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Abstract
We present the first of two papers dedicated to verifying the Australian Epoch of Reionisation pipeline (AusEoRPipe) through simulation.
The AusEoRPipe aims to disentangle 21-cm radiation emitted by gas surrounding the very first stars from contaminating foreground
astrophysical sources and has been in the development for close to a decade. In this paper, we build an accurate 21-cm sky model that can be
used by the WODEN simulation software to create visibilities containing a predictable 21-cm signal. We verify that the power spectrum (PS)
estimator CHIPS can recover this signal in the absence of foregrounds.We also investigate howmeasurements in Fourier-space are correlated
and how their gridded density affects the PS.Wemeasure and fit for this effect using Gaussian-noise simulations of theMurchisonWidefield
Array (MWA) phase I layout. We find a gridding density correction factor of 2.651 appropriate for integrations equal to or greater than 30
minutes of data, which contain observations with multiple primary beam pointings and LSTs. Paper II of this series will use the results of
this paper to test the AusEoRPipe in the presence of foregrounds and instrumental effects.
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1. Introduction

Constraining when and how the first stars were formed has been
a goal of astronomers for decades. By measuring cosmically red-
shifted 21-cm radiation from the hydrogen gas surrounding those
first stars, one can conceivably map the effects of the ionising
radiation coming from them, to infer their properties as a func-
tion of redshift. Unfortunately, the detection of 21-cm radiation
from the Epoch of Reionisation (EoR) (redshifted to the 50–250
MHz frequency range) is impeded by a myriad of astrophys-
ical sources, including Active Galactic Nuclei, Radio Galaxies,
Supernova Remnants, and the diffuse synchrotron radiation emit-
ted from the Milky Way. These foregrounds drown out the 21-cm
signal (Furlanetto, Peng Oh, & Briggs 2006) and must either be
subtracted from the data or avoided. One approach that somewhat
naturally separates foregrounds from the signal is via measuring
the power spectrum (PS). The PS can be used to garner spatial
information of the effects of reionisation by the first stars and
infer their properties. Furthermore, Fourier transforming over
frequency to obtain a PS results in the foregrounds and sig-
nal manifesting in different areas of the PS given their differing
spectral behaviours. Recent upper limits on the EoR have come
from: Hydrogen Epoch of Reionisation Array (HERA, DeBoer
et al. 2017); Low-Frequency Array (LOFAR, van Haarlem et al.
2013); The MurchisonWidefield Array (MWA, Tingay et al. 2013;
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Wayth et al. 2018); New Extension in Nançay Upgrading LOFAR
(NenuFar, Zarka et al. 2012).

There are a number of challenges which must be overcome
to make the statistical detection of the 21-cm signal. As well as
nullifying the aforementioned foregrounds (e.g. Cook, Trott, &
Line 2022; Acharya et al. 2023), one must deal with ionospheric
refraction (Edler, de Gasperin, & Rafferty 2021; Chege et al. 2022,
e.g.), terrestrial interference (e.g. Offringa, Mertens, & Koopmans
2019; Wilensky et al. 2023), and a myriad of instrumental calibra-
tion effects (e.g. Kern et al. 2020; Chokshi et al. 2021; Mevius et al.
2022; Kolopanis et al. 2023), all of which cause limiting systemat-
ics. These challenges have forced a decade of not only hardware
but also software development, to calibrate and treat the data with
extreme precision to uncover the underlying signal. Recent best-
effort PS limits include Mertens et al. (2020), Trott et al. (2020),
Rahimi et al. (2021), HERA Collaboration et al. (2023), Munshi
et al. (2024).

Given that measuring the 21-cm PS is as much a software
as it is an observational experiment, great care must be taken
to understand what biases and systematics the software pipeline
imparts upon the data. Given the limiting systematics listed above,
a natural route is via simulation, where one can control which sys-
tematics are injected into a data set, with a ground ‘truth’ to be
recovered. In short, if you inject a known 21-cm signal into a data
set, process through your pipeline and recover what you injected,
you gain confidence in your pipeline. This approach has been
taken by a number of authors, including Barry et al. (2019a) using
MWA data and Aguirre et al. (2022) with HERA data. To date, the
Australian EoR pipeline (AusEoRPipe), which is designed to pro-
cess MWA data, has not been tested from end to end. This is the
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goal of this series of papers. This paper aims to test the gridding
and PS estimation aspects of the pipeline; the following paper in
this series will focus on calibration.

The native output of an interferometer is a visibility, a sam-
pling of the Fourier transform of the visible sky. There are two
main ways to simulate a 21-cm signal in visibility space. One can
either make an analytic model that produces similar statistics in a
PS, to directly generate in visibility space, or can create an image
based model and derive visibilities from that. The former is far less
computationally expensive, but the latter locks in projection and
geometrical effects inherent to true interferometric observations.
Having an image-based 21-cm model locked to celestial coordi-
nates allows for simulated observations at various hour angles, to
probe the effects of changing instrumental primary beam patterns
and visibility sampling.

