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Abstract

We show that passively mode-locked lasers, subject to feedback from a single external
cavity can exhibit large timing fluctuations on short time scales, despite having a
relatively small long-term timing jitter. This means that the commonly used von Linde
and Kéfélian techniques of experimentally estimating the timing jitter can lead to large
errors in the estimation of the arrival time of pulses. We also show that adding a second
feedback cavity of the appropriate length can significantly suppress noise-induced
modulations that are present in the single feedback system. This reduces the short
time-scale fluctuations of the interspike interval time and, at the same time, improves
the variance of the fluctuation of the pulse arrival times on long time scales.
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1. Introduction

Passively mode-locked semiconductor lasers are envisaged as a compact, inexpensive
alternative to other pulsed sources of light [6, 27, 31, 41]. However, for this to be
realized, the issue of their relatively large timing jitter needs to be overcome. To this
end, research has been carried out on various techniques of improving the timing
regularity of such devices. These techniques include hybrid mode-locking [2, 15],
optical injection [14, 42, 43], opto-electronic feedback [13] and optical feedback
[3–5, 7, 9, 10, 12, 23, 28, 29, 36, 37, 46, 47, 52, 53]. All-optical feedback has been
of particular interest, as this technique is very simple to implement and does not
require any additional electronics. Theoretical studies on this topic have predicted
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that a reduction in the timing jitter can be achieved when resonant feedback lengths
are chosen, that is, integer multiples of the period of the laser [34, 37], and that
better reduction can be achieved for longer delay times [23]. Experimentally, a
resonance structure in dependence on the delay length has also been observed, as
well as improved timing jitter reduction for longer feedback cavities [3, 4, 29, 33].
However, for longer delay times, the influence of noise-induced modulations plays
an increasingly important role. These modulations are seen experimentally as side
peaks in the power spectra of the laser output, and are sometimes referred to as
supermode resonances. So far, there appears to be a lack of understanding of how these
noise-induced modulations affect the timing regularity of passive mode-locking lasers
[5, 9, 10, 12, 19, 52, 53]. In this paper, we will show how noise-induced modulations
affect the pulse train and how this influences the common measures of the timing jitter.

Noise-induced oscillations (the underlying deterministic system is in a steady state)
or modulations (the underlying deterministic system exhibits oscillatory dynamics)
have been studied and observed in a wide range of systems [8, 18, 24, 40, 45, 55].
There have also been several works on the suppression thereof, particularly using
feedback [16, 19, 22, 24, 40]. In this paper, we will show how the timing regularity of
the mode-locked laser output can be improved by implementing a dual feedback cavity
configuration, where the second cavity acts to suppress the noise-induced modulations
arising due to the first feedback cavity.

The paper is structured as follows. In Sections 2.1 and 2.2, we present the model
for the passively mode-locked laser subject to optical feedback and various methods
of determining long-term timing jitter. In Section 3.1, we look at the influence of
resonant optical feedback from one external cavity on the regularity of the pulse
train and demonstrate the impact of noise-induced modulations. In Section 3.2, we
propose a simplified iterative map that can reproduce the effect of the modulations.
Subsequently, in Section 3.3, we show that the noise-induced modulations can be
suppressed via the addition of a second feedback cavity with an appropriately chosen
length and we identify optimal conditions for the second feedback cavity to achieve
both modulation suppression and low long-term timing jitter. Finally, we discuss the
results and conclude.

2. Methods

2.1. Delay differential equation model We use the model presented in [22] for a
two-section passively mode-locked semiconductor laser, subject to optical feedback
from two external cavities (a sketch of the setup is shown in Figure 1(a)). The model
is based on that proposed in [48–50], which was extended to include optical feedback
in [37]. The laser is described by a set of three delay differential equations:

Ė(t) = −γE(t) + γR(t − T)e−iΔΩTE(t − T) +
√

Rsp ξ(t)

+
∑
l=1,2

KleilClγR(t − T − lτl)e−iΔΩ(T+lτ1)E(t − T − lτ1), (2.1)
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FIGURE 1. (a) Sketch of the two-section passively mode-locked laser with two external feedback cavities
explaining the quantities in the delay differential equation model (2.1)–(2.3). (b) Sketch of the emitted
pulse train in red, blue pulses represent idealized pulses with equal distance TC (TC is the mean pulse
distance), arrows indicate definition of timing fluctuations Δtn. (c) Visualization of the distribution
of pulse intervals t1, pulse-to-pulse timing jitter is σpp = σΔt(n = 1), long-term jitter is defined as
σlt = σΔt(n→ ∞).

