is given by

∼A(k)= ∼Gl
(k)∼A(k). (2.5)

Unlike idealized ensemble averages, equation (2.5) implies A 6=A since ∼G
2
l
(k) 6= ∼Gl

(k)
unless ∼G(k) = 0 or 1, such as for a step function in Fourier space. However,
interchangeability of differential and average operations, as commonly invoked, is
manifest in Fourier space since ki[∼Gl

(k)∼Aj
(k)] = ∼Gl

(k)[ki∼Aj
(k)].

The kernel Gl(x) must meet several requirements for a practical mean field theory.
First, it should be a spatially local function that decreases rapidly for |x|& l, being that
it is used to extract a filtered value at a scale l. Complementarily, its Fourier transform
∼Gl
(k) should also monotonically decrease and vanish for large |k|. Furthermore, in the

limit l→ 0, ∼Gl
(k) approaches unity, since no filtering is needed for large scales. Thus,

∼Gl
(k) can be expanded around |k| = k= 0 when |kl|/2π= |k|/kl is small compared to

unity, yielding
∼Gl
(k)= 1− ∼γ +O(∼γ

2), (2.6)

where ∼γ is a small parameter related to |k|/kl, and the minus sign is for future
convenience. Note that ∼γ is independent of the direction of k due to isotropy.

The inverse Fourier transform of ∼γ is an operator γ̂ which is determined by

(γ̂ f )(x)=F−1[∼γ (k)∼f (k)](x). (2.7)

Hereafter we assume that these fields are either vanishing or periodic at the spatial
boundaries, and therefore any ∼γ (k) proportional to a power of ik is simply translated
to a γ̂ which is a spatial derivative raised to the corresponding power. When applied to
a quantity Q with smallest characteristic scale lch > l, the order-of-magnitude estimate
yields

γ̂Q∼
(

l
lch

)c

Q, (2.8)

with c being a positive number that depends on the specific choice of kernel.

2.2. Expressions for averages of fluctuations and double averages
Here we obtain formulae for averages of fluctuations and double averages, both of
which do not strictly obey Reynolds rules in the presence of mesoscale fluctuations. In
particular, the averages of fluctuations do not vanish and the double averages will not
agree with single-averaged values. We will use the expressions in subsequent sections.
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We first derive an expression for the mean of fluctuations, namely a=A−A. This
vanishes in conventional MFE using the ensemble average, but not for spatial averages.
In Fourier space, by definition,

∼a(k)= ∼Gl
(k)∼A(k)− ∼G2

l
(k)∼A(k)= (1− ∼Gl

)∼A. (2.9)

Since ∼A is a large scale quantity, it decays rapidly when |k|/kl� 1. Therefore we can
expand the right-hand side of (2.9) for |k|/kl� 1 using (2.6) to obtain

∼a(k)= [∼γ +O(∼γ
2)] ∼A. (2.10)

In configuration space, this implies

a(x)=A−A= [γ̂ +O(γ̂ 2)]A∼
(

l
lL

)c

A, (2.11)

if A has a characteristic variation scale of lL. Equivalently

A= [1− γ̂ +O(γ̂ 2)]A. (2.12)

To recover conventional MFE, we simply take the limit l/lL→ 0 and get a= 0.
Next, we obtain an expression for the mean of the product of two fields, AB,

in terms of the mean fields. Here A and B can be either two scalar fields or the
components of some vector fields. We adopt a two-scale approach, assuming that
the fields have double-peaked spectra and scale separations are large but finite, i.e.
we relax the assumption of infinite scale separation in conventional approaches (for
details see appendix A where the valid range of scale separation is quantified). Other
closures may include a test filtering process like that used in the Smagorinsky model
(Smagorinsky 1963; Germano et al. 1991; Lilly 1992).

By straightforward expansion we have

AB= A B+ aB+ Ab+ ab. (2.13)

We refer to the terms on the right-hand side of (2.13) as T1, T2, T3 and T4, respectively.
The calculation of T1 involves only mean quantities, but for practical purposes, it is
convenient to make some further approximations to avoid integro-differential equations.
If A and B both have a characteristic scale of variation lL, then the spectrum of the
Fourier transform of their product will roughly extend to k = 2kL. If the scale of
average satisfies 2kLl/2π= kLl/π� 1, we can use (2.12) to calculate T1, namely,

A B= [1− γ̂ +O(γ̂ 2)](A B). (2.14)

The Fourier transform of T2 is

∼T2
(k)= ∼Gl

(k)[∼a(k) ∗ ∼B(k)] = ∼Gl
{[(∼G−1

l
− 1)∼A] ∗ ∼B}, (2.15)

where we have used the definition ∼a= (1− ∼Gl
)∼A. The convolution of two quantities

with characteristic wavenumbers k1 and k2 will yield wavenumbers k1 ± k2. Note
that Gl is outside of the square brackets and so with periodic or vanishing boundary
conditions, only the low wavenumber part of the factor (G−1 − 1)A survives on the
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right-hand side of (2.15). (The validity of this approximation is discussed in more
detail in appendix A.) We therefore expand G−1

l in a Taylor series, yielding

(∼G
−1
l
− 1)∼A= [∼γ +O(∼γ

2)] ∼A, (2.16)

which upon Fourier inversion then implies

T2 = aB= B[γ̂ +O(γ̂ 2)]A. (2.17)

Similarly, for T3 we obtain

T3 = bA= A[γ̂ +O(γ̂ 2)]B. (2.18)

The sum T2 + T3, using (2.14), is then

aB+ bA= [γ̂ +O(γ̂ 2)](A B)− γ̂ ′(A, B)= [γ̂ +O(γ̂ 2)](A B)− γ̂ ′(A, B), (2.19)

where γ̂ ′, a binary operator, is introduced to account for the violation of the
distribution rule of γ̂ ; that is,

γ̂ ′(A, B)= γ̂ (AB)− (Aγ̂B+ Bγ̂A). (2.20)

Note that γ̂ ′(A,B) has the same order of magnitude as Bγ̂A or Aγ̂B if A and B have
the same characteristic length scale.

Combining (2.13), (2.14) and (2.19) we obtain

AB= [1+O(γ̂ 2)](A B)− γ̂ ′(A, B)+ ab. (2.21)

Furthermore, it can be verified using (2.12), (2.17) and (2.21) together that

AB = A B− γ̂ ′(A, B)+ ab

= A(1− γ̂ )B− γ̂ ′(A, (1− γ̂ )B)+ bγ̂A+O(γ̂ 2)

= A(1− γ̂ )B− γ̂ ′(A, B)+O(γ̂ 2)

= (1− γ̂ )(A B)+ Bγ̂A+O(γ̂ 2). (2.22)

2.3. Comparison to previous work
Expressing a turbulent field as ∼a = (1 − ∼Gl

)∼A is equivalent to applying a high-pass
filter on A, as has been discussed in Yeo (1987). In Yeo (1987) all fields are
expressed in terms of mean fields and their derivatives (Yeo–Bedford expansion),
including small scale fields, so the approach facilitates a closure in their context of
the inertial range for large eddy simulations (LES). In our approach, we focus on
the large scale mean fields, not the inertial range. We keep two-point correlations
of turbulent fields (ab-like terms in (2.21)) but use a separate closure for triple
correlations (compare (5.8) to (5.11) of Yeo (1987) to our (2.21)). In our formalism,
γ̂ terms enter as corrections to capture finite scale separation effects, facilitating
comparisons to conventional approaches (e.g. ensemble averages), while allowing
different closures. Also, Yeo (1987) use a Gaussian kernel, whereas our discussions
in the previous sections apply to any kernel meeting the requirements in § 2.1.
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2.4. Unifying different averaging methods using kernels
Here we discuss commonly used averages and their kernel forms (if possible). Recall
from above that in order to accurately capture large scale features, a suitable kernel
for mean field theories should at least be monotonically decreasing in Fourier space.

2.4.1. Gaussian average
For isotropic and homogeneous turbulence, the Gaussian kernel is defined as

Gl(x)=
(

k2
l

2π

)3/2

e−k2
l |x|2/2, (2.23)

where kl = 2π/l. It is then evident that A represents the large scale part of A by
rewriting it in Fourier space. This gives

∼A(k)= ∼Gl
(k)∼A(k)= e−k2/2k2

l ∼A(k). (2.24)

Since the kernel decreases rapidly for large k, as long as the spectrum of ∼A(k) does
not increase exponentially at large k, the spectrum of ∼A(k) has little power for k> kl.
For k< kl we can then write

∼Gl
(k)= 1− k2

2k2
l
+O

(
k4

k4
l

)
+ · · ·, (2.25)

so that in configuration space γ̂ =−∇2/2k2
l (recall the ‘−’ sign in the definition of

∼γ from (2.6)) and γ̂ ′(A,B)=−∇A · ∇B/k2
l for any A and B. Overall, γ̂ operating on

quantity Q gives γ̂Q∼ (l/lch)
2Q where lch is the characteristic variation scale of Q.