Simulating an image-based 21-cm signal for the MWA is non-
trivial however, given the sky coverage of the instrument. The
full-width half-maximum of the main lobe of the primary beam
of the MWA can be greater than 20× 20 square degrees and
50× 50 square degrees down to the 1% beam level. Simulating a
realistic EoR volume capable of covering this sky-area is compu-
tationally demanding. Fortunately, Greig et al. (2022) generated a
simulated EoR volume large enough, which we use in this work
and detail in Section 3. Given the resolution of the instrument is of
order an arcminute, the number of pixels required to represent 21-
cm lightcones from this EoR volume is O(107). Down-sampling
this model can affect the resultant statistics of the signal. For
this reason, we use the WODEN simulation package (Line 2022),
capable of ingesting sky models with millions of components,
and producing realistic simulated MWA visibilities. As WODEN is
GPU-accelerated, these simulations can be run in a reasonable
time frame (see Section 4.1 for details). Importantly, WODEN is
also capable of simulating both the 21-cm signal and the fore-
grounds at the expected power levels, which can be many orders of
magnitude apart. This allows us to test signal recovery in the pres-
ence of foregrounds without boosting the amplitude of the 21-cm
signal.

This paper is organised as follows. In Section 2 we briefly
overview the AusEoRPipe and outline what simulated data are
necessary to test them. In Section 3 we detail the construction of
a 21-cm sky model compatible with WODEN. In Section 4 we verify
the steps taken to project the 21-cm model into celestial coordi-
nates, by applying them to a sky model of Gaussian noise. We
also investigate the effects of gridding visibilities when generat-
ing power spectra and fit for the effect this has on estimating the
resultant power. In Section 5, we test the 21-cm model and how
well the AusEoRPipe can recover the expected PS. We discuss our
results in Section 6 and conclude in Section 7.

2. Pipeline overview

The AusEoRPipe is designed to take raw data from the MWA
correlator, calibrate for instrumental and ionospheric effects,
subtract foregrounds, and then estimate a PS. Here, we list the
different software packages that make up the AusEoRPipe and
suggest simulations needed to test them. This section is intended
to give the reader a broad overview of the AusEoRPipe and the
overall goals of this series of papers, to give this paper context.
At the end of this Section, we detail which parts of the work are
covered in this paper.

Birlia is designed to take raw MWA data and preprocess it,
including geometric correction, averaging, and radio frequency
interference (RFI) flagging (via AOFlagger Offringa 2010 or
SINSS Wilensky et al. 2019). Birli has been written to replace
Cotter (Offringa et al. 2015), to have one unifying preprocess-
ing package that works with both legacy and new MWA data (see
Morrison et al. 2023, for details of the old and new MWA corre-
lators). Given Birli has been tested to reproduce results out of
Cotter, which has been tested and used within a number ofMWA
pipelines, we choose not to test Birli via simulation. To do so
however, one would need to simulate raw MWA data, which for
the original correlator would mean producing visibilities with no
phase tracking, adding a frequency-dependent bandpass from the
MWA polyphase band filter, and add in realistic RFI.

hyperdriveb (Jordan et al. submitted), takes either raw or pre-
processed data, calibrates it, and then subtracts foregrounds. Built
to replace the RTS (Mitchell et al. 2008), hyperdrive also cre-
ates model visibilities to calibrate against via an image-based sky
model. It initially performs a direction-independent (DI) calibra-
tion step, that derives a gain for each MWA receiving element
(tile). All frequencies are calibrated independently. After DI cal-
ibration, foregrounds can be subtracted. The Fourier transform
along frequency to create the PS is expected to separate the 21-cm
signal from the foregrounds, as foreground emission is supposed
to be spectrally smooth, whereas the 21-cm signal has spectral
structure. Incomplete sampling of the u,v plane however causes
mode mixing between the two, as well as other frequency-related
instrumental effects. A detection therefore relies on the fore-
grounds being subtracted without injecting false spectral structure,
as to preserve the underlying 21-cm signal. To test this function-
ality, a simulation needs to contain both a 21-cm signal and fore-
grounds, as well as frequency-dependent instrumental gain errors.
One can also add frequency-dependent effects like cable reflec-
tions (e.g. Ewall-Wice et al. 2016) and the bandpass to investigate
how calibrating each frequency channel independently performs.
These effects are direction-independent and so can be added to
visibilities post simulation (functionality which is in development
in WODEN). Further simulations including RFI and ionospheric
refraction would test how robust the calibration is to environmen-
tal influences. These effects are direction-dependent and so must
be adding during the calculations of the visibilities, which WODEN
is currently incapable of.

CHIPS (Trott et al. 2016) takes the calibrated and subtracted
visibilities and grids them into a spectral cube using an opti-
mised Blackman-harris kernel. It then Fourier-transforms along
frequency, and then either cylindrically averages to create a two-
dimensional PS (2D PS) or spherically averages to create a one-
dimensional PS (1D PS). Integrations of tens to hundreds of hours
of data into a 1D PS have set the limits that have been released by
the AusEoRPipe to date. The minimal test for CHIPS is to simu-
late a set of visibilities with a known 21-cm signal and see if CHIPS
can recover it. Beyond that, taking in calibrated visibilities out
of hyperdrive, derived from simulations with realistic instru-
mental effects and foregrounds, allows us to probe the effects of
calibration on the resultant PS.