Ġ(t) = Jg − γgG(t) − e−Q(t)(eG(t) − 1)|E(t)|2, (2.2)

Q̇(t) = Jq − γqQ(t) − rse−Q(t)(eQ(t) − 1)|E(t)|2, (2.3)

with

R(t) ≡
√
κe1/2((1−iαg)G(t)−(1−iαq)Q(t))

being the change of the slowly varying electric field amplitude E during one roundtrip
in the ring cavity (αg, αq are the linewidth enhancement factors in the gain and
absorber sections which we assume to be zero [20]). All transmission, coupling and
internal losses at the interfaces between the different sections are lumped together into
the attenuation factor κ.

The saturable gain G and the saturable loss Q are effective dynamic variables that
describe dimensionless carrier densities. They have been obtained from the travelling
wave model via integration of the carrier densities within the gain and absorber
sections [37]. The same holds true for the pump parameters Jg and Jq, which are
integrated and rescaled values that are proportional to the injection current in the gain
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TABLE 1. Parameter values used in numerical simulations, unless stated otherwise.

Parameter Value Parameter Value Parameter Value

γ 2.66 ps−1 κ 0.1 T 25 ps
γg 1 ns−1 αg 0 Rsp 0.04 ps−1

γq 75 ns−1 αq 0 C1 0
Jg 0.12 ps−1 rs 25 C2 0
Jq 0.3 ps−1 ΔΩ 0 T0 25.373 ps

section and to reverse bias induced carrier losses in the absorber section [37]. The
carrier decay rates inside the gain and absorber sections are denoted by γg and γq,
respectively (for semiconductor materials, the lifetime of carriers within the gain γg is
much smaller than in the absorber γq [1]).

The finite width of the gain spectrum is taken into account by a bandwidth-limiting
element, which is described by a Lorentzian-shaped filter function with a width of γ.
If the gain is centred at the optical frequency of the closest cavity mode (assumed
here for simplicity), the detuning ΔΩ is zero. Inhomogeneous broadening is not taken
into account here, but could also be included in the model [39]. The last terms in
(2.2) and (2.3) describe the light–matter interactions which leads to a depletion by
the pulse that travels in the cavity. The factor rs is proportional to the ratio of the
linear gain coefficients of the absorber and gain sections. Spontaneous emission noise
is taken into account in (2.1) via a complex Gaussian white noise term ξ(t) with a
strength

√
Rsp, where Rsp is the spontaneous emission rate. All laser parameters are

as described in [22] and given in Table 1, and correspond to parameters that model
the experimentally observed emission of semiconductor-based two-section passively
mode-locked lasers [33].

Here, K1 and K2 are the feedback strengths from the two external cavities with
delay lengths τ1 and τ2, respectively. Under the assumption of weak feedback, we only
include contributions to the feedback from light that has made one roundtrip in the
feedback cavities [37]. Here, C1 and C2 are the phase shifts accumulated after one
roundtrip in the external cavities.

Feedback influences the dynamics of the mode-locked laser [34, 35]; however,
in this paper, we are primarily interested in the reduction of the timing jitter for
fundamental mode-locking, so we therefore restrict our study to only resonant feedback
delay times, that is, integer multiples of the mode-locked pulse period which we denote
as T0. Note that due to the light–matter interaction within the cavity, the period of
the deterministic solution T0 is slightly larger than the cold cavity roundtrip time
T. Additionally, we set the feedback phases Cl to zero, as these have no qualitative
influence on the timing jitter reduction trends in dependence of the feedback delay
lengths [22, 37]. When we discuss single-cavity feedback (K2 = 0), we will refer to the
feedback strength K and delay length τ. In the following, the parameter values used
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will be those given in Table 1, unless stated otherwise. The laser cavity roundtrip used
here, T = 25 ps, corresponds to a 1 mm Fabry–Perot cavity [35].