2.4.2. Moving box average
Here fields at a point x are averaged in a finite box with sides of length l.

Expressing the average using a kernel allows the integral bounds to be taken to
infinity, that is

A(x)= 1
l3

∫ l/2

−l/2
dx′
∫ l/2

−l/2
dy′
∫ l/2

−l/2
dz′A(x− x′)=

∫
d3x′Gl(x′)A(x− x′), (2.26)

where Gl(x)= θl(x)θl(y)θl(z) is the product of three rectangular functions defined by

θl(x)=
{

1/l −l/2 6 x 6 l/2
0 otherwise

}
. (2.27)

We call this a ‘moving’ average because it is not taken on a fixed grid, but centred
around each point x. Although suitable for numerical simulation analyses and
seemingly benign, this has limitations for applicability to realistic contexts. The
reason is evident from the Fourier transform of the kernel of a one-dimensional
running box, namely

∼Gl
(k)= sinc

(
kl
2

)
. (2.28)

Here |∼Gl
| is a non-monotonic function of k with zero points at kl= nπ, where n ∈Z.

As a result, some modes with large wave numbers may contribute more to the mean
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Derivation and precision of mean field electrodynamics 9

than those with small wavenumbers. This contradicts our basic notion of mean field
theory and highlights why monotonicity of the kernel is a requirement for a physically
motivated kernel. A secondary pathology is that modes with wavelengths 2l/n are
completely absent from the mean fields calculated using this kernel, although this
problem is lessened for large scale separation l� lL, since then only a few modes
lie near k= nπ/l.

2.4.3. Moving line segment average
A one-dimensional, or line average over a segment of length l, is a variant of the

moving box average but with the averages taken along a single direction r̂0:

A(x, r̂0)= 1
l

∫ l

0
ds A(x+ sr̂0)=

∫
ds θl

(
s− l

2

)
A(x+ sr̂0). (2.29)

Note that the argument of θl is shifted here because the line segment over which the
average is taken starts from x, rather than being centred at x. The Fourier transform
of the kernel is obtained by directly calculating the Fourier transform of A, which
gives

∼Gl
(k, r̂0)= eik·r̂0l − 1

ik · r̂0l
. (2.30)

When |kl| � 1, the expansion of ∼Gl
(k, r̂0) gives ∼γ = −(i/2)k · r̂0l and thus γ̂ =

(1/2)lr̂0 · ∇ and γ̂ ′ = 0. The moving line segment average has the same problems
of physical applicability as the moving box average for MFE.

2.4.4. Fixed grid averages
We may also average fields inside a set of fixed boxes, i.e. fixed-grid average. For

this case, the mean of A(x) is given by

A(x)=
Nbox∑
i=1

θl(x− xi)Am.b.(xi), (2.31)

where {xi}, i = 1, 2, . . . , Nbox is the set of points of a grid with side length l and
the subscript m.b. denotes that Am.b. is a moving box average. Note that since in each
grid cell A(x) is a constant, A = A, this fixed-grid average results in a mean field
valued discretely in space. To recover a mean field which is smooth in space, one
may apply a second average using a proper (e.g. Gaussian) kernel. Nevertheless, the
averaged field still misses those modes which are resonant to the side length of the
grid, and thus again is physically problematic for observational applications of MFE.

2.4.5. Planar average
The planar average is widely used in simulations (e.g. Brandenburg 2009; Hubbard

& Brandenburg 2011; Bhat, Ebrahimi & Blackman 2016). It is manifestly anisotropic
since it integrates out, say, x and y but leaves the full z dependence. We write

A(z)= 1
L2

∫
dx dy A(x), (2.32)
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10 H. Zhou, E. G. Blackman and L. Chamandy

if L is the side length of the simulation box. The full Reynolds rules, especially
the interchangeability of differential and average operations, are respected if boundary
conditions are periodic. That is

∂xA(x)= 1
L2

∫
dx dy∂xA(x)= 1

L2

∫
dy A(x)|x=L

x=0 = 0= ∂xA(x). (2.33)

The planar average, although fine for simulation boxes, does not remove large k modes
in the z direction from the mean and so does not fully filter small scale fields from
large scale fields for a real system.

2.4.6. Time average
The time average separates fields into mean and fluctuation components according

to their characteristic time variation scales. Mathematically, there is little difference
between time average and a one dimensional spatial average if we consider
fields to evolve on a four-dimensional space–time manifold, A = A(t, x). The
mean quantities are defined via the convolution between the actual fields and a
one-dimensional kernel in time, A(t) = Gl(t) ∗ A(t). For example, a Gaussian kernel
is Gt0(t) = e−t2/2t20/

√
2πt2

0 where t0 is the time scale of average (for applications of
space-time filtering, see Dakhoul & Bedford 1986a,b). Optimally practical use such
as the minimal-τ approximation closure (Blackman & Field 2002) still requires a
wide spatial scale separation to ensure that temporally averaged quantities decouple
from fluctuating ones.

2.5. On averages in simulations versus observations
Planar or box averages used in simulations yield reliable results if compared to a
theory based on corresponding averages, and interpreted appropriately. However, it
is a different question as to how well lessons learned from box averages apply to
observations, for which a differently defined mean is more appropriate.

3. MFE dynamo equations with correction terms
In this section we re-derive mean field dynamo equations using the kernel formalism

of local averaging introduced in § 2, keeping track of correction terms that result from
(i) the non-vanishing means of fluctuations and (ii) the non-equality of double and
single averages. With a finite scale separation, these correction terms can be expressed
in terms of mean fields and their spatial derivatives. Here we keep only the lowest
order correction terms, but higher-order terms can be derived by the same method.

3.1. Derivation
We average the MHD magnetic induction equation and use (2.21), which yields

∂tB=∇×U×B+ νm∇2B=∇× [(1+O(γ̂ 2))U×B− γ̂ ′(U,B)+E] + νm∇2B, (3.1)

where νm is the magnetic diffusivity assumed to be a constant, and E = u× b is the
turbulent EMF. The relative magnitude of the correction terms to the standard terms
that we arrive at in this section are unchanged if U is included.

To express E in terms of large scale quantities we adopt the minimal-τ approach
(MTA Blackman & Field 2002). In deriving E , terms involving U come proportional
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to scalar or pseudoscalar cross-correlations between functions of u and b (e.g.
Yoshizawa & Yokoi 1993; Blackman 2000) and for present purposes we ignore
these, i.e. we ignore terms linear in U or u ('γ̂U= 0) in the evolution equations for
u and b (but not in that for B). The incompressible momentum equation for velocity
fluctuations then reads

∂tul = P̂ml [Bn∂nbm + bn∂nBm + bn∂nbm − bn∂nbm

− un∂num + un∂num + γ̂ ′(Bn, ∂nBm)] +ν∇2ul, (3.2)

where P̂ml = δml − ∂m∂l∇−2 is the projection operator used to eliminate the sum of
thermal and magnetic pressures, and ν is the viscosity. The units are such that the
mass density ρf = 1 and the magnetic permeability µ= 1. The induction equation for
b is

∂tb=∇× (u×B+ u× b− u× b)+ νm∇2b. (3.3)

Using (2.12), and carrying through the algebra keeping only first-order terms in γ̂ or
γ̂ ′, we have

{u× ∂tb}i = εijk [(1− γ̂ )(uj∂nuk Bn)− (1− γ̂ )(ujun ∂nBk)

+Bnγ̂ uj∂nuk − ∂nBkγ̂ ujun + ujbn∂nuk − ujun∂nbk] +νmεijkuj∂nnbk, (3.4)

and

{∂tu× b}i = εijkbkP̂lj(Bn∂nbl + bn∂nBl)+ εijkbkP̂lj(bn∂nbl − un∂nul)

+ εijk[(1− γ̂ )(bkCj)+Cjγ̂ bk] + εijkbkP̂ljγ̂ ′(Bn, ∂nBl)+ νεijkbk∂nnuj, (3.5)

where Cj = P̂lj(un∂nul − bn∂nbl). Assuming all small scale quantities are isotropic and
homogeneous below scale l but could vary on large scales (∼lL), the two previous
equations become

u× ∂tb = (1− γ̂ )(− 1
3 u · ∇× u B+ 1

3 u2∇×B
)+ νmu×∇2b+ TM

− γ̂ ( 1
3 u · ∇× u

)
B+ γ̂ ( 1

3 u2
)
∇×B, (3.6)

where TM = u×∇× (u× b− u× b), and

∂tu× b= (1− γ̂ ) ( 1
3 b · ∇× b B

)+ γ̂ ( 1
3 b · ∇× b

)
B+ ν∇2u× b+ TU, (3.7)

where TU
i = εijkbkP̂lj(bn∂nbl − un∂nul). The derivation of the first and second terms in

(3.7) is given in appendix B. Also note that the small scale part in the γ̂ ′(Bn, ∂nBl)

term will have its maximum wavenumber at ∼2kL. Therefore if the scale separation
is large enough such that 2kL� ks, the γ̂ ′(Bn, ∂nBl) term can be roughly treated as a
large scale quantity in (3.5).

Adding (3.6) and (3.7) gives

∂tE = (1− γ̂ )(α̃B− β̃∇×B)+ (γ̂ α̃)B− (γ̂ β̃)∇×B
+ νmu×∇2b+ ν∇2u× b+ TM + TU, (3.8)
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12 H. Zhou, E. G. Blackman and L. Chamandy

where α̃ = (b · ∇× b − u · ∇× u)/3 and β̃ = u2/3. In the spirit of the MTA, the
sum of the triple correlation terms in (3.8) is equated to a damping term −E/τ . For
|τ∂tE| � |E|, equation (3.8) then gives

E = (1− γ̂ )(αB− β∇×B)+ (γ̂ α)B− (γ̂ β)∇×B (3.9)

in the ideal MHD limit ν, νm → 0, where α = τ α̃ and β = τ β̃ are the helical and
diffusion dynamo coefficients and τ is the damping time for the EMF when mean
fields are removed. Empirically, this is approximately equal to the turnover time at the
turbulent driving scales in forced isotropic simulations (Brandenburg & Subramanian
2005b). We also define αk =−τu · ∇× u/3 and αm = τb · ∇× b/3 being the kinetic
and magnetic contributions to the α-effect, respectively.