WODEN,c as previously mentioned, simulates MWA visibilities
from a sky based model. It can use the same primary beam model

ahttps://github.com/MWATelescope/Birli.
bhttps://github.com/MWATelescope/mwa_hyperdrive.
chttps://github.com/JLBLine/WODEN.
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as hyperdrive, the FEE beam (Sokolowski et al. 2017) (via the
mwa_hyperbeamd package) and creates visibilities that can be fed
directly into either hyperdrive or CHIPS. WODEN calculates the
interferometric measurement equation for every component in
the sky model. Each component can either be a point source (a
dirac-delta function upon the sky), an elliptical Gaussian, or a
Shapelet model (see Line et al. 2020, for more detail on Shapelets).
The measurement equation encodes baseline and sky projection
effects inherently, making the simulator accurate across the large
field of view of the MWA. The caveat being that the sky model
must be broken into the small components listed here, mean-
ing representations of large-scale structure such as the galactic
diffuse emission need millions of components. Aside from the
primary beam model, the WODEN code base is entirely indepen-
dent to hyperdrive. Although they use the same methodology
to generate visibilities, this redundancy in code is by design; any
internal bug that may cancel out when generating visibilities and
calibrating them all with the same code base is avoided.

Along with the aforementioned packages, extensive quality
metrics are generated at various stages (Nunhokee et al. submit-
ted). These metrics are used to cull any observations that are
deemed unusable due to insurmountable instrumental effects,
ionospheric conditions, RFI events, contamination by bright
sources in the primary beam sidelobes, and other effects. The
simulations detailed above could be used to check whether these
metrics are able to catch poor data and check whether the limits
set for each metric still allow for a detection of the 21-cm signal.

In this paper, we ignore calibration entirely, and focus on gen-
erating a realistic 21-cm skymodel to simulate through WODEN and
directly input into CHIPS. As visibilities are additive, once we are
able to generate accurate 21-cm simulations, we can add a variety
of foregrounds and instrumental effects to test the calibration and
subtraction step, without the need to rerun themore expensive 21-
cm simulations.We leave testing hyperdrive to the second paper
in this series.

2.1 MWA EoR observing

The MWA is a low-frequency radio interferometer, with receiving
elements consisting of 4×4 grids of dual linear-polarisation bow-
tie antennas. These ‘tiles’ are electronically steered through beam-
forming. To estimate the 21-cm PS, the MWA EoR collaboration
have identified a number of fields with lower sky temperatures,
which have now been observed for hundreds of hours (e.g. Trott
et al. 2020), in an attempt to average over thermal noise. Given
the electronic beamforming, this has resulted in a drift-and-shift
observational campaign, where the target field drifts through a
number of pointings, with scheduling keeping the field centre as
close to the primary beam centre as possible (see Jacobs et al. 2016,
for more details).

In this paper we focus on the EoR0 field, centred at RA, DEC=
0h,−27◦, observed between frequencies of 167–198MHz (known
as the high-band). These parameters have consistently yielded the
best MWA limits (e.g. Barry et al. 2019b; Trott et al. 2020; Chege
et al. 2022).We also focus on five pointings, labelled -2 through+2
(c.f. Beardsley et al. 2016), where -2 means two pointings before
the zenith 0 pointing, and+2meaning two pointings after 0 point-
ing. There is an approximate 15◦ shift between pointings, all along

dhttps://github.com/MWATelescope/mwa_hyperbeam.

Figure 1. Demonstration of the MWA primary beam and its interaction with the 21-
cm sky model, via the: (a) -2 pointing; (b) -1 pointing; (c) Zenith pointing. Each plot
is locked to the observer in HA/Dec. The solid black lines represent the instrumental
Stokes I primary beam pattern contoured at 1%, 10%, 50%, and 90% power levels. The
coloured images show the apparent 21-cm skymodel after attenuation by the primary
beam at three different LSTs, with the corresponding colour linesmarking the edges of
the full 21-cm sky model. Both the beam and sky model are shown at 167 MHz, where
the primary beam is largest for a high-band observation. Note that the+1,+2, point-
ings as described in Section 5 are simply westward reflections of the -1, -2 pointings,
so aren’t reproduced here for brevity.

the meridian. Examples are shown in Fig. 1. MWA EoR data are
typically taken in two minute chunks known as an observation.