2.2. Timing jitter calculation methods For passively mode-locked lasers, there
are several measures of the timing jitter that are commonly used. Experimentally, the
so called root mean square (r.m.s.) timing jitter is usually calculated using the von
Linde method [51], which involves integrating over the side band of a peak in the power
spectrum of the laser output, or the timing jitter is calculated via the Kéfélian method
from the width of the fundamental peak in the power spectrum [25]. This is commonly
used in experimental studies [10, 12, 13, 25, 53]. For our numerical calculations,
it is more convenient to derive the long-term timing jitter directly from the timing
fluctuations [26, 36]. Please see Figure 1(b) for a visualization of their definition. We
will compare this approach also with the power spectrum based Kéfélian method. In
the following, we present the three methods that are used in this study to calculate the
timing jitter.

(1) The Kéfélian method [25] assumes a Lorentzian line shape of the peaks in the
power spectrum and gives the long-term timing jitter σlt(h) as a function of the number
of the harmonic h by

σlt(h) = TC

√
ΔνhTC

2πh2 , (2.4)

where Δνh is the width of the Lorentzian fitted to the hth harmonic of the power
spectral density of the laser output |E|2 and TC is the mean pulse period. Note that
the quantity defined by (2.4) is also sometimes referred to as the pulse-to-pulse
jitter [12, 25] which, however, rather describes the width of the inter-pulse distance
distribution (see Figure 1(c) for a visualization).

(2) The timing jitter can also be calculated directly from the pulse arrival times
[26, 36]. Defining timing fluctuations as shown in Figure 1(b) by

Δtn ≡ tn − nTC,

where tn is the arrival time of the nth pulse and nTC is the “ideal” arrival time of the
nth pulse in the jitter free case, the long-term timing jitter is given by

σlt = lim
n→∞
σΔt(n) = lim

n→∞

√
VarΔtn

n
. (2.5)

As a passively mode-locked laser does not have a clock time, TC is the average
interspike interval time calculated over many noise realizations (experimental runs).
We calculate the timing fluctuations and the variance VarΔtn thereof by detecting the
pulse positions tn in a long train of emitted pulses as described in [36]. It is noted that
there are also other very efficient methods for timing jitter calculation as published by
Meinecke et al. [32]; however, for our case with side modes, they are not suitable.

(3) For numerical simulations of passively mode-locked lasers with optical feed-
back, there is also a semi-analytic method of calculating the long-term timing jitter
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[23, 38]. In [23], the following expression was derived from the semi-analytic timing
jitter for resonant feedback delay lengths τ = qTC, q ∈ N:

σlt(q) =
στ=0

lt

1 + qKF (K)
. (2.6)

Here, στ=0
lt is the timing jitter for instantaneous feedback (τ = 0) and F (K) a

semi-analytic expression depending on the laser parameters and feedback strength
and must be calculated numerically, as described in [23]. Equation (2.6) holds for
sufficiently small noise terms in (2.1)–(2.3) and as long as all non-neutral eigenmodes
of (2.1)–(2.3), linearized about the mode-locked solution, have eigenvalues λ with
Reλ � 0, that is, as long as the influence of noise-induced modulation can be
neglected.

3. Results

3.1. Timing jitter in passively mode-locked lasers subject to optical feedback
from one external cavity In the limit that the timing fluctuations behave like a
random walk, all the measures of the timing jitter described in Section 2.2 are directly
proportional to one another [23, 36]. For a solitary laser, this limit is reached when
one considers the timing fluctuations over time spans that are much longer than any
internal time scales that exist in the laser system. The solitary laser pulse positions are
correlated over a few roundtrips in the laser cavity due to the finite time the system
requires to recover from perturbations and thus the internal time scale is determined
by the relaxation oscillation frequency. This means that on time scales of a few
thousand laser cavity roundtrips, the timing fluctuations behave like a random walk,
meaning that the variance of the timing fluctuations grows linearly with the number of
roundtrips [23, 36].

By adding optical feedback to a passively mode-locked laser, an additional time
scale is introduced to the system, which has two major effects. First, the pulse positions
become correlated over the delay time of the feedback cavity, which leads to a
reduction in the timing jitter. This was shown in [23] using a semi-analytic approach to
calculate the long-term timing jitter. Second, the stability of the mode-locked solution
is decreased, which can lead to noise-induced modulations with frequencies related to
the feedback delay time [24, 54]. We will now look at the consequences of these two
effects.