When there is large scale separation γ̂ , γ̂ ′→ 0, equations (3.1) and (3.9) reduce
exactly to the standard dynamo equations derived with ensemble average. This
important feature indicates that different kinds of suitable averaging – like local
Gaussian average or ensemble average – converge to the same set of equations when
scale separation is large.

The turbulent EMF now has routes of expansion: (i) higher gradients of B; (ii) γ̂
due to the violation of Reynolds rules. Expanding to every higher-order results in
(using order-of-magnitude estimates) an extra factor of ls/lL for the former, and (l/lL)

c

for the later. Interestingly, both of these two ratios are related to the scale separation,
and the question of which dominates higher-order terms in E varies for different
models. In this work we assume the γ̂ corrections dominate.

3.2. Comparison to previous work on non-local EMF kernels
We see from (3.9) that the violation of the Reynolds rules from mesoscale fluctuations
is a direct source of contributions to the EMF from terms with higher than linear order
in derivatives of B. In Fourier space these terms imply that ∼E i

(k)= ∼K ij
(k)∼Bj

(k) where

∼K ij
could contain terms of order higher than linear in k, in contrast to the conventional

mean field dynamo theory where ∼K ij
= αδij − iεimjβkm.

Consequently, in configuration space we have E(x)=K ∗B, and the turbulent EMF
depends on B through its weighted average in the vicinity of x, i.e. non-locally. More
generally, if we have used a time average in (3.9), K could also be time dependent,
and correspondingly E becomes non-local in both space and time.

The EMF kernel K that we derive includes terms caused by violation of Reynolds
rules, and varies depending on the choice of our (potentially anisotropic) averaging
kernel G. Although previous work has identified the need for an EMF kernel to
capture non-locality (Krause & Rädler 1980; Rädler 2000; Rädler & Rheinhardt 2007;
Brandenburg, Rädler & Schrinner 2008; Hubbard & Brandenburg 2009; Rheinhardt &
Brandenburg 2012), this previous work did not address the contribution to this kernel
from the violation of the Reynolds rules. For example, Rheinhardt & Brandenburg
(2012) used numerical simulations (DNS) to test an ansatz for the EMF kernel in
the case of homogeneous isotropic turbulence with mean fields defined by an average
over the x–y plane. They assessed whether the EMF kernel takes the form

∼K ij
(ω, k)= αδij − iεimjβkm

1− iωτRB + l2
RBk2

(3.10)
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at low wavenumbers, where τRB is approximately equal to the eddy turnover time τ ,
and lRB is a parameter whose value is to be extracted from fits to simulation data.
Their resulting evolution equation for the EMF reads

(1+ τRB∂t − l2
RB∂

2
z )E = αB(p) − β∇×B(p)

, (3.11)

where the superscript ‘(p)’ distinguishes their planar average from our kernel averages.
Rheinhardt & Brandenburg (2012) found that (3.10) was at least consistent with
simulation data up to k/k1 ≈ 3 where k1 is the simulation box wavenumber, for
τRB ∼ τ and lRB ∼ ls, the energy-dominating eddy scale.

To compare (3.11) with our result equation (3.8), we ignore the second to fifth terms
on the right-hand side of the latter (i.e. assuming α and β are constants and taking the
ideal MHD limit), and identify the sixth and seventh terms (triple correlations) with
T̂E where T̂ is an operator. This gives

(−τ T̂ + τ∂t)E = (1− γ̂ )(αB− β∇×B). (3.12)

The identification of the triple correlations with a damping term, T̂ = −1/τ , serves
as the closure in MTA. Comparison to (3.11) shows that the left sides of the two
equations can be made to mutually correspond if we replace the triple correlations by
the sum of a damping term and a diffusion term, that is T̂E =−E/τ +ηt.c.∇2E , where
ηt.c. = l2

RB/τ is a diffusion coefficient determined by statistical properties of turbulent
fields. The spatially non-local term in (3.11), −l2

RB∂
2
z E , can thus be understood as

textured specification of the form of terms for which the crude MTA approximates.
This additional term plays a similar role to that of the standard MTA term, namely
that it depletes the turbulent EMF in the absence of any other mean fields.

We emphasize that the derivation of (3.12) differs from that of (3.11) in that the
correction terms appearing on the right of (3.12) are derived from the averaging
procedure itself, and represent the lowest-order corrections when Reynolds rules are
violated. Higher-order terms can also be derived. The form of γ̂ is determined by the
scale l and the kernel of average. These terms are not included in the semi-empirical
approach of Rheinhardt & Brandenburg (2012) that produced (3.11), because they
vanish identically due to the planar average.

Finally, we note that in deriving (3.12), we averaged the MHD equations using a
kernel that retains a spatial dependence, so that B can depict large scale magnetic
fields and retain large scale gradients in all directions. In contrast, the x–y planar
average used in Rheinhardt & Brandenburg (2012) does not retain large scale field
gradients in x and y directions, which is self-consistent for the simulation boxes but
not sufficiently general for investigating mean fields. In addition planar averages do
not remove large kz modes from B(p)

, and hence (3.11) might not be complete even for
the simulations in the absence of including higher-order terms since the EMF kernel
(3.10) is valid only for small |k|.

4. Precision of mean field theories
The precision error of a mean field theory (MFT) can be classified into two types:

(i) intrinsic error (IE) σ 2
IE from the theory itself and (ii) filtering error (FE) σ 2

FE
associated with comparing the mean field theory values filtered through a measuring
kernel (thus double filtered) with the total field filtered through the measuring kernel.
Both of these depend on the scale of average l. We now derive these in full.
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14 H. Zhou, E. G. Blackman and L. Chamandy

4.1. Intrinsic error from statistical fluctuations in inputs to mean field equations
The dynamo input parameters in the mean field equations (e.g. α and β in (3.9)
along with boundary and initial conditions) are themselves random variables (in an
ensemble) and so is B = B(x; α, β, . . .), because the small scale fields u and b are
statistically fluctuating. The intrinsic error is thus defined as the variation of statistical
fluctuations of B (about its ensemble mean) due to these small scale fluctuations,
which we denote by σ 2

IE:

σ 2
IE,Bi
= 〈(Bi − 〈Bi〉)2〉, for i= 1, 2, 3. (4.1)

With this definition the IE vanishes if the mean field theory is defined using ensemble
average, i.e. σ 2

IE,Bi
= 〈(〈Bi〉 − 〈〈Bi〉〉)2〉 = 0.

The IE can be calculated by propagating the statistical variations of input parameters
to the solutions of mean field equations. We consider the IE of the steady-state
solutions of MFE dynamo equations for a minimalist model where αk and β are the
only input parameters: B = B(x; αk, β). The magnetic α-effect, αm, is dynamical in
our model, and not an input parameter, since it is governed by the transport equation
of the helicity density, equation (6.2).

Let us consider a minimalist model where all turbulent transport coefficients are
statistically homogeneous over the whole space. In one such dynamo model that we
discuss later, turbulent transport coefficients depend on the radial coordinate, but since
its variation scale is greater than l, they remain locally approximately homogeneous.

The deviation of kernel-filtered values from the ensemble averages of turbulent
coefficients contributes to the IE of the mean fields. The resulting average (in the
sense of an ensemble average) imprecision in B can be calculated by propagating the
imprecision to turbulent coefficients. For αk, this is

σ 2
αk
= 〈(αk − 〈αk〉)2〉. (4.2)

Similarly, we have
σ 2
β = 〈(β − 〈β〉)2〉, (4.3)

and
σ 2
αkβ
= 〈(αk − 〈αk〉)(β − 〈β〉)〉. (4.4)

The uncertainty in B derives from the uncertainties from αk and β as follows:

σ 2
IE,Bi
= (∂αk Bi)

2σ 2
αk
+ (∂βBi)

2σ 2
β + 2(∂αk Bi)(∂βBi)σαkβ . (4.5)

To estimate magnitudes of (4.2) to (4.4), we decompose filtered quantities into
(ensemble averaged) means and random parts. Consequently we have

αk,r = αk − 〈αk〉 = τ3 u · ∇× u− 〈u · ∇× u〉, (4.6)

where αk,r is the random part. Combining (4.2) and (4.6) we have

σ 2
αk
= 〈α2

k,r〉. (4.7)

Similarly,
σ 2
β = 〈β2

r 〉, (4.8)
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where
βr = β − 〈β〉 = τ3 u2 − 〈u2〉 (4.9)

is the random part of β.
To estimate the quantities in (4.7) and (4.8), we consider the system of study to be

divided into cells of typical length ls and crudely assume that in each cell, u is nearly
uniform with components drawn from independent Gaussian distributions,

f (ui)= 1√
2πu0

e−u2
i /2u2

0, i= 1, 2, 3. (4.10)