3. 21-cm sky-model

We use the 21-cm lightcone detailed in Greig et al. (2022), which
is derived from a simulated EoR cube with sides of length 7.5 Gpc.
This cube was generated using a simplified version of 21CMFACST
(Mesinger&Furlanetto 2007; Mesinger, Furlanetto, & Cen 2011)
and was spectrally sampled at 80 kHz to match typical MWA EoR
analysis parameters. This methodology generates a volume that
projects to a sky coverage of ∼ 50× 50 square degrees, which is
essential given the footprint of the MWA primary beam. A num-
ber of steps are necessary to translate the lightcone box into a
WODEN sky model. The box is a collection of 2D projected 21 cm
intensity distributions, each at a unique redshift. These cartesian
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projections are taken by slicing a full 3D simulation volume at reg-
ular redshift intervals, as the simulation is evolved with time. This
leaves us with a number of transformations needed to allow WODEN
to ingest the model:

• Each 2D 21-cm slice has a pixel resolution �x in
cMpc; each slice therefore has a different angular res-
olution, as this quantity is redshift-dependent. To run
efficiently, WODEN needs a grid of pixels constantly sampled
in RA/DEC, necessitating a redshift-dependent angular
interpolation.

• The box is regularly sampled in redshift (�z), which
results in irregular sampling in frequency (�ν).
Interferometric data is sampled regularly in frequency,
necessitating a second interpolation over frequency.

• The box is in units of mK. WODEN ingests units of Jansky
(Jy), which is an integrated flux density. The conver-
sion from mK to Jy/sterrad is straightforward, however,
the physical volume of each pixel changes as a func-
tion of frequency. Along with the angular extent, the
pixel volume is determined by �z. Given the interpola-
tion over angle and frequency, this volume change must
be taken into account, as it effects the resultant vari-
ance of the 21-cm map. This effect is noted in the script
make_flat_spectrum_eor.pye in the Python package
pyradiosky.

In the following, we use the cosmology assumed by Greig
et al. (2022), a�CDMcosmology with:H0 = 68;�M = 0.31;�� =
0.69;�b = 0.048. We use astropy (Astropy Collaboration et al.
2013, 2018, 2022) for all cosmological calculations.

We choose to interpolate all slices to the finest angular resolu-
tion in the box to retain as much angular structure as possible.
We call this the reference redshift, zref = 7.5693. Given �θ =
�x/D(z), where D is the comoving distance, we interpolate to
an angular resolution of ∼27 arcsec. We found interpolating the
Cartesian slice directly into a TAN FITS projection (a gnomic pro-
jection; see Calabretta & Greisen 2002, for details) centred at RA,
DEC = 0h,−27◦ returned the expected PS. We experimented with
bilinear and bicubic interpolation, but found significant signal loss
in the resultant PS. It’s possible some variant of Gaussian Process
Regression may be more effective, however for the purposes of
this work we found a simple nearest-neighbour approximation
was sufficient. Similarly, we applied a nearest-neighbour interpo-
lation along the frequency axis, as again we saw signal loss in the
final PS when applying linear or cubic interpolation. Along lines
of sight, the 21-cm signal rapidly fluctuates between positive and
zero, and so these kinds of interpolation tend to create false sig-
nal. Once these interpolations have been applied, we then scale for
the change in volume of the pixel (Vpix(z)) and its effect on the
variance. We do this for each redshift by calculating via the dif-
ferential comoving volume and multiplying by �z. We then scale
each redshift slice by a factor Cpix given by

Cpix =
√

Vpix(z)
Vpix(zref)

, (1)

ehttps://github.com/RadioAstronomySoftwareGroup/pyradiosky/blob/main/scripts/
make_flat_spectrum_eor.py.

with the square root ensuring the variance is scaled by the pixel
volume.

Once we have interpolated, scaled, and transformed each slice
in Jy/sterrad, we convert each pixel into a point source with units
of Jy by multiplying by the pixel solid angle. Ideally, we would
the find some way to tile these maps to give an all-sky 21-cm sky
model. However, given we cannot interpolate the box without sig-
nal loss, it is computationally infeasible. At the lowest frequencies,
the number of point sources necessary would approach 200 mil-
lion. However, given the extreme volume of the simulated 21-cm
box, without tiling, the sky model already covers the main lobe
of the MWA primary beam down to the ~1% power level for
pointings of interest (see Fig. 1).

To investigate whether the projection steps detailed in this
Section induce any form of signal loss or bias, we apply them to
a purely Gaussian noise simulation in Section 4. We report of the
results of the 21-cm sky model in Section 5.

4. White Gaussian noise sky simulation

The PS P(k) of a White Gaussian noise distribution N of mean
μ = 0 and variance σ 2 is proportionate to the variance, that is,
P(k)∝ σ 2. By creating a sky model of purely White Gaussian
noise, we can therefore predict an output P(k) and check the nor-
malisation of the AusEoRPipe. Given we have outlined a method
to project a 21-cm box from units of cMpc in Section 3, we can
simply repeat the entire process, starting from a box of purely
White Gaussian noise (from hereon in referred to as the Gaussian
noise simulation). We choose to set σ 2 = 16mK2 as this yields a
power comparable to those expected from the 21-cm signal. We
typically report the PS in units of mK2 Mpc3 h−3, where h is the
reduced Hubble constant; we use h= 0.68 in this work. We can
therefore predict our expected noise PS PN via

PN(k)= σ 2Vpix(zref)h3 = 8.923 mK2Mpc3h−3 (2)