In Figure 2(a), the power spectrum of the simulated mode-locked laser without
feedback is shown at the fundamental frequency (first harmonic), while the inset
shows the full spectrum. Figure 2(b) shows the timing jitter σΔt(n) determined from
the timing fluctuations Δtn as a function of the roundtrip number n (defined in (3.1)),

σΔt(n) =

√
VarΔtn

n
. (3.1)
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FIGURE 2. Spectra and timing jitter without delay. (a) Zoom of first peak of the electric field power
spectrum S|E|2 (blue) with a Lorentzian line shape fitted to the first harmonic peak (orange, dashed), inset
shows full power spectrum, T0 is the mode-locking period. (b) Normalized standard deviation of the pulse
arrival timesσΔt(n), (3.1), as a function laser cavity roundtrip number (blue). Grey dash-dotted and orange
dashed line depict timing jitter obtained via semi-analytic method ((2.6) with στ=0

lt = 4.4 fs, F (K) = 0.9)
and Kéfélian method ((2.4), h = 12, error range shaded in orange), respectively.

For n much longer than the time scales of the dynamics of the mode-locked laser, the
jitter σΔt(n) determined by (3.1) converges to the long-term jitter given by (2.5) and
there is an agreement with all three methods used here, that is, the timing fluctuations
described by (2.5) (blue line in Figure 2(b)), the long-term timing jitter calculated
semi-analytically using (2.6) (grey dash-dotted line), and the long-term timing jitter
described by the Kéfélian method and calculated using (2.4) with h = 12 (orange
dashed line).

When resonant feedback is introduced, the linewidth of the fundamental peak
is reduced and supermodes start to appear in the power spectrum (the frequency
spacing is given by ≈ 1/τ). Examples of experimentally observed noise peaks are
found in [3, 9, 47]. Figure 3(a) shows example spectra for single cavity feedback
with delay times of τ = 100T0 and τ = 1000T0, where T0 is the period of the
underlying deterministic system. We only consider resonant feedback and thus only
delay times that are integer multiples of the natural pulse repetition frequency 1/T0.
For non-resonant feedback conditions, complex emission dynamics is observed which
is, however, not the focus of this work and so is studied in more detail elsewhere [21,
30, 44].

The timing jitter σΔt(n) that results from the timing fluctuations is depicted in
Figure 4 with blue lines. The long-term timing jitter calculated via the Kéfélian method
((2.4) and orange dashed lines in Figure 4) was obtain by fitting the 60th harmonic of
the power spectrum (Figure 3(b)). Due to the linewidth reduction with the resonant
feedback, it was necessary to fit the Lorentzian to a high harmonic such that the
frequency resolution allowed for a sufficiently accurate fit.

Comparing the jitter curves of the two delays in Figures 4(a1) and 4(b1), it is
apparent that for τ = 100T0, the jitter σΔt converges to a constant value in much fewer
roundtrips than for τ = 1000T0. This is a consequence of the pulse positions being
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FIGURE 3. Delay-induced side modes. Power spectra S|E|2 of the electric field intensity for delay values
of τ = 100T0 (light blue) and τ = 1000T0 (dark blue). (a) Zoom around first harmonics, (b) zoom around
the central peak of the 60th harmonics with the Lorentzian fit indicated in orange.

FIGURE 4. Timing jitter of mode-locked laser with one delay. Normalized standard deviation of the pulse
arrival times σΔt(n) as a function of the laser cavity roundtrip number n (blue lines). Grey and orange
dotted lines indicate timing jitter obtained via the semi-analytic method (στ=0

lt = 4.4 fs, F (K) = 0.9) and
the Kéfélian method (h = 60) analogous to Figure 2 for two different delay values: (a) τ = 100T0 and
(b) τ = 1000T0. Panels (a2) and (b2) are zooms of panels (a1) and (b1). Parameters: K = 0.1, all other
parameters as in Table 1.

correlated over longer times in the longer delay case. Further, the jitter plots for the
long delay show clear evidence of noise-induced modulation of the pulse arrival times.
In the τ = 1000T0 case in Figure 4(b1), pronounced fluctuations in σΔt are present as
can be seen by the oscillating blue curve. These fluctuations have a period roughly
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equal to τ and are caused by noise-induced modulations (as was also visible in the
power spectra in Figure 3(a)). Noise-induced modulations are also present for smaller
delay times; however, the effect is not as pronounced since the damping rate scales
with 1/τ. The presence of the fluctuations for τ = 1000T0 means that σΔt never truly
converges to a constant value.