Then for each cell,

〈ui〉 = 0, 〈u2
i 〉 = u2

0, 〈u4
i 〉 = 3u4

0, (4.11a−c)

and

〈u2〉 =
3∑

i=1

〈u2
i 〉 = 3u2

0, 〈u4〉 =
〈(

3∑
i=1

u2
i

)2〉
= 15u4

0 =
5
3
〈u2〉2, (4.12a,b)

so that
σ 2

u2 = 〈u4〉 − 〈u2〉2 = 2
3 〈u2〉2, (4.13)

which links fluctuations to mean quantities.
The filtering (·) in (4.7) and (4.8) can be roughly seen as the algebraic average of

the quantity (·) of N = (2l/ls)
3 cells, with the factor of two accounting for the fact

that the variation scale of u2 will be ls/2 if that of u is ls. The central limit theorem
(CLT) then yields

σ 2
αk
' 〈α

2
k,r〉
N
= σ

2
αk,r

N
, σ 2

β '
〈β2

r 〉
N
= σ

2
βr

N
, (4.14a,b)

where σ 2
αk,r

and σ 2
βr

are the variances of the random parts in each cell.
Since both αk and β are quadratic in u, equations (4.13) and (4.14) then yield

σ 2
αk
' 2α2

k/3
(2l/ls)3

, σ 2
β '

2β2/3
(2l/ls)3

. (4.15a,b)

It then follows from (4.5) that

σ 2
IE,Bi
' 1

12(l/ls)3
[(∂αk Bi)

2α2
k + (∂βBi)

2β2] + 2(∂αk Bi)(∂βBi)σαkβ . (4.16)

Note that σ 2
IE,Bi

depends on spatial coordinates x, just as B does. In galaxies, a typical
value of the variation scale of turbulent fields satisfies ls . 0.1 kpc. Hence (l/ls)

3 & 8
for l= 0.2 kpc and &64 for l= 0.4 kpc.

From the CLT, this IE decreases with increasing l because the average variations
from turbulence are inversely proportional to the number of eddy cells in the region
being averaged, (l/ls)

3, provided that ls is rather insensitive to the choice of l.
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4.2. Filtering error from mismatch between measurement and theoretical kernels
Measuring physical quantities always results in measuring mean quantities to a certain
extent. Detectors have limited sensitivity so measurements represent a convolution
between true physical quantities and an instrument kernel. Furthermore, the physical
quantity being measured typically involves a superposition of microphysical contribu-
tions and an average over many local macroscopic contributions. In particular, the
predicted values of observed FR and synchrotron polarization are limited in precision
when these predictions are made using MFE.

For a given physical quantity of a real system QA (e.g. the actual magnetic field of
a galaxy) we define the measured value as (QA)M, where the subscript M indicates
that quantity subjected to a measuring kernel that the instrument uses to project
out the actual measured value. Complementarily, we write QA to indicate the value
of QA subjected to a theoretically chosen mean field theory filter. We will assume
these two filters commute, i.e. (QA)M = (QA)M. We use Q to indicate a theoretically
predicted value of QA. Like QA we can subject Q mathematically to a theoretical
mean field filtering and obtain Q or to measurement filtering to obtain (Q)M, or
both (Q)M (=(Q)M by assumption). For the common practice in which observations
are not subjected to the theoretical mean filtering but the theory is subjected to the
instrument filtering, the difference the measured value and the theoretically predicted
mean can be written

(QA)M − (Q)M = [(QA)M − (Q)M + (qA)M − (q)M] + (q)M
= [(QA −Q)M + (qA − q)M] + (q)M, (4.17)

where (qA)M = (QA)M − (QA)M is the difference between the actual quantity and its
value using the theoretical mean filter, then both filtered through the measuring kernel.
Analogously, (q)M = (Q)M − (Q)M is the difference between the theoretical quantity
and its theoretical mean filter then both filtered through the measuring kernel. The
terms in the square brackets on the right of (4.17), measure accuracy of the theoretical
model and these terms will be small if the theory provides a good match to the real
system. We focus on (q)M, the last term in (4.17), which is a precision error of the
theory and the FE that we will quantify. The smaller its magnitude, the more precise
the theory.

In principle, one would like to subject (QA)M to the same filtering which
corresponds to that of the mean field model, that is, compute (QA)M, and compare
it to (Q)M. This would obviate computation of the FE. For simulations this may
be possible, but for observations one cannot always compute (QA)M, due to limited
resolution. Moreover, it is typically not done in practice, and cannot be done if (·)
represents the ensemble average and the system has finite scale separation. If both
(·) and (·)M averages were equivalent to ensemble averages due to infinite scale
separation, then (q)M = 〈Q− 〈Q〉〉 → 0; but this is not the case with finite scale
separation and local spatial averages.

Unlike the IE of the previous subsection, the FE increases with increasing l, since
smaller l means including a greater fraction of modes into what comprises the mean
field, and so the theoretical predictions from mean field theory would be less coarse
grained and thus more capable of characterizing the actual field. If the presumption
is made that IE and FE are statistically independent and uncorrelated for a given l,
then the total uncertainty of the mean field theory is given by σ 2= σ 2

IE+ σ 2
FE. Due to

their competitive behaviours when changing l, an optimal scale of average lopt which
minimizes either σ 2 or the relative uncertainty σ 2/B2 can arise, satisfying ls< lopt< lL.
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In the next section we combine all of the formalism of this section into a specific
example. We discuss implications of a finite precision when comparing observations
and MFE theory for measuring galactic fields by FR from extragalactic sources.
Our formalism is not restricted to that particular example and the precision of
theoretical predictions for other kinds of observations, such as pulsar FRs, or polarized
synchrotron emission, can also similarly be worked out.

5. MFE precision error in the context of FR
FR is commonly used to measure strengths and directions of magnetic fields in

galaxies. The rotation measure (RM), i.e. the rotation of the polarization plane of light
from a distant pulsar or extragalactic radio source is given by Ruzmaikin et al. (1988)
to be

RM= 0.81
∫

ds ·Bne (rad m−2)∝
∫

ds ·B, (5.1)

where the integrals are along the line of sight, and the proportionality is valid when
the thermal electron density ne varies on scales larger than those of B.

Here we focus on the RMs through a galaxy other than the Milky Way from
extragalactic sources, and leave the discussion of pulsar RMs in the Milky way
for § 6.5. We also omit any influence of weak intergalactic magnetic fields. The
relevant segment of integration is then the segment of each line of sight L(R, r, h)
inside the galaxy (see figure 1 with an (a) edge-on view, (b) face-on view, and
(c) inclined view), where L is a function of the galactic radius R, the distance r from
the line of sight to the galactic centre, and the semi-thickness of the galactic disk h.

In what follows, we use the subscript L3 for a constant thermal electron density
FR-like average along path L. For a given vector field Q and scalar field f this line
of sight average gives

(Q)L = 1
L

∫
ds ·Q and ( f )L = 1

L

∫
ds f . (5.2a,b)

For FR measurements the line-of-sight average (·)L will thus correspond to (·)M
mentioned above. We denote the theoretical prediction of the line-of-sight mean field
from MFE as (B)L. While σ 2

IE of (B)L can be computed by propagating the IE of B,
the FE σ 2

FE arises from calculating the difference (b)L, between (B)L and (B)L, the
latter determined by how the RMs are measured. We have

(b)L ≡ (B)L − (B)L = 1
L

∫
ds ·B− 1

L

∫
ds ·B= 1

L

∫
ds · b. (5.3)

This represents the line-of-sight mean of a fluctuation and is the deviation that results
from comparing single average to a mixed double average (q)M, discussed in § 4.
Here (Q)M = (B)L = (1/L)

∫
ds ·B.

Our mission is to express σ 2
IE and σ 2

FE = 〈(b)2L〉 in terms of known or derivable
quantities for a MFT. Equation (4.16) gives the general form of σ 2

IE for B. If
fluctuations in different directions are uncorrelated, the intrinsic error of (B)L can be
approximated by

σ 2
IE '

1
L

∫
ds[(σBx

x̂ · ŝ)2 + (σBy
ŷ · ŝ)2 + (σBz

ẑ · ŝ)2], (5.4)

where fluctuation scales are less than L, which is true away from the galactic edge.
3This shall not be confused with, say, the characteristic length of large scale quantities lL, whose subscript

is in roman type.
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(a) (b)

(c) (d )

FIGURE 1. Schematic diagrams of line-of-sight averages for calculating the precision of
RM in an (a) edge-on view, (b) face-on view, (c) inclined view and (d) inside the galaxy
with R being the galactic radius, L the chord length along the line of sight and h the
semi-thickness of the galactic disk. ρ̂ is the radial direction of the disk.

To compute 〈(b)2L〉 we assume a statistically isotropic turbulent field b(x), and
therefore the integrand on the right-hand side in (5.3) is insensitive to the direction
of the line of sight. We use a scalar bs(x) to represent the component of b(x) along
the line of sight. Next, we assume bs(x) can be decomposed into different modes
with specific wavelengths indicated by a superscript (m), namely

bs(x)=
∑

m

b(m)(x), (5.5)

with km being the characteristic wavenumber of each mode and satisfying

2π

km
6 l, (5.6)
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since the turbulent scale is smaller than the averaging scale. Correspondingly, for each
mode b(m), we divide L evenly into nm = kmL/π cells. For most lines of sight, nm is
greater than L/l since roughly the largest mode has a wavelength no larger than l.
The length of the line of sight inside the galaxy will typically be of order lL, the
characteristic scale of a large scale magnetic field, except when observations are made
edge-on and close to the galactic outer edge. Therefore, if we assume that L/l> 1, we
have nm > 1. Large nm will allow more accurate application of the CLT.