We use WODENf to simulate a single zenith pointing observa-
tion with an 8 s time cadence and 80 kHz frequency resolution,
using a frequency-interpolated version of the FEE beam. We use
the convention that Stokes I = (XX + YY)/2, where XX and
YY are the two linear polarisations. Given we are using simu-
lated data with isotropic and unpolarised sky models, there is little
difference between XX and YY, and therefore the power spec-
tra shown are effectively Stokes I. All PS shown in this paper
are from the north-south aligned polarisation. We run CHIPS
on the simulated visibilities, to produce the 2D PS as shown in
Fig. 2. All CHIPS plots were generated using the Python package
CHIPS_wrappers.g

Fig. 2 demonstrates a known effect of estimating the PS from
gridded visibilities, where the power inferred is lower where the
density of gridded visibilities is higher, as observed by Barry et al.
(2019a, see Appendix A). Note we have not corrected for this in
Fig. 2, which is normally done by multiplying by a factor two (as
found by Barry et al. 2019a), to explicitly show the effect.

Visibilities are gridding using a kernel which is designed to
minimise aliasing and match the area of the MWA primary beam
(Trott et al. 2016). Given the array layout, and the need to match

fFor this paper we use the docker v2.0 container of WODEN, installed via docker pull
docker://jlbline/woden-2.0.

ghttps://github.com/JLBLine/CHIPS_wrappers.
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Figure 2. Data from a single zenith observation, without any correction for gridding density, where: (a) shows the 2D PS; (b) the ratio to the expected value; c) the CHIPS gridding
weights. k⊥ modes are derived from the instrument sampling in the visibility u,v plane, averaged down to one dimension, and k‖ from the fourier transform of the visibilities along
frequency. The CHIPS gridding weights therefore show the u,v gridding density averaged into one dimension.

Figure 3. Observations simulated in this paper, based on two real nights of MWA EoR0 observing. The blue diamonds show the simulated LST1 subset, green hexagons the LST2
subset, and orange circles the LST3 subset. Each hollow square shows a different two minute snapshot which was not simulated but exists in the real data set. Dividing lines and
labels show the changes from pointings -2 through+2. Note observational constraints mean there are less+2 pointings.

the kernel to the primary beam, the kernel has an unavoid-
able footprint large enough to overlap with neighbouring gridded
visibilities. Depending on the covariance between neighbouring
visibilities, and the density of the gridded visibilities, the power
estimated will therefore vary as a function of u,v gridding loca-
tion. Using simulations, Barry et al. (2019a) found a factor of two
correction was sufficient as a normalisation factor for modes of
interest. This estimate was made using the FHD/εppsilon pipeline
and a model of the MWA primary beam as a gridding kernel,
whereas CHIPS uses a Blackman-Harris kernel. This estimate was
also made using 2 s resolution data, rather than 8 s. Given these
differences, we investigate the gridding density correction factor
in Section 4.1 using CHIPS.

4.1 Gridding density correction factor

The gridding density is directly affected by the u,v coverage, which
in turn is dictated by the array layout and phase centre. The covari-
ance of neighbouring u,v points will therefore be affected by LST
(as the phase centre is always set to EoR0 field centre). The pri-
mary beam pointing will also have an effect as this changes the
amplitude and spectral behaviour of the visibilities. To thoroughly

investigate the gridding density we therefore simulate a number
of observations spanning realistic ranges of LST and pointings.
To do so, we take the first (subset LST1), central (subset LST2),
and final observation (subset LST3) across five different pointings
(−2 to +2) from three real nights of MWA phase I EoR observing
(see Fig. 3). For the LST2 subset, we select the observation where
the primary beam pointing is closest to the EoR0 field centre, to
maximise the beam coverage over the sky model coverage. As the
visibilities are normally averaged to 8 s, 80 kHz we simulate at this
cadence to save compute time. Each observation takes a total of
∼32 GPU hours. For 45 simulated observations this is a total of
60 GPU days. We use the Pawsey Garrawarla clusterh and split
each simulation across 24 GPUs, meaning these simulations take
less than 3 days real-time.

By running CHIPS on various combinations of these observa-
tions, we can investigate both primary beam pointing and LST
effects. All integrations overmultiple observations are done coher-
ently, that is, all observations are gridded to the same u,v grid,
which is then used to estimate the PS. We take the median of
the ratio of the observed PS to the expected value as a function

hhttps://pawsey.org.au/systems/garrawarla/.
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Figure 4. Themedian ratio of the recovered noise PS to expected value, as a function of k⊥, for: (a) the five different pointings, each for a single observation; (b) the three different
LST subsets integrated over 5 observations; (c) the three different LST subsets integrated over 15 observations; (d) all three LST subsets integrated together over 15, 30, and 45
observations. The horizontal dashed line shows the mean of the median ratios for k⊥ < 0.1 as measured from the bottom right plot. This dashed line Any dataset which is a
multiple of five observations has an even split across the five pointings.

of k⊥ (i.e. take the median along the y-axis of the middle panel in
Fig. 2) to see the effects of gridding, as shown in Fig. 4. We take the
median, rather than the mean, as the distribution of ratios along
each k⊥ bin display significant skew.