The above observations have several consequences. First, it means that the timing
fluctuations are not wide-sense stationary [11], which means that one can not use the
Wiener–Khinchin theorem [17] to relate the autocorrelation function of the timing
deviations to the phase noise spectrum [34]. Second, in a strict sense, the long-term
timing jitter cannot be calculated reliably when fluctuations are present and the
long-term timing jitter calculated from the power spectrum cannot be interpreted
as the variance of the timing deviations. Furthermore, the lower limit of the jitter
σΔt does not reach the semi-analytic limit (dash-dotted grey line in Figure 4(b2)).
Whereas, for τ = 100T0, random-walk-like behaviour is regained in the jitter σΔt(n)
after approximately 104 laser cavity roundtrips and the semi-analytic limit (dash-dotted
grey line in Figure 4(a2)) is reached.

We have established that the noise-induced oscillation increase the variance of the
timing fluctuations (that is, the standard deviation of timing fluctuations σ(Δtn) =√

VarΔtn). In addition to this, the more direct effect is that they cause periodic
modulations in the timing fluctuations. An example of this is shown in Figure 5,
where the timing fluctuations Δtn are depicted for one noise realization as a function
of the roundtrip number for τ = 1000T0 (in panel (a)) and τ = 100T0 (in panel (b)). If
the amplitude of these delay induced modulations is sufficiently large, then the pulse
arrival times can deviate significantly from the expected arrival time interval based on
the long-term jitter. To illustrate this, we calculate the expected normalized standard
deviation of the pulse arrivals times σ(Δtn) after 104 laser cavity roundtrips from the
long-term timing jitter and compare this with the amplitude of the timing fluctuations
depicted in Figure 5. For τ = 100T0, the long-term timing jitter is σlt ≈ 0.44 fs
(see Figure 4(a2)). After 104 roundtrips, this corresponds to a standard deviation of
σ(Δtn) = σlt

√
n = 44 fs, which dominates the amplitude of the timing fluctuations Δtn

while the delay-induced amplitudes are ≈ 40 fs in Figure 5(b). To make the same
comparison for the τ = 1000T0 case, we take the value to which the minima of σΔt

converge, that is, a long-term timing jitter of σlt ≈ 0.13 fs, as seen in Figure 4(b2). In
this case, the standard deviation after 104 roundtrips is σ(Δtn) = σlt

√
n = 13 fs, which

is an order of magnitude smaller than the amplitude of the modulation of Δtn shown in
Figure 5(a) (≈ 130 fs).

We can thus conclude that the long-term timing jitter gives an estimate of the under-
lying random walk-like behaviour, but contains no information on timing deviations on
short time scales. For long feedback delay times, the amplitude of the noise-induced
modulations of the timing deviations can be larger than the underlying drift in the
timing fluctuations, even on relatively long time scales (105 roundtrips corresponds
to approximately 2.5 ms). Therefore, neglecting the influence of the noise-induced
oscillation can lead to significant errors in the estimation of pulse arrival times.
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FIGURE 5. Timing fluctuations Δtn as a function of the roundtrip number n for (a) τ = 1000T0 and (b)
τ = 100T0. Delay-induced fluctuations with amplitudes of ≈ 130 fs (blue arrow on the right) dominate
σ(Δtn)τ=1000 = 78 fs for τ = 1000T0 while they have smaller amplitudes of ≈ 40 fs for τ = 100T0 where
stochastic fluctuations dominate σ(Δtn)τ=100 = 30 fs. Orange arrows indicate value for σΔt(104) obtained
from long-term jitter (13 fs, 44 fs). Parameters: K = 0.1, all other parameters as in Table 1.

