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COMPLETELY OPERATOR-SELFDECOMPOSABLE
DISTRIBUTIONS AND OPERATOR-STABLE
DISTRIBUTIONS

KEN-ITI SATO ano MAKOTO YAMAZATO

§1. Introduction

Urbanik introduces in [16] and [17] the classes L,, and L., of distribu-
tions on R' and finds relations with stable distributions. Kumar-Schreiber
[6] and Thu [14] extend some of the results to distributions on Banach
spaces. Sato [7] gives alternative definitions of the classes L, and L. and
studies their properties on R¢. Earlier Sharpe [12] began investigation of
operator-stable distributions and, subsequently, Urbanik [15] considered
the operator version of the class L on R? Jurek [3] generalizes som= of
Sato’s results [7] to the classes associated with one-parameter groups of
linear operators in Banach spaces. Analogues of Urbanik’s classes L,
(or L,) in the operator case are called multiply (or completely) operator-
selfdecomposable. They are studied in relation with processes of Ornstein-
Uhlenbeck type or with stochastic integrals based on processes with
homogeneous independent increments (Wolfe [18], [19], Jurek-Vervaat [5],
Jurek [2], [4], and Sato-Yamazato [9], [10]). The purpose of the present
paper is to continue the preceding papers, to give explicit characteriza-
tions of completely operator-selfdecomposable distributions and operator-
stable distributions on R?% and to establish relations between the two
classes. For this purpose we explore the connection of the structures of
these classes with the Jordan decomposition of a basic operator Q.

Let Z(R?) be the class of probability distributions on R?, and M, (R%)
be the class of linear operators on R® all of whose eigenvalues have
positive real parts. Let

oo

2 =3 (n)'log "Q" for t>0.

n=0
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For H C #(R?%) and Q € M,(R?), let £, (H) be the class of probability distri-
butions # on R? such that there are independent R¢-valued random vari-
ables X,, a, € R%, and ¢, > 0 satisfying
(i) the distribution of X, belongs to H,
(ii) the distribution of ¢ > 7., X; — a, converges to p as n — oo,
(iii) for every ¢ > 0, max,.;., P(t¢X,;| > ¢) — 0 as n — oo.
Define
OL(R", Q) = Z{#B?) ,
OL,(R%, Q) = Z(OL,,_,(R* Q)) form=1,2,---,
OL.(R%, @) = Mozm<» OL,(R*, @) .
Let OS(R?, @) be the class of probability distributions g on R such that
there are independent identically distributed X,, @, € R%, and ¢, > 0 that
satisfy (i1). We denote OL,(R% @), OL.(R% @) and OS(R?, @) shortly by
L.(Q), L.(Q), and S(Q), respectively. Let ID(R?) be the class of infinitely
divisible distributions on R¢. Let I be the identity operator. We use the
notation (Tu)E) = (T-'(E)) for a linear operator 7. The characteristic
function of x is denoted by p(2). For peID(R?) and t> 0, p' denotes
the distribution with characteristic function fi(2)’. The delta distribution
at a point a is denoted by d,. The following characterizations are known.

ProrosiTION 1.1 (Sato [7] for @ = I, Jurek [3] for general @, see also
Sato-Yamazato [10]). Let 0 < m < co. A distribution p belongs to L,(Q)
if and only if, for every te (0, 1), there exists y, in L, _(Q) such that

1.1 p=tpxp,.
Here we understand L_,(Q) = Z(R%).

ProrosiTioN 1.2 (Sharpe [12] and Jurek [3]). A distribution u belongs
to S(Q) if and only if p e ID(R?%) and there exists some a > 0 such that, for
every t > 0,

1.2 Pt = tuxda
with some a(t) € R%.

By Proposition 1.1, a distribution in L,(Q) is called @-selfdecomposable.

The property (1.2) in Proposition 1.2 is said as g is operator-stable with

exponent «~'Q. We call distributions in L,(Q) m + 1 times @-selfdecom-
posable, and call distributions in L.(Q) completely Q-selfdecomposable.
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If ¢ is in L.(Q) for some Q € M,(R%), then p is called completely operator-
selfdecomposable. It is easy to see that

(1.3) ID D L(Q) D L(Q@) D --- D L(Q) D 8(Q),

and each of L,(Q), 0 < m < oo, and L.(Q) is closed under convolution,
convergence, and raising to the ¢-th power.