In each separate cell of scale π/km, b(m) is nearly coherent in space with the same
sign, parallel or anti-parallel to ds. We can then replace b(m) by its root-mean-square
value bm defined by a MFE-appropriate average (§ 2.4), supplemented by a ‘+’ sign
if parallel to dr, and a ‘−’ sign if anti-parallel. Then (5.3) becomes the sum of m
averages, each being the mean of nm random variables b(m)i , taking a value bm or −bm:

bL = 1
L

∫
ds · b= 1

L

∑
m

∫
ds b(m) =

∑
m

1
nm

nm∑
i=1

b(m)i . (5.7)

Although b(m)i is likely to be correlated with both its spectral neighbour b(m+1)
i and

spatial neighbour b(m)i+1 because the turbulent fields are entangled locally in both
configuration and Fourier space, we assume that every b(m)i varies independently and
leave generalizations for future work.

For nm � 1 the scale separation is large and
∑

i b(m)i /nm is close to a normally
distributed random variable with zero mean and variance b2

m/nm. Then bL is the sum
of m independent normally distributed random variables and thus a random variable
itself, with variance (Ruzmaikin et al. 1988, p. 256)

σ 2
FE =

∑
m

b2
m

nm
= 1

L

∑
m

πb2
m

km
. (5.8)

The summation on the right-hand side in (5.8) is the energy density-weighted average
wavelength up to a constant. The relation to energy density is somewhat of a
coincidence arising because both energy and variance are related to 〈b(m)2〉.

The variance is more useful in its integral form. Let ∼M(k) be the energy
spectrum of the total magnetic field. In general, ∼M(k) could vary in space, but
for line-of-sight measurements, the energy spectrum averaged over the line of sight
is a reasonable approximation. The energy spectra of large and small scale fields
are then |∼Gl

(k)|2 ∼M(k) and |1 − ∼Gl
(k)|2 ∼M(k), respectively. Hence b2

m is related to the
energy spectrum through

b2
m

8π
= |1− ∼Gl

(km)|2 ∼M(km) dkm, (5.9)

given that ∼Gl
is isotropic. Using this and the integral version of (5.8), we obtain

σ 2
FE =

8π2

L

∫ kν

0
dk
|1− ∼Gl

(k)|2 ∼M(k)
k

= 8π2

kintL

∫ kν

0
dk|1− ∼Gl

(k)|2 ∼M(k), (5.10)

where kν = 2π/lν is the wavenumber of the dissipation scale, and we have defined

kint ≡

∫ kν

0
dk|1− ∼Gl

(k)|2 ∼M(k)∫ kν

0
dk|1− ∼Gl

(k)|2 ∼M(k)/k
(5.11)
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to be the integral scale of fluctuations which depends weakly on l but roughly equals
π/ls, since ls is the coherent scale and the wavelength corresponding to it will be 2ls.

Equation (5.10) reveals that σ 2
FE is proportional to the total magnetic energy in

fluctuations, and the ratio between π/kint ' ls and the segment length L through the
source. Equation (5.10) is testable with simulations. The ensemble associated with
the standard deviation on its left-hand side could be realized by taking snapshots of
the system at different times (which would equate the time average to an ensemble
average), whereas the integral on the right-hand side is measurable in Fourier space.

To illustrate the use of (5.10), we assume π/kint = ls and define

ql =

∫ kν

0
dk|1− ∼Gl

|2 ∼M∫ kν

0
dk∼G

2
l ∼M

(5.12)

as the proportionality between small and large scale magnetic energies. The ql is
independent of location along each line of sight but depends upon how we define
large and small scale fields, through l and Gl. Hence (5.10) yields

σ 2
FE =

ls

L


∫

dk|1− ∼Gl
|2 ∼M∫

dk∼G
2
l ∼M

(8π

∫
dk∼G

2
l ∼M
)
= ls

L
ql(B

2
)L, (5.13)

where in the last equality, (B2
)L/8π= ∫ dk∼G

2
l ∼M, the line-of-sight average of the large

scale field energy. Note that (B2
)L is distinct from (BL)

2 as the latter is the square of
the line-of-sight average (see (5.2a,b) of the theoretically predicted mean field B).

To express ql in terms of l, we assume that ls and lL are insensitive to l. We have
checked that this is justified if, regardless of shape, ∼M(k) has two peaks, one near
k= kL=2π/lL and one near k= ks=2π/ls, and is small near k= kl. We also define q≡
〈b2〉/〈B〉2 as the proportionality between the unfiltered small- and large scale magnetic
fields (= ratio of areas under the two peaks of ∼M(k)). Observations indicate that q is
on average somewhere between 3 and 4 (Fletcher 2010; Van Eck et al. 2015; Beck
2016); we adopt a fiducial value q= 4. Consequently, we have

ql =

∫
dk|1− ∼Gl

|2 ∼M∫
dk|∼Gl
|2 ∼M

' |1− ∼Gl
(kL)|2〈B〉2 + |1− ∼Gl

(ks)|2〈b2〉
|∼Gl
(kL)|2〈B〉2 + |∼Gl

(ks)|2〈b2〉

= |1− ∼Gl
(kL)|2 + |1− ∼Gl

(ks)|2q

|∼Gl
(kL)|2 + |∼Gl

(ks)|2q
. (5.14)

Combining (5.13) and (5.14) we have

σ 2
FE =

ls

L
ql(B

2
)L = ls

L

|1− ∼Gl
(kL)|2 + |1− ∼Gl

(ks)|2q

|∼Gl
(kL)|2 + |∼Gl

(ks)|2q
(B2
)L. (5.15)
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Equation (5.15) highlights that the variance in predicted RM is the product of three
factors. First, the inverse of the number of eddy cells along the line of sight, ls/L.
Being linear in the length ratio, this can be significant even when the correction terms
to the modified MFE equations are small. The MFE corrections are of order (l/lL)

c

(see (2.8)), so for small l/lL ratio or large c, the corrections could be small even if
σ 2

FE is significant. Second, σ 2
FE depends on how energy is distributed between large

and small scale fields through ql. Since a larger l implies more modes are counted as
small scale fields (k . 2π/l), ql is a monotonic function of l. Finally, equation (5.15)
shows that σ 2

FE is also proportional to the average magnetic energy density along the
line of sight.

Some complexities of the true error are not considered in (5.15). First, due to local
inhomogeneities (spiral arms for example), cells for each mode along a single line of
sight may not be statistically identical nor have the same total amplitude of fluctuating
magnetic energy as we have assumed. In (5.9) we have used the line-of-sight-averaged
energy spectrum ∼M(k) as an approximation and ignored spatial variation of 〈b2〉.
Second, differential rotation makes turbulent magnetic fields anisotropic in an eddy
turnover time τ in the galactic mid-plane. The azimuthal fluctuation is amplified
beyond the radial field such that bφ ' br(1+ qrΩτ)' 2br with the qr ' 1 for a flat
rotation curve, and Rossby number Ro = 1/(Ωτ) ≈ 1 in spiral galaxies. Therefore,
the two components br, bφ contribute unequally along different lines of sight, making
FR measurements depend not only on L, but also on direction.

6. Galactic dynamo and precision for different FR viewing angles
In this section we consider specific cases to elucidate the application of the

calculations of precision of mean field theories given by (5.4) and (5.15) in the
context of FR measurements. We calculate σ 2 = σ 2

IE + σ 2
FE in terms of mean fields

when the measured galaxy is edge-on, face-on and inclined. We also consider the
special case of measuring FR from within our own Galaxy. We use a cylindrical
coordinate system centred at the galactic centre with coordinates (r, φ, z) and the z
axis coinciding with the galactic rotation axis.

6.1. Galactic dynamo model
We augment the simplified galactic dynamo model from § 4.5 of Zhou & Blackman
(2017),4 where the ‘no-z’ approximation (Subramanian & Mestel 1993; Moss 1995;
Phillips 2001; Sur, Shukurov & Subramanian 2007; Chamandy et al. 2014) is used.
The resulting B is r-dependent and cylindrically symmetric (i.e. azimuthally averaged).
We include the correction terms of § 3 employing a Gaussian kernel (and thus γ̂ =
−l2∇2/8π2), which gives

γ̂ =−1
2

l2

4π2
∂2

z →
l2

32h2
, (6.1)

where derivatives in the radial direction are dropped assuming the disk is thin,
h/R � 1. The last relation in (6.1) follows from the ‘no-z’ approximation, ∂2

z →
−(kh/4)2 where kh = 2π/h (Phillips 2001; Sur et al. 2007). To the helicity density
evolution equation with flux terms (Brandenburg & Subramanian 2005a; Subramanian

4Use of this model is intended to exemplify the method. Other models (e.g. Chamandy 2016) can also be
used.
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& Brandenburg 2006; Sur et al. 2007) we also add the correction terms resulting
from violation of the Reynolds rules and obtain

∂tαm =−2β
l2
s

[
(1− γ̂ )(E ·B)+Bγ̂E

B2
eq

+ αm

Rm

]
−∇ · (αmU)− βd∇2αm. (6.2)

The last term of (6.2) governs the diffusive flux and we adopt βd = β.
With the requirement that l< h, we find that the γ̂ correction terms produce only

small changes in the dynamo model solutions and we can omit them in the later
discussion of the precision error. However, the smallness of the effect on the solutions
is a feature of our particular dynamo model that is exacerbated by the aforementioned
‘no-z’ approximation. To see this note that for our choice of l, ∼γ (kh) < 1 and the

magnitude of γ̂ is always less than 1/16. The maximum value of (B)L(r) when l
is increased from 0.1h to 0.9h from the solutions changes by just ∼1 %. If instead
we had used the approximation that ∂2

z ∼ −k2
h, there would be a ∼40 % decrease

in the maximum value of (B)L(r) when l is increased from 0.1h to 0.9h from the
solutions with the correction terms. This highlights that the correction terms are not
necessarily small for every model. Moreover, in the absence of any significant scale
separation between large and small scale parts of the magnetic energy spectrum, the
expansion of ∼Gl

(k) in (2.6) would itself be invalid, and corrections to the MFE would
be non-perturbative.

