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PACKING AND COVERING OF THE COMPLETE 
GRAPH WITH 4-CYCLES* 

BY 
J. SCHÔNHEIM AND A. BIALOSTOCKI 

ABSTRACT. The maximal number of pairwise edge disjoint 
4-cycles in the complete graph Kn and the minimal number of 
4-cycles whose union is Kn are determined. 

1. Introduction. In a survey [1] Beineke defined the general covering, respectively 
packing problem as follows : 

The general covering (packing) problem in graph theory asks for the minimum 
(maximum) number of graphs with a property P, having as their union (being 
edge disjoint subgraphs of) a given graph G. 

Solutions of these problems are known only for a few properties P, when G 
is arbitrary. In most cases G is supposed to be the complete graph Kn or the 
complete bipartite graph Km>n. In particular Chartrand, Geller and Hedetniemi [3] 
solved the covering and the packing problem of the complete graph with cycles, 
not necessarily of equal length. Their result follows from the case when the cycles 
are of length 3. Then, both problems have been solved in a non-graph theoretical 
context, rather connected with Steiner triple systems by Fort and Hedlund [4] 
for the covering and by Schônheim [5] for the packing. 

For the restricted problem, when a partition of the edges of Kn is possible a 
solution has been given if G is K± or Kb by Hanani [6], if G is a 4.2w-cycle, m>0 , 
by Kotzig [7] and if G is ap-cycle, p an odd prime, by Rosa [8]. 

The purpose of this paper is to give a complete solution to the problem of cover­
ing and packing the complete graph with 4-cycles. 

In contrast to the 3-cycle case the solution does not derive from the corresponding 
combinatorial problem. 

In the proof we will make use of Theorem 0 which is a special case of the following 
theorem of Beineke [2], cited also in [1]: 

THEOREM. The maximum number of KrJs in a packing of Km n is 

-KM;]} OJ];])-
THEOREM 0. The complete bipartite graph Kmn is the union of edge disjoint 

4-cycles if and only ifm=n=0(mod 2). Then the number of 4-cycles is mnj4. 
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As usual [x] will denote the largest integer not exceeding x and {x} the least 
integer not less than x. 

2. Results. The results of the above mentioned problems are given in the fol­
lowing three theorems, the first being a special case of the following theorem of 
Kotzig [7]: 

If n~ 1 (mod Sk) then there is a partition of the edges of Kn into Ak-cycles, the 
condition being also necessary ifk is a power of 2. 

THEOREM 1. {Exact covering and packing). The complete graph having n vertices, 
« > 1, is the union of edge-disjoint 4-cycleS if and only ifn=: l(mod 8). 

THEOREM 2. {Packing). 
(i) The maximum number of edge disjoint 4-cycles which are subgraphs of the 

complete graph having n vertices is 

n-r 
(1) 

and 

(2) [n[n-1 

if M 5 or 7 (mod 8) 

•1 otherwise 

(ii) Moreover, these 4-cycles may be chosen so that the non-packed edges form 
a one-factor if m is even, whereas they form a 3-cycle ifn=3 (mod 8), two 3-cycles 
having a common vertex if n~5{rnod 8) and a 5-cycle if n=l{mod 8). 

THEOREM 3. {Covering). The minimum number of 4-cycles whose union is the 
complete graph having n vertices is 

(3) {ipT^)) if n ^ 3 ( m o d 8 ) 
and 

(4) j-|ZLZ_ \\ + l otherwise. 

REMARK. Clearly, in the case of Theorem 1 the number of covering 4-cycles 
equals the number of packing 4-cycles and is n{n—1)/8. 

3. Proofs. Vertices of a graph will be denoted by a, b, c,. . . or 1, 2, 3 , . . . and 
accordingly a 4-cycle will be denoted by abed or 1234, thus abed will mean the set 
{ab, be, cd, da) of four undirected edges. 

Proof of theorem 0. Let Abe a. set of n vertices and B a set of m further vertices. 
The complete bipartite graph in which every vertex of A is connected by an edge 
to every vertex of B will be denoted by K{A, B). 

The necessity follows simply from the fact that any vertex of A has to be adjacent 
to two vertices of B in every 4-cycle in which x occurs and to every vertex of B 
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exactly once. So m=0(mod2). The same argument starting with a vertex of B 
leads to «==0(mod 2). 