§2. Condition for complete operator-selfdecomposability

We use the following notations throughout: {x,y) is the Euclidean
inner product in R? or the Hermitian inner product in C¢ |x| denotes
{x, x)!%, and #(R*) is the class of Borel sets in R?. The adjoint operator of
a linear operator T is denoted by 7”. For a real symmetric (or Hermitian)
operator A, ¢,(2) stands for (Az, z), the quadratic (or Hermitian) form
associated with A. Further,

8(z,x) = €™ — 1 — i{x, 2)(1 + |x[)",
h(s) = s*(1 + sH)!.
Let Q€ M, (R?). There are constants ¢; > 0 (1 <j < 4) such that
2.1) cu’ x| < |ux| < cut | x| foro<u<l1,
2.2) cilutt x| < |ufx| < ci'u | x| foru>1.
Denote by S, the set of & € R® such that |§] = 1 and |u%]| > 1 for every
u>1 Every x # 0 in R? is uniquely expressed as x = u®¢, £ S, u>0.

An infinitely divisible distribution g has the Lévy representation (7,
A,v), that is,

@3 1) =exp (i, — 276, + [ g Dudn),  zeR,

where 7 is in R?% A is real symmetric nonnegative definite, and v is a
measure on R¢ satisfying »({0}) = 0 and Jh([x])u(dx) < 0. The measure v

is the Lévy measure of p. The operator A is the Gaussian covariance
operator of u. We call g purely non-Gaussian if A =0. If 7 =0 and
A =0, then we call x centered purely non-Gaussian. If 7 =0 and v =0, then
p is called centered Gaussian. The class of yx e ID(R?) such that its Lévy

measure v satisfies j log |x|v(dx) < oo is denoted by ID(R?),..
lz]>1

The class of @-selfdecomposable distributions on R? is characterized
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by properties of A and v. In Sato-Yamazato [9] the following is called
the first representation (7, A, 2, k(1)) of pe L(Q).

ProposiTiON 2.1, Let Qe M (R%). If peLy(Q), then

@4)  j(z) = exp (i(r, 2> — 276,(2) + j _x(de) j: gz, uQS)ke(u)u“‘du),
Q

where 1 € R®, A is nonnegative definite,

2.5) pa(e”'¥2) is nonincreasing in t > 0 for every ze R,

2 is the zero measure or a probability measure on S,, k.(u) is measurable
in &, nonnegative, right-continuous, nonincreasing in u and

(2.6) 0< r A w98 Dr(Wu-'du = ¢ < oo

with c independent of £&. These 7, A, and 2 are uniquely determined by p
and k.(u) is uniquely determined by p up to & of A-measure zero. Con-
versely, given T, A, 2, and k.(u) with the above properties, one can find p
in L(Q) satisfying (2.4).

Remark. 2.1. In [9], the property (2.5) is expressed in another form.
Each of the following two conditions is equivalent to the condition (2.5):

@.7 64(2) = r ds(e”'¥2)dt with some nonnegative definite B ;
0

(2.8) QA + AQ’ is nonnegative definite .
In fact, (2.7) implies (2.5) since

dae™¥2) = r dsle*¥2)ds .
The condition (2.5) implies (2.8) and (2.8) implies (2.7), because
(_d/dt)(¢A(e~tQ’z)) = ¢QA+AQ’(e‘tQ’z) .

Note that the integral in (2.7) is finite by virtue of (2.1).
Let us give a characterization of completely @-selfdecomposable distri-
butions. This generalizes results of Urbanik [16], Sato [7] and Jurek [3].