Numerically, Shapovalov & Vishniac (2011) found, from the (uncorrected) evolution
equation of small scale helicity, that the resultant spectra of large scale quantities
are insensitive to different filtering methods, for reasonable spectra of relevant total
quantities.

The steady state,5 non-dimensionalized dynamo equations read

0= ∂tBr =− 2
π

Rα(1+ αm)Bφ −
(

RU + π2

4

)
Br (6.3)

0= ∂tBφ = RωBr −
(

RU + π2

4

)
Bφ (6.4)

0 = ∂tαm =−RUαm − βd

β

π

2
αm

−C

[
(1+ αm)(B2

r + B2
φ)+

3
8

√
−π(1+ αm)Rω

Rα
BrBφ + αm

Rm

]
, (6.5)

where

Rα = αkh
β
, RU = |U|h

β
, Rω =−h2Ω

β
, C= 2

(
h
ls

)2

(6.6a−d)

are dimensionless parameters with a flat rotation curve Ω ∝1/r adopted, and magnetic
fields are normalized by the equipartition field strength Beq=

√
4πρf u2 with ρf being

the fluid density. The α-coefficients are normalized by αk. The r-dependence of

5Here we focus on a time-independent field (as a valid and simple solution to the dynamo model) to
illustrate the idea of quantifying precisions of a mean field theory. In principle, similar calculations can be
done at each instant time for a non-steady state (e.g. oscillatory) solution.
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(6.6) is described in detail in § 2.4 and (41) in Zhou & Blackman (2017). The
approximation for the E · B term can be found in the appendix of Sur et al. (2007)
or that of Chamandy, Subramanian & Shukurov (2013).

Analytical expressions of Bφ and Br are obtainable from (6.3) to (6.5). The intrinsic
error of B(x) is then given by (4.16) in terms of σ 2

αk
, σ 2

β and σαkβ . The first two
are given in (4.15), whereas for σαkβ we assume that fluctuations of αk and β are
uncorrelated, and

σαkβ ' (σ 2
αk
σ 2
β )

1/2 = σ 2
βRα/h. (6.7)

(For galaxies, Rα'1.) At a fixed location, B is a function of Rα, RU and Rω. Therefore
the partial derivatives with respect to αk and β can be evaluated using the chain rule,

∂αk =
h
β
∂Rα , ∂β =− 1

β
(Rα∂Rα + RU∂RU + Rω∂Rω). (6.8a,b)

Combining (4.16), (6.7) and (6.8), we have for the intrinsic error of Bi,

σ 2
IE,Bi
= 1

12(l/ls)3
{(∂RαBi)

2R2
α + [(Rα∂Rα + RU∂RU + Rω∂Rω)Bi]2

− 2(Rα∂RαBi)[(Rα∂Rα + RU∂RU + Rω∂Rω)Bi]}, (6.9)

and that of (B)L is given by substituting (6.9) into (5.4), given the solutions of (6.3)
to (6.5).

6.2. Edge-on view
We first consider a special case representing the measurement of FR of a perfectly
edge-on disc galaxy with radius R= 12 kpc (see the schematic diagrams of figure 1).
Note that the integration path segments along the line of sight within the galaxy form
chords with lengths L($) = 2

√
R2 −$ 2, where $ is the distance from the galactic

centre to the closest point on the chord. From the geometry of the configuration, the
line of sight average is

BL($)= 2$
L($)

∫ L/2

0
dy

Bφ(r)
r

, (6.10)

and

(B2
)L($)= 2

L($)

∫ L/2

0
dyB2

(r), (6.11)

where r = √$ 2 + y2 is the radial coordinate from the galactic centre. Only Bφ
contributes to (B)L for the edge-on view because Br is mirror symmetric about the
x-axis and its contributions from the y> 0 and y< 0 regions cancel each other. The
intrinsic error is given by

σ 2
IE =

2$ 2

L($)

∫ L/2

0
dy
σ 2

int,Bφ

r2
. (6.12)

The imprecision associated with the observation is given by (5.15) and is

σ 2
FE =

2ls

L2

(1− e−l2/2l2L)2 + (1− e−l2/2l2s )2q

e−l2/l2L + e−l2/l2s q

∫ L/2

0
dyB2

(r), (6.13)
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(a) (b)

FIGURE 2. (a) Theoretical predictions of the line-of-sight-averaged magnetic field BL with
the filtering error σdf shown as error bars in an edge-on view of a disc galaxy, assuming
that the mean field has the form B = B0φ̂ with B0 = 1. Lengths are normalized by the
galactic radius R = 12 kpc. Two sets of error bars are shown for different choices of l.
(b) Fractional error bar values at different radii as a function of the averaging scale l.

(a) (b)

FIGURE 3. Similar to figure 2(a) but using analytic dynamo solutions for B from § 4.5
of Zhou & Blackman (2017) by solving equations (6.3) to (6.5). (a) Intrinsic error and
(b) filtering error.

where we take lL ' h= 0.5 kpc, for galactic disk semi-thickness h, and the variation
scale of turbulent fields ls ' 0.1 kpc is assumed to be the same for velocity and
magnetic fields. Here lL ' h because ∂r � ∂z in a thin disk and h is the smallest
natural scale of variation for the mean field. Correspondingly we take an averaging
scale 0.12 6 l 6 0.48 kpc.

The predicted line-of-sight average of the magnetic field, together with the error
bars are shown in figures 2 and 3, where two different profiles of B are separately
considered: (i) in figure 2(a) B(x) = B0φ̂ where B0 = 1 is a constant, and (ii) in
figure 3 the analytic solution of the mean field dynamo model from § 6.1, normalized
by the equipartition field strength Beq =

√
4πρf u2. The dimensionless parameters we

have used for the analytic solution are the same as those in Zhou & Blackman (2017):

Rα = Rα0/2, RU = 2RU0/(r/r�)2F5/2, Rω = 2Rω0/(r/r�)2F3, C= 4C0/(r/r�)2F3,
(6.14a−d)

where quantities with subscripts 0 are computed using

τed = 1015 s, u= 10 km s−1, rΩ = 200 km s−1,

ls = 0.1 kpc, h= 0.5 kpc, U0 = 1 km s−1,

}
(6.15)
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FIGURE 4. The total relative error using the analytic dynamo solutions at different radii as
a function of averaging scale l. An optimal scale arises at 0.15–0.20 kpc which minimizes
the relative error, and therefore provides the best precision of theoretical predictions.

which yields
Rα0 = 1, RU0 = 0.3, Rω0 =−15, (6.16a−c)

and we use Rm = 105. Above r� ≡ 8 kpc is the location of the Sun, and the function
F determines the r-dependence of the dimensionless parameters and is described in
detail in the appendix in Zhou & Blackman (2017).

The line-of-sight averages of the mean magnetic fields are shown as black solid
curves, along with different types of error bars =± σ about the mean computed from
(5.4) and (6.13) for the cases associated with two different choices of the scale of
average, l. The blue dashed lines with circular markers give error bars with l=0.2 kpc,
and the yellow solid lines with triangular markers give those with l = 0.4 kpc. In
the constant magnetic field case, the intrinsic error does not exist because here B is
presumed, rather than derived from MFE equations.

Different choices of l conspicuously show different levels of precision in the
predictions for measurements, as evidenced by a comparison of the blue versus yellow
IE bars in the r-dependent model (figure 3a). Variations in a data curve beneath the
level of the error bars cannot be deemed a disagreement with the MFE theory. That is,
whether uncorrelated or weakly correlated deviations with amplitudes below the error
bars are systematic (Chamandy, Shukurov & Taylor 2016) or stochastic is beyond the
resolution of the theory.

Comparing figure 3(a,b) highlights competing dependences of σ 2
IE and σ 2

FE on l,
as discussed in § 4: σ 2

IE grows with l but σ 2
FE decreases with l. Assuming σ 2

IE and
σ 2

FE are independent and uncorrelated, adding them in quadrature gives the total
uncertainty σ 2.

In figure 2(b) and in figure 4, we show the relative total errors, σ 2/(B)2L, as a
function of 0.12 kpc6 l60.48 kpc at different galactic radii. For figure 2 there is only
one uncertainty, namely σ 2

FE which is a monotonic function of l for all radii shown.
More interesting case is figure 4 where both σ 2

FE and σ 2
IE are competitive. There is an

optimal scale of average, located at 0.15 6 r/R 6 0.20 for all four chosen radii, that
minimizes the total error, and thus maximizes the precision of comparing theory and
observation. In general. the existence and location of such a ‘sweet spot’ depends on
the solution to a given dynamo model, and the observational method used.

6.3. Face-on view
A complementary extreme to the edge-on case is a face-on view. Here every line
of sight is perpendicular to the galactic disk, taken along the z direction. In this

https://doi.org/10.1017/S0022377818000375 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000375


26 H. Zhou, E. G. Blackman and L. Chamandy

FIGURE 5. Similar to figure 3 but for a face-on view of a disc galaxy, using the analytic
dynamo solution.

orientation, Bφ and Br do not contribute to (B)L, and for a weak Bz, the dominant
non-vanishing RM would come from small scale fluctuations. If we assume quasi-
equipartition between the total mean and fluctuating small scale magnetic energies,
the FR measurements still predict a precision error about which the mean field is
indeterminate.