3.2. Timing jitter for a driven iterative map To understand how the
noise-induced modulations affect the variance of the timing fluctuations, it is helpful to
consider a simple iterative map describing a random process with an added oscillatory
term. We consider

Tn+1 = Tn + TP + ξ(n + 1) + aH , (3.2)

where TP is the unperturbed inter pulse distance, ξ(n) is a Gaussian white noise term
and H is a sinusoidal function of either the roundtrip number n or the interspike
interval Tn, that is, H(n) = sin(2πn/τs) or H(Tn) = sin(2πTn/τs), with amplitude a.
If a = 0, then

Tn = nTP +

n∑
i=1

ξ(i) (3.3)

and the series {Tn − nTP} is a random walk. In this case, apart from statistical fluctua-
tions, σΔt(n) is constant (Figure 6, black line). If a is non-zero andH(n) = sin(2πn/τs)
is used, then the sinusoidal term adds regular modulations onto the variance. For n
equal to integer multiples of half the period of the modulations, τs, the modulations
cancel and σΔt(n) is the same as in the a = 0 case (compare red and black line
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FIGURE 6. Jitter in a driven iterative map. Normalized standard deviation of the pulse arrival timesσΔt(n)
as a function of the laser cavity roundtrip number as reproduced by the iterative map of (3.2): (a) τs=300;
(b) τS=100. Black line shows the case of a random walk (no forcing functionH), blue and red lines show
results with different driving termsH (see legend). Parameters: TP = 1.

in Figure 6, where the minima of the red line are on the black curve). If instead
H(Tn) = sin(2πTn/τs) is used, the added modulations do not cancel due to the fluc-
tuations in the Tn values that enter the sine function, this leads to an overall increase in
the variance (Figure 6, blue line). The mode-locked laser with feedback is comparable
to the latter case as the noise-induced modulations are not perfectly periodic.

3.3. Optimized timing jitter reduction via dual-cavity feedback In the previous
section, we have shown that noise-induced modulations are detrimental to the regu-
larity of the pulse trains produced by passively mode-locked lasers. In this section,
we investigate the influence of a second feedback cavity on the suppression of the
noise-induced modulations and hence on the improvement of the timing regularity of
the mode-locked laser output.

Noise-induced modulations are excitations of eigenmodes of a system which are
only weakly damped. To ascertain the relative magnitude of the modulations, one
looks at the eigenvalues of the underlying deterministic system. It has been shown
that for oscillatory systems with delay, as, for example, the mode-locked laser subject
to resonant feedback from two external cavities, the eigenvalues λ can be estimated
by the solution of the characteristic equation given in (3.4) as a function of the two
resonant delay times τ1 and τ2 [24]:

λ = −(Keff
1 + Keff

2 ) + Keff
1 e−λτ1 + Keff

2 e−λτ2 . (3.4)
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FIGURE 7. Real and imaginary parts of the largest eigenmodes of a passively mode-locked laser subject
to feedback from two external cavities predicted from the fitted characteristic equation (3.4) [24].
Parameters: Keff

1 = Keff
2 = 0.047, τ1 = 1000T0.

Differences between different oscillatory systems only occur in how strongly the
feedback acts upon the system (via the effective feedback strengths Keff

1,2), but not in
the form of the characteristic equation [24]. Therefore, Keff

1 and Keff
2 can be determined

numerically via fitting results for small delays to (3.4). We are interested in the
influence of the length of the second feedback cavity, and hence, in Figure 7, the
real and imaginary parts of the three largest eigenvalues are plotted as a function
of τ2 for τ1 = 1000T0. The real part gives the damping rate of perturbations and the
imaginary part gives the frequency of modulations that are excited by perturbations.
This means that the smaller the real parts of the eigenvalues, the smaller the amplitude
of the noise-induced modulations will be. For the case at hand, the largest damping
rate occurs for τ2 = 97T0.

In Figure 8, power spectra of the electric field amplitude are shown for the three
τ2 values marked by the blue vertical lines in Figure 7. These spectra show a
significant suppression of the noise-induced modulations with respect to the single
feedback cavity case (dark blue line). As predicted from the eigenvalues, the greatest
suppression is achieved for τ2 = 97T0. In addition to the reduction in the amplitude of
the noise-induced modulations (indicated by the lower power in the side peaks of the
power spectra), the dominant frequency of the modulations is also changed.