THEOREM 2.1. Let Q € M,(R%). A measure p belongs to L.(Q) if and

only if pe L(Q) and A and k. u) in its first representation satisfy the fol-
lowing:
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2.9) da(e~t¥'2) is completely monotone in t > 0 for every ze€ R?,

(2.10) k() is completely monotone in — oo < t < oo for A-almost every
&e S,

Proof. If peL(Q), then we can find a unique g, € ID(R%),,, such that
(2) = exp r log fie~t¥'2)dt .
0

The mapping ¥, defined by ¥p = p, is one-to-one and onto (Jurek [2] and
Sato-Yamazato [9]). Let (7, 4, v) and (e, B, p) be the Lévy representations
of 4 and g, respectively. Let (7, A, 2, k.(v)) be the first representation of
#. Then we have

(—d[dt)(pule *¥2)) = ¢s(e™'¥2),
W(E) = j @9 j (R (wudu = f . p(dy) f: 1o(e-t2x)dt ,

o(E) = — _[ s A(d§) f: Xz(u8)dk,(u)  for Eec #(RY),

where X; is the indicator function of E (Sato-Yamazato [9]). For 1< m
< o0, it can be proved that pge L, (Q) if and only if ¥ouec L, () (Jurek
[4] and Sato-Yamazato [10]).

Suppose that e L. (Q). Then we can operate ¥, on y as many times
as we like. Thus we obtain

(— dd)"(pale™*?2)) = $s,(e'¥2)

with some nonnegative definite B,, hence (2.9). Suppose v #= 0. Then
o # 0. Let (a, B, 2°, ki{(w) be the first representation of y,. Then

o(E) = f 2(de) f " 1K (W du .
Sq 0
Hence we have

k() — ke(u) = b(E) f R@u-de  for 0< u, < u,,
2(d§) = b(®d8) ,

where

b) = — [ muesdar. ([ mixetdn) .
It follows that
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(— ddi)(k(e?)) = b(©ki(e’) = 0 .

Repeating this, we see that (2.10) holds.

Conversely, suppose that pe L(Q) satisfying the conditions (2.9) and
(2.10). Then ¢yz(e~‘?2) is also completely monotone. We define ki(x) and
2° by the above formulas. Then we see that f,(2) has the representation
(2.4) with a, B, 2%, and k}(z) in place of 7, A, 2, and k.(u), and that ki(e?)
is completely monotone in ¢. Hence y,e L(Q), that is, pe L(Q), and,
moreover, B and k}(u) satisfy the conditions (2.9) and (2.10). Repeating
this argument, we see u ¢ L,(Q) for every m.

Remark 2.2. The argument above shows that if # € L..(Q) then ¢,(e~¢%'2)
is completely monotone not only in 0 <¢ < oo, but also in —oo < ¢ < co.

§3. Gaussian completely operator-selfdecomposable distributions—
Complex characterization

We consider Gaussian distributions on R¢. Let @ ¢ M. (R%). Since
L.(Q) is closed under translation, we can restrict our attention to centered
Gaussian distributions. The structure of L.(Q) heavily depends on the
Jordan decomposition of . So it is convenient to use the complex d-
dimensional space C? A linear operator on R’ and its unique extension
to C? will be denoted by the same symbol. Thus @ and @’ both act on
C? Let {a, - -, a,} be the set of distinct eigenvalues of Q. Then {&, - - -,
@,} is the set of distinct eigenvalues of @’. Since @ is real, @ and @’
have the same set of eigenvalues. Let f({) be the minimal polynomial of
@ (equivalently, of @’). That is, f is the polynomial of the least degree
with real coefficients, satisfying f(Q) = 0, with coefficient 1 in the highest
term. Decompose it into linear factors

fO=C—a)y®- - €—a)?,
where n(l), - - -, n(p) are positive integers. Let
(3.1) V, = Kernel ( — «;I)"? in C? for 1<j<p.
Then, denoting the direct sum by @, we have
3.2) C'=V,®. - -dV,.

Let T, be the projector of C* onto V; in the decomposition (3.2). Namely,
x=Tx+ --- + T,x where T)xe V; for 1 <j<p. Let
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3.3) V) = Kernel (' — @,I)"? in C* for 1<j<p.
Then
(3.4 Ci=Vi®. .. - dV,.

We see that (3.4) is the decomposition dual to (3.2). That is, V} and V,
are orthogonal for j + k. The adjoint operator T of T, is the projector
of C? to V) in the decomposition (3.4). The following is a main result.