Taking L = 2h, the thickness of the galactic disk, and noting that B is solely a
function of r in (5.15), we have

σ 2
FE(r)=

ls

2h

|1− ∼Gl
(kL)|2 + |1− ∼Gl

(ks)|2q

|∼Gl
(kL)|2 + |∼Gl

(ks)|2q
(B2

φ + B2
r )L. (6.17)

Figure 5 shows BL as a function of the galactic radial coordinate r (normalized by
the galactic radius R) from a face-on view of the same r-dependent dynamo model
used in the last subsection (Zhou & Blackman 2017). The predicted RM is now zero
and its filtering error is given in blue dashed lines with circular markers for l =
0.2 kpc, and in yellow solid lines with triangular markers for l = 0.4 kpc. These
emerge purely from stochastic fluctuations. The intrinsic error is zero because Bz = 0
everywhere.

6.4. Views at intermediate inclinations
The formulation becomes a bit more complicated when the line of sight is at an
intermediate inclination. We adopt Cartesian coordinates in this subsection, where the
z-axis coincides with the galactic rotation axis, x–y plane coincides with the galactic
mid-plane, the y-axis is parallel to the line of sight. Figure 1 shows a schematic plot.
Let the angle between the z axis and the line of sight be θ , and 0 < θ < π/2. The
line-of-sight averages depend on the location of the intersection point of the line of
sight and the galactic mid-plane, (x, y), and are given by

(B)L(x, y)= sin θ

2h
√

x2 + y2

∫ h

−h
dz [xBφ(ρ)+ yBr(ρ)], (6.18)

and

(B2
)L(x, y)= 1

2h

∫ h

−h
dz B2

(ρ), (6.19)
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where ρ =√x2 + (z tan θ + y)2. We include only the region {(x, y)|ρ 6 R}. Equation
(6.19) can then be used in (5.15) to compute the precision error associated with FR
measures, and the intrinsic error is given by

σ 2
IE(x, y)= sin2 θ

2h(x2 + y2)

∫ h

−h
dz [x2σ 2

int,Bφ
(ρ)+ y2σ 2

int,Br
(ρ)], (6.20)

which can be determined once the intrinsic error of B is calculated.

6.5. View from within our Galaxy
Finally, we discuss pulsar rotation measures as measured from inside our galaxy. For
simplicity, we omit the z-dependence and assume that both the observer and pulsars
are in the galactic mid-plane. A schematic plot is shown in figure 1. The distance
of the observer to the galactic centre is denoted by r1, and for this simple example,
we assume pulsars to have a fixed distance L = r2 < r1 from the observer and lie
in the galactic mid-plane. We use r1 = 8 kpc and r2 = 3 kpc for typical values in
calculations. The line-of-sight average of magnetic fields is also a function of θ , the
azimuthal angle for a polar coordinate system centred at the Earth which denotes the
positions of pulsars, and θ = 0 points to the galactic centre. The line-of-sight average
of the mean field is then

(B)L(θ)=−r1 sin θ
r2

∫ r2

0
dr

Bφ(ρ)
ρ
+ 1

r2

∫ r2

0
dr

r− r1 cos θ
ρ

Br(ρ), (6.21)

where ρ2= r2
1 − 2r1r cos θ + r2 is the radial coordinate in the galactocentric coordinate

system (see figure 1). The line-of-sight-averaged B2 is given by

(B2
)L(θ)= 1

r2

∫ r2

0
dr B2

(ρ). (6.22)

The intrinsic error is given by

σ 2
IE(θ)=

r2
1 sin2 θ

r2

∫ r2

0
dr
σ 2

IE,Bφ

ρ2
+ 1

r2

∫ r2

0
dr
(

r− r1 cos θ
ρ

)2

σ 2
IE,Br

. (6.23)

The resultant curve is shown in figure 6 in the same plot style as those in the previous
subsections. In this case, stochastic fluctuations introduce only small σ 2

IE and moderate
σ 2

FE, the latter being dominant because the line-of-sight average yields a large (B)L
and the number of eddy cells along the line of sight is small as a consequence of
small L. Thus σ 2

FE dominates the total uncertainty σ 2 = σ 2
IE + σ 2

FE, and therefore in
figure 7 which again shows relative errors at different directions of observation as a
function of l, most curves are monotonic and reach their minima when l→ ls. Since l
is physically constrained in the region [ls, lL] (otherwise the statistical prescriptions of
α and β break down), this implies that l' ls is the optimal choice of average scale
in this case.

It cannot be excluded that for different parameters, e.g. if q ≡ 〈b2〉/〈B〉2 were to
exceed some critical value, the errors might dominate mean field variations making it
difficult to statistically identify mean field reversals.
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(a) (b)

FIGURE 6. Line-of-sight predictions and error bars of pulsar rotation measures for
our view from within our Galaxy based on the analytically solvable dynamo model,
equations (6.3) to (6.5), taken from § 4.5 in Zhou & Blackman (2017). (a,b) Show error
bars corresponding to the intrinsic error and filtering error, respectively.

FIGURE 7. The total relative error for pulsar RMs at different azimuthal angle (centred
at the Earth) as a function of averaging scale l. Filtering error dominates as a result of
short length of the line of sight.

7. Conclusions
7.1. Summary

For large scale separation between mean fields and fluctuations, ensemble and spatial
averages are approximately equivalent, but this is not guaranteed in many astrophysical
circumstances where mesoscale fluctuations are present. With this motivation, we
formally derived correction terms to MFE for spatial averaging that result from a
finite scale separation. In addition, we have quantified two types of MFE precision
errors: (i) the intrinsic error σ 2

IE, which can be derived by differentiating the solution
of the mean field equations with respect to its input parameters and propagating the
uncertainty of each parameter to the mean field; and (ii) the filtering error σ 2

FE that
results because the prediction from mean field theory is filtered differently from the
observations. Specifically we considered the case where the predicted value is filtered
using the kernel for the mean field and then again by the measurement kernel –
whereas the observations only singly filter the full field through the measurement
kernel.
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We derived the MFE corrections and precision errors using convolutions of the
full field and kernels, which introduce a prescribed averaging scale l. To realistically
depict large scale fields, the kernels must be chosen to be local in both configuration
and Fourier space, and monotonically decreasing in Fourier space. We expanded the
MFE equations in the ratio l/lL, where lL is the dominant scale of variation of the
mean field. The zeroth-order equations have the same form as those from an ensemble
average, but new first-order corrections of order (l/lL)

c arise due to a violation of
Reynolds rules, where c> 0 depends on the kernel. Our approach allows for moderate
scale separations.

To exemplify the calculation of the precision errors, we considered contributions
to (uniform density) galactic Faraday rotation measures from mesoscale fluctuations
where the mean field filter is a local spatial average and the measurement kernel is
a line-of-sight average. We applied the formalism to different viewing angles of a
disc galaxy and find that the precision error of MFE can be large even when the
corrections to the MFE equations themselves are small. This highlights the necessity
of quantifying this precision of mean field theories to avoid misconstruing stochastic
from systematic deviations between theory and observations. The error quantifies the
predictive resolution of the theory.

Since σ 2
IE decreases with l while σ 2

FE increases with l, the sum of the two errors
may be non-monotonic over the physically allowed range of l, in turn allowing
determination of optimal scale of l that maximizes the precision of the theory. For
example, we identified the optimal averaging scale for FR that minimizes the error
to be about 0.17 kpc in our dynamo model for edge-on galactic viewing.

We also showed how our study differs from that of Rheinhardt & Brandenburg
(2012) who were also motivated to address corrections to MFE equations for modest
spatial scale separation. Our focus is on the influence of the kernel that enters
the averaging of fields themselves whereas their focus was on the semi-empirically
determined kernel relating the EMF to the mean magnetic field when the latter was
defined through a planar average.

7.2. Further work
Our formalism can be tested and developed further. First, using DNS for a system
that exhibits a statistically steady large scale dynamo for a specific choice of kernel
average, the saturated state from simulations could be sampled at different times
and an ensemble constructed. The mean field precision error can then be measured
and compared to our predictions. Second, the MFE precision calculations that we
exemplified for FR could be generalized for more realistic numerical dynamo models,
for comparison to observations. Generalization of the form of the magnetic spectra,
allowance for spatial inhomogeneities, or calculation of still higher-order corrections
to MFE equations are also possible. Third, there remains analytical and numerical
work to study dynamo models in which the linear-order corrections to the MFE
equations are not as small as those in the example models we considered with the
‘no-z’ formalism. For systems in which there is very little scale separation between
large and small scale energy spectral peaks, going beyond our perturbative treatment
of Reynolds rules violations would be necessary. The resulting generalized MFE
equations in this non-perturbative regime, with correction terms that involve the full
unexpanded kernel, could be solved numerically.