To make a fair comparison to the single feedback cavity case, the total feedback
strength is kept the same, that is, K1 + K2 = K. This means that there is a trade
off between oscillation suppression and long-term jitter reduction. The semi-analytic
analysis in [23] showed that in the absence of noise-induced modulations, the
long-term timing jitter decreases with increasing resonant feedback lengths according
to (2.6). Therefore, if τ2 is shorter, the contribution to this effect is reduced. However,
the greatest oscillation suppression is expected for a relatively short second feedback
cavity and the analysis of the previous section has shown that the noise-induced
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FIGURE 8. (a)–(c) Power spectra of the electric field S|E| and timing fluctuations S|Δtn | of a passively
mode-locked laser subject to feedback from two external cavities for delays indicated by the vertical blue
lines in Figure 7. Blue lines show spectra for the τ = 1000T0 single feedback cavity case, while overlayed
coloured spectra result from two delays. (d) Timing jitter σΔt, (3.1), for the case of one delay (blue) and
two delays (colours as in the spectra in panels (a)–(c)), grey dashed line shows the long-term timing jitter.
Parameters: K = 0.1, K1 = K2 = 0.05, τ1 = 1000T0, all other parameters as in Table 1.

modulations cause the long-term jitter to increase. To determine the relative influence
of these competing effects σΔt(n) is plotted in Figure 8(d) for the single feedback
case (dark blue) and the three dual feedback cases corresponding to Figure 8(a)–(c)
(coloured). In all three dual feedback cases, it can clearly be seen that the modulations
are suppressed. The long-term timing jitter is slightly different in the three cases, but in
each case, it is lower than in the single feedback system. The best results are achieved
for τ2 = 710T0. For this feedback configuration, the long-term timing jitter is reduced
by ≈40% compared with the single feedback case, and the modulation of the timing
fluctuations is effectively suppressed. Although the change in the long-term jitter is
not very large, the reduction in the modulation amplitude represents a significant
improvement in the regularity of the pulse train. For larger τ2 values, the increase in
the amplitude of the noise-induced modulations out weighs the influence of the longer
cavity and the long-term timing jitter increases.

Experimentally, dual feedback configurations have been implemented and, although
the delay lengths were not optimized, these studies showed a significant improvement
in the r.m.s. timing jitter [5, 12, 19, 22]. In these works, the reduction in the r.m.s. tim-
ing jitter was larger than the reduction in the long-term jitter demonstrated numerical
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here. This is expected due to the delay lengths used in these experimental studies. In
[22], the delay length of the longer feedback cavity is approximately 3000 times the
interspike interval time. For longer delay times, the amplitude of the noise-induced
modulations is increased, which causes a greater increase in the variance of the timing
fluctuations, and hence in the r.m.s. and long-term jitter, meaning that comparatively,
a greater improvement can be achieved with a dual feedback setup.

4. Discussion and conclusions

We have shown how noise-induced modulation of the interspike intervals affects
the timing regularity of passively mode-locked lasers subject to optical feedback.
Although the occurrence of noise-induced modulations in such systems has been
observed experimentally [3, 9, 47], so far, their influence has been neglected or has
not been fully taken into account. The results presented here show that this can lead
to large over estimates of the regularity of the emitted pulse trains. This is because the
long-term timing jitter only gives an indication of the regularity of pulse trains over
very long times and contains no information on fluctuations on shorter time scales.
When the delay lengths are very long, then noise-induced fluctuations, which occur
on the time scale of the feedback delay time, can cause larger variations in the pulse
arrival times than the underlying random-walk-like drift. This effect becomes more
important the longer the feedback cavity, as the damping rate of the noise-induced
modulations decreases.

A significant improvement in the regularity of the emitted pulse trains can
be achieved by adding a second feedback cavity of the appropriate length. This
improvement occurs due to the suppression of the noise-induced modulations caused
by an increase in the damping rate of the largest eigenmodes of the system. To find the
optimal length for the second feedback cavity, minima in the largest eigenvalue need to
be found. The eigenvalues depend on the feedback delay times and feedback strengths,
and as such, the minima are not given by fixed ratios of τ1 and τ2 [24]. Generally,
though, due to the trade off between oscillation suppression and the increased
long-term timing jitter reduction achieved for longer delay times [23], the second delay
length should be approximately three quarters the length of the first cavity.

By implementing a dual feedback configuration, the timing stability of a passively
mode-locked laser can be substantially improved, making them promising devices for
a wide range of applications.
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