THEOREM 3.1. Let u be a centered Gaussian distribution with covariance
operator A. Then, pe L (Q) if and only if

(3.5) Q— ap)AT; =0 for1<j<p.

Remark 3.1. An alternative expression is that x € L.(Q) if and only if
(3.6) AQ —a)T; =0 for 1<j<p,
3.7 T,AT; =0 forj+kFk.

We need three lemmas.

LemmaA 3.1. Let 2,€ C°. If A is nonnegative definite and ¢4(2,) =0,
then Az, = 0.

Proof. For every we C? and real number ¢, we have
0 < g(w + tz)) = ¢(w) + 2t Re (Az, w)

and hence Re (Az,, w) = 0. Also Im (Az,, w) = Re (Az,iw) = 0. Hence
{Az, w) = 0 for every we C°.

LemmA 3.2. Let « > 0 and a, b, ¢ real, and let g(t) = e *'(a + bt +
ct®). 1If g(t) is completely monotone in —oo <t < o, then a >0 and b =
c=0.

Proof. It follows from g >0 that ¢ >0 and ¢ > 0. Suppose that
¢>0. Let

2.0 = e *(a — (40)~'b* — na~% + ct?) , n=01,---

Since g(t) = e*/®Igy(t + (2¢)7'b), g,(t) is completely monotone. We see that
(—d/dd)g,.,(t) = xe”'g,(t — a~?). Hence, by induction, g,(f) is completely
monotone. This implies

a— (4e)'b* —nac >0 for n=0,1, ---,
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which is absurd. It follows that ¢ = 0. Hence b = 0.

LemMA 3.3. Let a and B be distinct complex numbers with positive real
parts. Let a and b real and ¢ be complex. Let

8u(t) = atle~**® 4+ 2Re (cLhe~'*P) + byfe~t#+h

If, for every choice of ¢, ye C, the function g.() is completely monotone in
a neighborhood of 0, then a >0, b >0, and ¢ = 0.

Proof. Nonnegativity of (—d/dt)"g,(0) means that the matrix
<a(oz + a)" @+ 19)”)
cle + B bB+P)”
is a nonnegative definite Hermitian. Hence ¢ >0, b > 0, and
ab(a + (8 + By — cele + B(@+ " = 0.
Let o = a; + io; and B = B, + if;. Then
(@+ P@+ p) = (@ + B) + (. — ) > 4oy = (@ + DB + ),

since « = 8. Hence we have |c[* < k"ab with some k satisfying 0 < & <1.
Hence ¢ = 0.

Proof of Theorem 3.1. Suppose that pe L.(Q). Let us prove (3.6). It
is enough to show that, for every positive integer n,

(8.8 @ —a)"z,=0 implies A(Q" — @,)z, = 0.

We prove this by induction in n. If n = 1, the assertion is trivial. Sup-
pose that (3.8) is true for n — 1 in place of n, and assume that (" — @;)"z,
= 0. Then, A(Q' — @,)’2, = 0 for £ > 2. Let us write (' — @,)’2, = 2, and
«; = a. Since

(B9) etz =et(zy—tz, + 272+ o + (= D) (=2, ,
we have
Ae ¥z, = e %Az, — tAz) .
Let g(t) = ¢.(e"'¥z). We have
g() = e *“*9g,(2, — t2,) = e ““*I(P(2) — 2t Re (Az, 2> + £¢,(2)) .

Since g(f) is completely monotone in — oo < ¢ < oo by Theorem 2.1 and
Remark 2.2, we obtain ¢,(2,) = 0 by Lemma 3.2. Hence Az = 0 by Lemma
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3.1, which proves (3.8). Let us show the property (3.7). Let z,e V), w, e
Vi, and j# k. Write a, = @, a, = 8, (@' — ®)’2, = 2, and (@ — p)'w, = w,.
We have Az, = Aw,=0 for £>1 by (86). For ¢, neC, let g,(t) =
da(e 'z, + nwy)). Using the expression of e~‘¥z, and e~‘¥w, analogous
to (3.9), we get

8u,(D) = dule "Lz, + e "fpw,)
= e 1 *0TP (2,) + 2Re (e7'** P (Az, wy)) + e "+ Pyg (w,)

Since g,(t) is completely monotone, we get (Az, w,» = 0 by Lemma 3.3.
Thus we have (3.7). Now we have also the property (3.5). In fact, we see
that, for any z and w,

UQ — a)AT)z, w) = kﬁl (T2, AQ — a)Tiw) =0,

using (3.6) for k2 = j and (3.7) for & + j.