Fig. 4a shows that for a single observation, the estimated power
is consistent across pointings, with lower power estimated a low
k⊥ (higher gridding density). This shows the beam volume correc-
tion applied internally in CHIPS returns a consistent power level
across the five pointings. Fig. 4b shows that the power recovered
from the three LST subsets over 5 observations is roughly consis-
tent, but the power recovered does vary somewhat. This recovered
power depends on the exact u,v coverage, and the way the pri-
mary beam interacts with the sky model. Fig. 4c shows that when
integrating over 15 observations for each LST subset, the recov-
ered power at low k⊥ is consistent with the power recovered when
integrating over 5 observations. However, the power recovered at

higher k⊥ is actually higher than at when integrating over 5 obser-
vations. This highlights the fact that the power estimated comes
from a combination of not just the amount of data gridded, but
the covariance between the neighbouring gridded visibilities. This
is further highlighted by showing that integrating the three LST
subsets together across 15 observations yields significantly lower
power at high k⊥. High k⊥ is derived from longer baselines, where
the drift of a baseline u,v coordinate over time is greatest. The
LST1 and LST3 groups are also closely separated in time, yield-
ing close gridding locations, but overlap as the beam pointing
changes. The amplitude and the spectral behaviour of the primary
beam therefore sharply changes on the sky, reducing the covari-
ance between neighbouring gridded visibilities. This results in the
lower power recovered. Fig. 4d shows that when integrating more
and more data with the same combination of LST coverage and
pointings, there is no change in power at low k⊥.
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Figure 5. 1D PS for various integrations of the Gaussian noise simulation, where (a) a
factor of two was used to normalise for gridding density and (b) a factor of 2.5845 was
used. The vertical dashed line shows the maximum k⊥-mode.

Given the stability of the recovered power when combining all
LST subsets with an integration of 15 observations or more, one
could fit a functional form to derive a correction. We investigate
this approach in Appendix A and find little to no difference in
using a fit when compared to just applying a scalar normalisation
factor. PS upper limits are derived from integrating hours of data
to overcome thermal noise, and modes where k⊥ > 0.1 hMpc−1

are typically cut when using the AusEoRPipe. To obtain a nor-
malisation factor for the gridding density we therefore simply take
the mean of the median observed ratios for the integrations over
all LSTs and pointings where k⊥ < 0.1 hMpc−1. This value is plot-
ted as the horizontal grey dashed line in Fig. 4. Inverting this
gives a normalisation factor of 2.651. We apply this normalisation
and create a number of 1D PS for various integrations, shown in
Fig. 5, and compare the outcomes to the previous correction fac-
tor of two. This shows that the new normalisation factor causes
too much power to be recovered for a single observation, and
when only using the LST2 subset, but recovers the correct power
to within 10% formost kmodes when integrating over all LSTs and
pointings. The factor two correction (coincidentally) does well for
a single observation, but does not recover the correct power for
higher integrations.

5. Recovered 21-cm signal

To test the 21-cm model detailed in Section 3, we simulate 30
observations, matching the first two nights detailed in Fig. 3, with
the same parameters as used for the Gaussian noise simulation
(detailed in Section 4). We leave out simulating the third night
purely to save on computational resources. To qualitatively assess
the accuracy of the model through WODEN and into CHIPS, we
compare a CHIPS 2D PS to one derived directly from the lightcone
box, shown in Fig. 6.We produce the 2DPS directly from the light-
cone using the OSIRIS packagei (Cook, Trott, & Line 2022), where
no primary beam or instrument sampling was applied, meaning
the entire u,v plane was sampled. We see that the CHIPS PS is
broadly consistent with the OSIRIS PS. Noticeably, it seems there
is a potential signal loss at high k‖ in the CHIPS PS (the darker blue
region at the top of Fig. 6b). There is also excess power seen along
high k⊥, around the dashed black line, which is expected as the
instrument baseline sampling causes mode mixing, moving power
up from lower to higher k‖.

To test the gridding normalisation, we apply it to various
integrations and produce 1D PS, shown in Fig. 7. We compare
them to an expected signal, again derived directly from the 21-
cm lightcone box. Excellent agreement is shown, and similarly to
the Gaussian noise simulation, the gridding density normalisation
estimates too much power for short integrations, but renders con-
sistent results for longer integrations with the same mix of LSTs
and pointings.

In Fig. 8 we show the ratio of the final recovered 21-cm sig-
nal to the expected value, for a 60-min integration. While good
agreement is shown, there does seem to be signal loss around
0.1< k< 1, which was not seen for the Gaussian noise simulation.
This is likely due to the frequency interpolation of the original
lightcone as detailed in Section 3. For reference, Fig. 8 shows the
maximum k⊥ mode that went into the average from 2D to 1D.
k modes above this are binned from only high k‖ modes, which
is where signals with the most spectral structure manifest. As this
area is where the signal loss is found, it is likely the frequency inter-
polation is causing this. As the Gaussian noise sky model has no
correlation over frequency, it should not suffer from this inter-
polation, which is why it doesn’t display the same signal loss.