More broadly, analogous computations of MFE precision are warranted for
comparing theory and observations for observables other than RMs such as polarized
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synchrotron emission in galaxies, or spectral fluxes in turbulent accretion disks. For
the latter, the standard axisymmetric theory in common use is also an example of a
mean field theory which is a limiting case of MFE and has a finite precision that has
not yet been fully quantified (Blackman, Nauman & Edgar 2010).
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Appendix A. On the validity of (2.17)

In deriving (2.17), an approximation of aB, we have only considered the convolution
of ∼a(k) and ∼B(k

′) assuming that in this combination, only small k= |k| and k′ = |k′|
contribute. There are also contributions from other combinations of k and k′. In this
appendix we discuss and quantify the validity of (2.17), and show that it depends
primarily on the scale separation ls/L. Specifically, we show that for a Gaussian kernel
with kl= 5, equation (2.17) is a good approximation when ks/kL & 20, assuming both
∼A(k) and ∼B(k) are double peaked, and ks and kL are the characteristic wave numbers of
small and large scales, respectively. In this respect, the approximation we use improves
the standard theory by relaxing the assumption of infinite scale separation, but is not
valid for arbitrarily small separation.

For simplicity, we focus on one-dimensional cases here. Which parts in the spectra
of a and B contribute most to the quantity aB depends on the kernel, kl, and ks/kL.
We explain these dependencies in turn. The dependence on the kernel can be seen
from the following. We will express aB in k-space in terms of ∼Gl

, ∼A and ∼B. First we
focus on the Fourier transform of aB, which is given by the convolution

(∼a ∗ ∼B)(k)=
∫

dk′∼a(k
′)∼B(k− k′)=

∫
dk′[1− ∼Gl

(k′)]∼Gl
(k− k′)∼A(k

′)∼B(k− k′). (A 1)

For fixed k, we can calculate which wavenumber k′ in the convolution contributes most
by differentiating the factor [1− ∼Gl

(k′)]∼Gl
(k− k′) with respect to k′ and setting it to

zero. The solution k′0(k) depends on the form of the kernel ∼Gl
. How k′0(k) behaves at

small k is of interest because we ultimately need to multiply ( ∼a ∗ B)(k) by ∼Gl
(k) to

get the Fourier transform of aB. If k′0 is small for small k, then we need only consider
the low wavenumber parts of a and B because both k′ and k− k′ would be small in
the integrand. But k′0 could in general be comparable to kl or even larger for small k.
For example, figure 8 shows k′0(k) for a Gaussian kernel ∼Gl

(k)= e−k2/2k2
l with kl/kL= 1.

For k 6 kl, we see that k′0(k) is not small, and is of order kl.
However, if the spectra ∼A(k

′) or ∼B(k− k′) vanishes near k′= k′0(k) then the maximum
contribution to (A 1) must come from other wave numbers where ∼A and ∼B are non-
vanishing. In the case of double peaked spectra, with peaks at kL and ks, the scale
separation plays an important role in determining the significantly contributing wave
numbers. In the aforementioned example of figure 8, it is possible that ∼A(k

′)∼B(k− k′)

https://doi.org/10.1017/S0022377818000375 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000375


Derivation and precision of mean field electrodynamics 31

FIGURE 8. k′0(k) for a Gaussian kernel e−k2/2k2
l with kl = 1.

in the integrand of (A 1) vanishes at k′ = k′0(k) ' kl for small k. That is, although
[1 − ∼Gl

(k′)]∼Gl
(k − k′) reaches its maximum at k′0(k) for small k, ∼A(k

′)∼B(k − k′) ' 0
there because of large scale separation. Indeed, equation (2.17) is appropriate for cases
with large scale separations between peaks, because the factor [1 − ∼Gl

(k′)]∼Gl
(k − k′)

cannot be large at small k and large k′. Given a fixed small k, this factor will vanish
toward large k′ and retain some non-zero value at intermediate ('kl) and small (.kl)
k′ depending on the kernel. Provided there is a large enough scale separation, the
intermediate k′ regime does not contribute since ∼A and ∼B vanish there, leaving only
the small k′ part.

We quantify the importance of scale separation for the validity of (2.17) in figures 9
and 10 using the following double-peaked spectrum:

∼F(k)=
1√

2πσL
e−(k−kL)

2/2σ 2
L + q√

2πσs
e−(k−ks)

2/2σ 2
s , k > 0; ∼F(k)= ∼F(−k), k< 0, (A 2)

where kL=1, σL=1, σs=4 and q=4 are fixed. We use a Gaussian kernel for filtering,
namely

∼Gl
(k)= e−k2/2/k2

l , (A 3)

where kl= 5 is fixed. We then test (2.17) by comparing the exact result Pe=F [f F] =
G(k)[∼f ∗ ∼F](k) and its approximation Pa=G(k)[∼F ∗ ∼γ ∼F](k) (∼γ is defined through (2.6))
for different scale separations of the peaks, as quantified by ks/kL. The comparison is
shown in figure 9 where blue curves are the exact results, and yellow ones are the
approximations.

The efficacy of the approximation can be quantified by the mean relative difference
between blue and yellow curves in the plots figure 9, that is

∆=

∫ kν

0
dk

Pe − Pa

Pe∫ kν

0
dk

, (A 4)

where we set kν = ks + 2σs. The quantity ∆ as function of ks/kL is shown in blue in
figure 10(a). It remains relatively constant over the plot, even when scale separation
is large. In that case, even though the approximation agrees with the exact result at
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FIGURE 9. Comparisons of exact and approximated results of f F for different scale
separations ks/kL.

small k, the relative deviation from the approximation becomes large at large k. But
since we are interested in the net value of the convolution at small k 6 kl, a better
indicator of the efficacy of the approximation is the mean relative difference at k6 kl;
that is

∆k6kl =

∫ kl

0
dk

Pe − Pa

Pe∫ kl

0
dk

. (A 5)

This is shown in the yellow curve in figure 10(a). Pa becomes a good approximation
of Pe when kl = 5 and ks/kL & 20 (noting that kL = 1). In figure 10(b) we plot ∆k6kl

but now also varying kl in addition to ks/kL. The scale separation required to validate
(2.17) increases with increasing kl.

Note that the dependencies of correction terms to the mean field equations of § 3
and the efficacy of the approximation (2.17) on scales are different: The former
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(a) (b)

FIGURE 10. (a) Mean relative errors defined in (A 4) and (A 5) from comparing the exact
and approximated results of f F as a function of ks/kL. (b) Mean relative error for k< kl
as a function of ks/kL and kl.

depends on the ratio kL/kl, whereas the latter depends on kL/ks. In the case of large
scale separation, it is therefore possible that the error of the approximations are
negligible but the MFE correction terms are still significant.

Appendix B. Derivation of the first two terms in (3.7)

The expansion rule (2.22) cannot be immediately applied to the first term on the
right-hand side of (3.5) because b does not commute with the projection operator P̂.
Therefore let us write it as

εijkbkP̂lj(Bn∂nbl + bn∂nBl) = εijkbk(δlj − ∂l∂j∇−2)(Bn∂nbl + bn∂nBl)

= εijkbk[(Bn∂nbj + bn∂nBj)− ∂j∇−2(∂lBn∂nbl + ∂lbn∂nBl)]
= εijkBnbk∂nbj + εijkbkbn∂nBj − 2εijkbk∂j∇−2(∂lBn∂nbl). (B 1)

The first term can be readily calculated assuming isotropy for turbulent fields,
yielding

(1− γ̂ ) ( 1
3 b · ∇× b Bi

)+ Biγ̂
(

1
3 b · ∇× b

)
. (B 2)

Denote the third term in (B 1) by −2Xi. Then

Xi = εijkbk∂j∇−2(∂lBn∂nbl)= εijkbk∇−2(∂jlBn∂nbl + ∂lBn∂jnbl). (B 3)

The first term in the parentheses is ks/kL times smaller than the second, and is
therefore dropped. In Fourier space, the inverse of the Laplacian operator acting on
the second term yields

F [∇−2(∂lBn∂jnbl)] = 1
k2

∫
d3k′i(kl − k′l)Bn(k− k′)(k′jk

′
n)bl(k′). (B 4)
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k − k′ is close to zero because of the presence of B(k − k′). Therefore we expand
1/k2 as

1
k2
= 1

k′2
+O(|k− k′|). (B 5)

Only the zeroth-order term is kept, because terms of higher order yield derivatives of
B, which makes Xi contain second or higher-order derivatives of B. Equivalently, this
means the ∇−2 operator will not act on the B term to this order. We now have, up
to terms linear in B or ∇B,

Xi ' εijk∂lBnbk∂jn∇−2bl (B 6)

using (2.22).
Now the sum of the last two terms in (B 1) can be written as

εijkbkbn∂nBj − 2εijk∂lBnbk∂jn∇−2bl = (1− γ̂ )(∂lBnξjkln)+ ∂lBnγ̂ ξjkln, (B 7)

where
ξiln = εijkbk(δjn − 2∂jn∇−2)bl. (B 8)

To evaluate ξjkln, note that its Fourier transform is proportional to

εijk

∫
d3k′Pkl(k′)

(
δjn − 2

k′jk
′
n

k′2

)
(B 9)

since the helical part of ∼bk∼bl
(∝ εpklkp) does not contribute. Equation (B 9) then gives

εijk

∫
d3k′

(
δklδjn − 2δkl

k′jk
′
n

k′2
− δjn

k′kk
′
l

k′2

)
= 0 (B 10)

using
∫

dΩ ′kikj/k2= δij/3. Therefore the right-hand side of (B 7) is zero and altogether
we have

εijkbkP̂lj(Bn∂nbl + bn∂nBl)= (1− γ̂ )
(

1
3 b · ∇× bBi

)+ Biγ̂
(

1
3 b · ∇× b

)
. (B 11)
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