Conversely, suppose that A satisfies (3.5). Then we have (3.6) since
$.(Q — a)T)2) = Q@ — a)AQ" — @)Tjz, T}2) =0, and we have (3.7)
since (3.5) implies that AT’ has range in V;,. By the Jordan decompo-
sition of @', there are vectors z;, € V} (1 < ¢ < ¢,) and nonnegative integers
n(j, £) such that (@ — &)""+'z, = 0 and that the system {z,,=
@ —a)rz,: 1<j<p, 1<¢< 4, 0< n<n(j, 4} is a basis of C%. For
any given ze C% we have

2= 3 CitaZitn for some c¢;,, € C
Jilam
and, hence,
, . n(j,8)—~n 1
etz = Z e—-ta(J)cﬂn (m!)" (-—t)"‘zj,,,nm
Jrbam m=0

where a(j) = a;. Therefore, by (3.6) and (3.7),
Pale™'¥2) = 3 e 1D Mg (37 ¢102s0)
J 7

which is completely monotone. It follows from Theorem 2.1 that pe L.(Q).
The proof of Theorem 3.1 is complete.

§4. Gaussian completely operator-selfdecomposable distributions—
Real characterization

We rewrite the characterization in Theorem 3.1 in a real form and,
then, give a decomposition theorem of Gaussian distributions in L. (Q).
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Arrange the distinct eigenvalues of @ in such a way that «, - -, ®, are
real and a,,,, ---,a, are not real, a; =@,,, (@q+1<j<q+r), and g+
2r = p. Here g or r may possibly be zero. Let 5; and 7; be the real and
the imaginary part of «,, respectively. The minimal polynomial of €’ is

4.1 O = £ -+ fourlD™ 7,

where f;Q))=(—a;,=(— 8, for 1 <j<q and f,({) = — B, + 7% for
g+1<j<qg+r Let

“4.2) W/} = Kernel f,(@")" inRifor1<j<qg+r.
Then
(4.3) RE=WD---®W,,.

As in the proof of Theorem 3.1, let z,e V; 1<j<p, 1< ¢<¥4)) and
n(j, £) > 0 be such that (' — @,)"¥9*'z,, = 0 and the system
{20n = (@ — @)"2;:1<j<p, 1 <4< 4, 0< n< n(j, £)}

is a basis of C% For 1 <j < g, we can choose z,, real so that {z,,,: 1<
£ < 4;,0< n<n(j,4)} is a basis of W,. For ¢ + 1 <j< q+ r, we have
4, = 4;,, and n(j, £) = n(j + r, £) and we can choose z;, and z,,,, in such
a way that z,, = Z,,,, Let &,, and 7,, be the real and the imaginary
part of z,,,, respectively, for g + 1 <j < g+ r. The system {&;,,, 75,11 <
£ < ¢4;,0 < n<n(j,¢)} is then a basis of Wj. The following theorem gives
martrix representation of A when these bases are used.

THEOREM 4.1. Let p be centered Gaussian with covariance operator A.
Then pe L.(Q) if and only if the following four conditions are satisfied:

4.4) Aa(250,) = 0 for 1<j<q, 1<4<¥¢, n>1;
45) ¢4n) = 4(i) =0  for q+1<j<q+r1<4<4;,n>1;

(A&, Emey = (A%jsos Yjmoy  and CAE 00, Nimoy = — A0y §gmo?
forq+1<j<qg+r 1<4<4;,1<m<¥{; (6= m inclusive);

@n Az w =0 forze Wi, we W,,1<j<q+r,1<k<q+r,j+k,

(4.6)