Fig. 8 also shows the effect of performing the ‘wedge-cut’,
where modes normally dominated by foreground sources are
removed. While broadly consistent, the signal loss seems to
worsen after the cuts. This is likely due to the reduced number
of bins going into the average from 2D to 1D. As can be seen from
Fig. 6c, the horizon cut (marked by the solid black line) removes
more samples for smaller k‖ modes. However, lower sampling is
not the only possible reason. The manifestation of the primary
beam, as well as the exact u,v distribution, could both cause a sys-
tematic bias at specific spots in the 2D PS, which could contribute
here.

6. Discussion

The Gaussian noise simulation results in Section 4 confirm that
gridding visibilities without accounting for their full covariance
from overlapping footprints requires a normalisation factor. They
reveal however that this normalisation factor depends on an inter-
play between the array layout, the LST range of the integrated

ihttps://github.com/JaidenCook/OSIRIS.
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Figure 6. 2D PS from the 21-cm simulation where: (a) produced using OSIRIS directly from the lightcone box from Greig et al. (2022); (b) a CHIPS 2D PS made from integrating
over 30 simulated observations; (c) the same PS from (b) but with standard cuts made to remove foreground contamination. The solid black line indicates an estimate of the
horizon, and the dashed black line the full-width half-max of the MWA primary beam.

Figure 7. Recovered 21-cm signal from various integration lengths of simulated obser-
vations, when normalised with a factor 2.5845. The panel bottom right is included
to illustrate the normalisation effects between 0.1< k< 1.0 hMpc−1. The two minute
data set is for a zenith pointing; the 10 minute data set is for the LST2 subset; all other
data sets are an even split between the five pointings and LST subsets as described in
Section 5.

observations, as well as the primary beam pointings, as these all
effect the covariance between the visibilities. To truly correct for
this effect, one would need to calculate this covariance and prop-
agate it through the gridding and PS estimation steps (see Liu,
Parsons, & Trott 2014, formore information on calculating covari-
ances in k-space). We instead simply measure and fit for the effect,
given we can estimate the expected power from the Gaussian noise
simulation. It could be argued that simply taking the median of

Figure 8. Ratios of the recovered 21-cm signal to the expected value, for a 60min
integration. The orange with crosses line shows the ratio when using the factor two
gridding density correction, and the blue with circles when using the fitted correction.
The vertical dashed line shows the maximum k⊥-mode, meaning any k-mode above
this was derived purely from the Fourier transform of the visibilities along frequency.

the ratios where k⊥ < 0.1 hMpc−1 from Fig. 4d is too simplistic,
given we can fit a functional form as shown in Appendix A. We
choose to err on the side of simplicity however, given the single
scaling factor we derive recovers the correct Gaussian-noise power
to within 10% for most k-modes. This normalisation factor comes
with a set of caveats, which require further investigation to be
understood:

• We have only tested the MWA phase I layout. Given the
covariance between u,v may well be different for differ-
ent array layouts, we cannot be sure this correction factor
would work with the MWA phase II compact layout, for
example
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• Upon initial investigation, 2 s resolution data was seen to
require a smaller normalisation factor for the same inte-
gration length. It is possible that gridding four more times
more data will eventually reach the same plateau as 8 s
data, but it might change the level of covariance in the
gridded visibilities. Testing this will require four times the
computational resources

• It is possible that the gridding normalisation will change
for a different frequency range, as the rate of change of
the u,v points with time will be different. To test this with
the method outlined in this paper, another 21-cm light-
cone box will need to be generated to match the required
frequency coverage

• We attribute the signal loss seen in Fig. 8 to the fre-
quency interpolation of the original 21-cm lightcone box.
However, there could be other sources of signal loss, which
include the primary beam shape altering the signal distri-
bution, and a dependence on details of the gridding within
a k⊥ bin. To remove frequency interpolation and check
this signal loss issue, the original lightcone box would need
to be regenerated with constant frequency sampling. This
is non-trivial, as it would require 21CMFAST simulations
with adaptable voxel sizes. Alternatively, one could run the
noise sky simulation test using a type of noise with a spec-
tral structure (e.g. Brownian noise). As long as the shape of
the noise could be easily predicted in PS space, one could
test for signal loss

It should be noted that this method depends on not only
the Gaussian noise model being correctly scaled, but that our
prediction for the power level is correct. However, given the nor-
malisation also yields the expected power level for the 21-cm
model, with that prediction made directly from the lightcone, this
gives us confidence that our prediction and scaling are correct. We
further note that we ran the WODEN simulations in so-called float
mode, which sets some of the internal precision to single instead of
double precision, with an appreciable speed up (see Line 2022, for
more details). We ran a number of comparisons to fully double
simulations all the way through to the PS and saw no change in
the results.

It is worth considering that gridding density is not necessarily
the only effect that could be causing a loss in signal. The model
itself, the WODEN simulator, and CHIPS are potentially sources of
signal loss. However, given that the Gaussian noise sky model is
as simple a model as possible, WODEN has been heavily unit tested,j
and we are fitting a CHIPS-specific normalisation factor, we are
confident the normalisation derived here is applicable to real data
put through the AusEoRPipe.