For the sufficiency consider a partition of the vertices of A into n/2 disjoint 
pairs {a2i_l9 fl2Jj=i and a similar partition {è2i_i, b2j}™=ii of the vertices of B. Then 
K(A9 B) is the union of the mnjA 4-cycles: 

in h n h \n/2 m/2 

which are edge disjoint. 

Proof of theorem 1. The necessity follows from two simple arguments. First 
the total number m(n—1)/2 of edges has to be partitioned into 4-cycles, hence 
m(n— l)/8 has to be an integer i.e. n(n— l)=0(mod 8). On the other hand every 
vertex has to be adjacent to two vertices in every 4-cycle, hence n= l(mod 2) and 
therefore w=l(mod 8) is necessary. 

The sufficiency will be proved by induction. For n=9, the following nine 4-
cycles are edge disjoint and their union is K9: 1263, 2374, 3485, 4596, 5617, 6728, 
7839,8941,9152. 

This can be seen either directly, either observing first that the four differences 
mod 9 taken between neighbour digits in the first cycle are all different and no two 
have the sum 0 (mod 9) and secondly that the other cycles are obtained from the 
first by cyclic shifts mod 9. 

Thus, in order to start induction suppose « = 8 w + l , m>2. Consider Kn and 
let x be a fixed vertex. Split the remaining vertices into two sets A and B, A con­
taining eight arbitrary vertices and B the remaining 8(m— 1) vertices. The complete 
graphs A U x and B U x are each the union of edge disjoint 4-cycles, the first by 
the initial value and the second by the hypothesis of the induction, whereas the 
bipartite graph K(A, B) is also the union of edge disjoint 4-cycles, by Theorem 0. 
So every edge of Kn occurs in exactly one of the above 4-cycles. 

Proof of theorem 2. Clearly there are no more packing 4-cycles then 
[nj4[(n—1)/2]] since each vertex occurs in at most [(n—1)/2] 4-cycles. This proves 
that (1) is an upper bound. This bound can be improved if w=5 or 7 (mod 8). 
Indeed, suppose first, for w=8m+5, that the above bound is attained. Then 
there are 8m2+qm+2 packing 4-cycles containing 32m2+36m+8 edges, i.e. all 
edges but two. This is impossible, because, consider a vertex v occurring only 
once in the two non-packed edges. Then all other edges containing v should be 
packed, a contradiction; since their number is odd, namely 8m+3. 

If « = 8 m + 7 , the assumption that bound (1) is attained leads to the same con­
tradiction. This follows from the same argument as before, the number of packed 
edges being in this case 32m2+52m+20, i.e. all edges but one are packed. 

Herewith (1) and (2) are established as upper bounds. 
In order to show that these bounds are always obtained and in order to prove 

part (ii) of the theorem, suppose first m is even, thus n=8k+2j,j=09 1, 2, 3. We 
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have to prove that there are, in Kn9 &k2+2(2j—l)k+(j(j—l))l2 edge disjoint 4 
cycles, as claimed in (i), such that the remaining edges form a one-factor. 

The following packings correspond to the initial values of the induction we will 
use, namely for « = 2 , 4, 6, 8 respectively: 

</>, {1234}, {1234, 5162, 5364} 

(5) {1234, 5678, 1526, 1728, 3546, 3748} 

the non-packed edges being respectively: 

{12}, {13, 24}, {13, 24, 56}, {13, 24, 57, 68}. 

Suppose now n=8k+2j>l0. Split the vertices of Kn into two sets A and B9 

A containing eight vertices and B the other 8(k— l)+2y. By (5) and by the induction 
hypothesis, respectively, the complete graphs A and B may be packed in six, 
respectively 

8 ( / c ~ l ) 2 + 2 ( 2 j - l ) ( / c - l ) + J - ^ ~ ) , 

4-cycles, whereas all the edges of the complete bipartite graph K(A9 B) may be 
packed, by theorem 0, in 4(4(£— 1)+/) 4-cycles. So the only non-packed edges of 
Kn are in A or in B and form a one factor of Kn9 while the number of packed edges 
sums up to 8&2+2(2y— l)k+{j(j—\))j2 and Theorem 2 is true for even n. 

Next suppose n is odd. We will deal with the four possible cases separately, 
although the method used is essentially the same. 

n=$k+l. In this case all edges are packed, by Theorem 1, the number of 4-
cycles being n(n—1)/8, and the statement is true. 