Proof. Suppose that peL.(@). Then (4.4) and (4.7) follow directly
from (3.6) and (3.7). The condition (4.5) also follows from (3.6) since &,,,
and 7;,, are linear combinations of z;,, and z;,,,,. Since &, + ;5 = 20
eV} and &0 — Wjmo = Zjm € Vii,, we get (4.6) from (3.7), rewriting
{AZ;4, Zjmoy = 0.
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Conversely, suppose that the conditions (4.4)-(4.7) are satisfied. Then
(3.6) follows from (4.4) and (4.5), because (3.6) is equivalent to that ¢,(z,,.)
=0for1<j<p,1<£< ¥4, n>1. For1<j<q, the system

{zjn11< €< 4, 0< n< n(j, 0)}

is a basis of V} in C% For g+ 1< j < q + r, the system {&,,,, 7;0n: 1 <
£<4;,0< n<n(j,4)} is a basis of V;® V., in C¢ Hence (3.7) follows
from (4.7) except in the case where j > ¢+ 1 and k=j + r. It remains
to show that {(Az,w) =0 for 2= 2, and w=3,,, when ¢+ 1<j<g¢q
+r1L6<L4,1<m<¥4,n>0,and s>0. If n>1 or s >1, then
this is proved by (4.5). If n = s = 0, then this is a consequence of (4.6).
The proof is complete.
Before proceeding to examples we give a lemma.

LemmA 4.1. Let T be an invertible linear operator on R®. Then, pe
L.(Q) if end only if Tpe L.(TQT).

Proof. It suffices to prove that p e L,(Q) if and only if Tu e L, (TQT-").
We can show this by induction, using Proposition 1.1. Note that the
relation (1.1) is equivalent to

Tp =TTy, for 0<¢<1.

ExampLEs. If we change @ to TQT-! then A changes to TAT" by
Lemma 4.1. So we assume that @ itself has the real Jordan canonical
form. Let d = 2. The form of @ has the following four possibilities:

(S P A Py X

0 «’\0 «/’\0 &/'\r 8

where @, a;, a,, and B are positive, a, # a,, and 7 # 0. The necessary and
sufficient condition for a symmetric, nonnegative definite matrix A to be

a covariance matrix of a Gaussian distribution in L.(Q) is that A has,
respectively, the form

(a c) (a O) (a O) (a O)
c °\0 0o/\o b/\0 o/
Similarly we can determine the form of A for L.(Q) in higher dimensions.

Write J(a, b) = (g _('lb>. Let us consider, for d = 3 or 4, four typical

cases where @ has the form
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(3 i 2) (3 i g) (J@’ n JQ, 0)), (J(B, n Ja, o>).

Here « >0, 8 >0, and 7 = 0. In the respective case, the form of A is
as follows:

a 0 0O\ /a 0 ¢
J@,0)  J(c,d)\ (J(a,0) J(O,0)
6800 5 3, T n e o).

In order to formulate the next theorem, let
(4.8) W, = Kernel f,(@)" inRlfor1<j<q+r

where f;({), 1 <j < q+ r, are the polynomials of degree 1 or 2 in (4.1).
Then

(4.9) R=W® - -®W,,.

This is the decomposition dual to (4.3). Let U, be the projector of R?
onto W, in the decomposition (4.9). Namely, x = Ux + --- + U,,,x where
UyxeW, for 1 <j< q+ r. The adjoint operator U} of U, is the projector
onto Wj in the decomposition (4.3). For q +1<j< q+ r, recall that
a; = a@,,,; it is easy to see that V,=V,,, and that T)x = T,,,x and
Ux=Tx+ T;,,x for xe R°. For 1<j<q, we have U;x = T;x for x ¢
R, Let

“.1) N, = Kernel f,(Q) inRiforl<j<qg+r.

TueorREM 4.2. Suppose that p is a centered Gaussian distribution in
L.(Q). Then, Spty is a Q-invariant linear subspace of R and the minimal

polynomial of the restriction of @ to Spt i does not have double roots. There
exists a unique decomposition

(4.11) P= ko Klgyr,

where each p; is a centered Gaussian distribution such that Sptp; C W,
Moreover, y; € L.(Q) and Spt #; C N;.