7. Conclusion

We have projected a 21-cm lightcone into an celestial coordinate-
locked sky model for use with the WODEN simulator. The model is
stored in a FITS table format easily adaptable to other simulation
packages and is available from the PASA Datastore. In testing the
validity of this model, we generated an equivalent White Gaussian
noise model. We used this to test the effects of gridding visibili-
ties using a kernel to produce power spectra, through simulated

jSee https://woden.readthedocs.io/en/latest/testing/cmake_testing.html for details on
testing.

observations. We confirmed the known effect that power esti-
mated from gridded visibilities is lower where the gridding density
is higher. We found the effect to be dependent on a combina-
tion of array layout, primary beam pointing, and LST of integrated
observations. We also observed that the reduction in power esti-
mated plateaus after integrating more than 30 minutes of data. We
found a single scalar normalisation factor of 2.651 was sufficient
to recover the expected power to within 10% for most k-modes in
a 1D PS. We then generated simulated observations of the 21-cm
skymodel and verified that CHIPSwas able to recover the expected
signal. We found that frequency interpolation of the original light-
cone box causes some signal loss at higher k, but with the 2.651
normalisation factor, the recovered power is again close to within
10% of the expect signal. We conclude that this sky model is
sufficient to accurately test the AusEoRPipe and can be used in
conjunction with foreground models and simulated instrumental
effects to test calibration.

Data availability statement. The 21-cm and White Gaussian noise sky
models are available upon request to the authors. The CHIPS codebase is avail-
able upon request to the authors; all other code bases are linked throughout the
paper.
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Appendix A. Fitting for gridding density correction factor

As noted in Section 4.1, the power estimated from the Gaussian
noise simulations is consistent for integrations of 15, 30, and
45 observations (when using the same combination of LSTs and
pointings). We can therefore correct for gridding density by fitting
the observed ratio of measured to expected power as a function of

Figure A1. Fitting the median recovered ratio of the noise simulation as a function of
k⊥. Circles, squares, and triangles show themedian ratio for integrations of 15, 30, and
45 observations, respectively. The shaded regions are bound by the median absolute
deviation. The dashed black line shows the fitted broken power-law.

k⊥. We fit a broken power-law (see Fig. A1) as defined byk

A
k⊥

kbreak
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k⊥
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)](α1−α2)�

, (A1)

where A is an amplitude factor, kbreak is the k⊥ value where the
power-law breaks, α1 is the power-law index for k⊥ < kbreak, α2 is
the power-law index for k⊥ > kbreak, and � is the sharpness of the
break.We set α1 = 0 as the gridding density plateaus at low k⊥, and
set A= 0.37728, the median of the ratios where k⊥ < 0.1 hMpc−1

from Fig. 4d. We obtain α2 by performing a least squares fit with
a single power-law model Ckα2

⊥ , where C is some constant, on
ratios where k⊥ > 0.07 hMpc−1. We can then find kbreak by finding
where the power-law is equal to the amplitude A:

A= Ckα2
break, (A2)

kbreak = 10
log10 (A)−C

α2 . (A3)

We fit this function to the median value of the ratios for each k⊥
bin, as we found the values in each bin to have non-zero skew.
Taking the median should therefore be a better representation of
the data rather than the mean. We summarise the fitted param-
eters in Table A1. To create a normalisation function, we simply
take the inverse of this broken power-law.

We compare how well this fit predicts the observed ratios in
Fig. A2. Here, we plot the ratios as a function of the gridding
weights, rather than k⊥. We use the seaborn (Waskom 2021)
kdeplotl function to generate two-dimensional kernel density
estimates (KDE) to show the distribution of observed ratios in
blue. We also plot the KDE of the ratios predicted by the fitted
broken power-law in orange. We see that the fitted function pre-
dicts values close to the median value at high gridding weights. As
data with a high gridding weight is naturally up-weighted, these
data points contribute more to the estimated power in the 1D PS.
The net result of this is shown in Fig. A3, where we compare the
recovered 1D PS from the Gaussian noise simulation when cor-
recting with the single scalar normalisation factor, and the fitted

kSee https://gist.github.com/cgobat/12595d4e242576d4d84b1b682476317d for more
information on the functional form.

lhttps://seaborn.pydata.org/generated/seaborn.kdeplot.html.
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Table A1. Parameters for bro-
ken power-law fit.

Parameter Value

a1 0.0

� 0.01

A 0.377280447218

a2 -0.161193559625

kbreak 0.064354113566

Figure A2. Kernel density estimates of the recovered ratio of the noise simulation as a
function of CHIPS griddingweights (blue), and those predicted by fitted broken power-
law (orange) for: (a) the 15 observation integration of all LSTS; (b) 30 observations; (c)
45 observations.

functional form. No difference is seen at low k, with minimal dif-
ference seen at high k. We conclude that as the functional form
provides little difference to any limits, the scalar normalisation
factor is sufficient for correcting for gridding density.

Figure A3. The recovered 1D PS from the Gaussian noise simulation when correcting
with the single scalar normalisation factor, and the fitted functional form as shown in
Fig. A1.
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