«=8&+3. Denote by x, a, b three fixed vertices and by S the remaining Sk 
vertices. The edges of the complete graph S U x may be packed by Theorem 1 
in k(%k+l) 4-cycles, whereas the edges of the complete bipartite graph K(S; 
{a, b}) may be packed, by Theorem 0, in Ak 4-cycles. So the total number of packing 
4-cycles is 8k2+5k, and the only non-packed edges are ab9 bx9 ax as claimed in (2) 
and in part (ii) of the theorem. 

n=8k+5. Denote five fixed vertices by x9 a9 b9 c, d and let S be the set of the 
remaining Sk vertices. The edges of the complete graph S U x may be packed in 
k(Sk+l) 4-cycles, by Theorem 1. These 4-cycles together with abed and further 
8fc 4-cycles, packing the complete bipartite graph K(S; {a9 b9 c9 d}9 give &k2+9k+1 
packing 4-cycles. The non-packed edges are xa9 xb9 xc9 xd9 ab9 cd forming two 
3-cycles with common vertex x, as claimed in (2) and part (ii). 

n=Sk+7. Denote seven fixed vertices by x9 2, 3, 4, 5, 6, 7 and let S be the set of 
the remaining Sk vertices. The edges o f ^ U x may be packed in k(8k+1) 4-cycles 
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by Theorem 1. These 4-cycles, together with JC245, 3462, 56x7, 73x4 and with 
further Uk 4-cycles, packing the edges of K(S; {2, 3, 4, 5, 6, 7}) give 8fc2+13fc+4 
packing 4-cycles, the non-packed edges 25,53,36,67,72 forming a 5-cycle as stated. 

This completes the proof of Theorem 2. 

Proof of theorem 3. Clearly the covering is not possible with less than 
{(«/4){(«—1)/2}} 4-cycles, since each vertex occurs in at least {(«—1)/2} 4-cycles. 
This proves that (3) is a lower bound. It can be improved if «=3(mod 8). For, 
suppose «=8fc+3. Then, if the bound (3) would be attained then all edges would 
be covered by 8fc2+5&+l 4-cycles containing 32k2+20k+5 edges. This is only 
one edge more than all the edges, so only one edge can occur twice. But this is 
impossible since, if ab is this particular edge, then the vertex a is adjacent to b 
twice and to all other vertices once so totally to an odd number of vertices, a 
contradiction. This establishes that (3) and (4) are lower bounds. 

In order to show that bounds (3) and (4) are always attained, consider first the 
case when n is even, say n=%k+2j,j=0, 1, 2, 3. Then by Theorem 2 there is a 
packing containing [(n/4)[(«—1)/2]] 4-cycles and the only non-packed edges form 
a one-factor of 4k+j edges. These can be covered, clearly, with 2k+{j/2} 4-cycles. 
In this way the number of 4-cycles covering all edges is 

which sums up to precisely 

as stated. 
When n is odd, consider all possible cases as follows: 

H = 8 £ + 1 . The statement is true by theorem 1. 

n=%k+3. Let a, b, c be three fixed vertices. The packing given in the proof of 
Theorem 2 covers all edges but ab, be, ac. These three edges may be covered with 
two additional 4-cycles say abcx and acxy, so all edges are covered with 

4-cycles as stated. 

n=Sk+5. Let x, a, b, c, d be five fixed vertices. The packing given in proof of 
Theorem 2 covers all edges but xa, xb, ab, xc, xd, cd. These six edges may be 
covered with two additional 4-cycles, namely with cxab and cdxb. So all edges are 
covered with 

4-cycles as stated. 
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H = 8 & + 7 . Let x, 2, 3, 4, 5, 6, 7 be seven fixed edges. The packing mentioned in 
proof of Theorem 2 covers all edges but the edges 25, 53, 36, 67, 72. These five 
edges may be covered with two 4-cycles e.g. 2536 and 672x. So all edges are covered 
by 

ra— - m) 4-cycles as stated. 
This proves Theorem 3. 

4. Final Remark. The results of this paper establish two numbers : 

if n y£ 5 or 7 (mod 8) 

I — 1 otherwise 
M(4, n) = 

4 2 
|] if n jà 3 (mod 8) 

m(4, n) = 

where M(k, n) and m(k, n) are respectively the A:-cycle packing number and the 
&-cycle covering number of the complete graph Kn. 

From this point of view the results in [5] and in [4] are the numbers M(3; n) 
and m(3; n). 
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