We need a simple lemma. Proof is omitted.

LemMma 4.2. If p is centered Gaussian with covariance operator A,
then Spt p = A(R?).

Proof of Theorem 4.2. Let [i(2) = exp (27'¢(2)). By (4.7) of Theorem
4.1, we have
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4.12) U,AU; =0 for j# k.
It follows that

(4.13) A= UAU,.
iz i

Let A; = U;AUj. Note that, by (4.12), A, = U;A = AUj. Let p; be
centered Gaussian with covariance operator A;. Then we have (4.11) and
A,(R*)yc W;. Hence Spty; € W; by Lemma 4.2. The uniqueness of the
decomposition is obvious. Using Theorem 3.1 and the relations between
{U;} and {T}}, we see that yg; € L.(@) and Spty; C N,. If 1 <j < g, then,
for each xe R?, QA;x = QAT/x = a;ATjxc Ay(R%) by (85). If ¢+ 1<
j< g+ r, then, for each xe R’ QA,x = QAT+ T}..)x = o;ATx +
&, AT}, x = 2 Re (¢;AT}x) = B;AUjx — 1;Ay; € Aj(R%), where y; = 2Im T'x
=i (T} — T}, )xe W,. Hence, A;(R?) is Q-invariant. Hence, A(R?) is
@-invariant. Since it is contained in N;® --- ® N,,,, the restriction of
@ to it has a minimal polynomial without double roots. The proof is
complete. (Another proof of @-invariance of Spt z is to use Proposition
4.1 of Yamazato [21]. Indeed, it is true for all centered Gaussian distri-
butions p in L{(@).)

Remark 4.1. Assume that all eigenvalues of @ are real. Then the
following converse of Theorem 4.2 is true: If g, ---,p, are centered
Gaussian distributions such that Spt p; € N, for each j, then the convolu-
tion g = pyx - - - xp, belongs to L.(Q). In fact, p; € L.(Q) as a consequence
of Theorem 3.1 and Lemma 4.2, and the class L.(Q) is closed under con-
volution.

§5. Purely non-Gaussian completely operator-selfdecomposable
distributions

Let us describe conditions for centered purely non-Gaussian distribu-
tions to belong to L.(Q). We continue to use the notations in the
preceding sections on the decompositions of R¢ and C? induced by Q¢
M.(R?%). For £eR* with |&|=1, we define B, = B(§) and n, = n() as
follows:

Be=min{B;:1<j<qg+r, Uf+#0=min{8;:1<j< q+ 2r, T)§ + 0},
né,j) =max{n: n >0, (@ — a)"T,& + 0} for T,£+0,
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Note that, if ¢+ 1< j< g+ r and xe R% then U,x = 0 and T;x = 0 are
equivalent. A system of measures {I';} is said to be measurable in & if
I'(E) is measurable in ¢ for each Borel set E. The following is a theorem
similar to results of Sato [7] and Jurek [3].

THEOREM 5.1. If pis a centered, purely non-Gaussian distribution in
L.(Q), then

6D @ =ex| xd) [ Idde) | s uteudu,

where 2 is the zero measure or a probability measure on S, and I'.(d«) is
a measure on (0, 28;) such that the system {I';} is measurable in & and

(5.2) 0< j r'«(de) f " hueehu-rtdu = ¢ < oo
0,28¢) 0

with ¢ independent of & This 2 is uniquely determined by p and this
I'(da) is uniquely determined by p up to & of a set of A-measure zero.
Conversely, given any 2 and I (da) with the above properties, one can find

peL.(Q) described by (5.1). If a measure I'(de) on (0, 28,) satisfies (5.2),
then

6.3 0< f(o,m) (@ + (28 — @) "Y' (da) < oo .

If a family of measures {I"(da)} satisfies (5.3) for each & with I; replaced
by I'%, and if {I'{} is measurable in &, then one can find a positive meas-
urable function a(&) such that I'.(de) = a(®)[%(da) satisfies (5.2) with c
independent of &.

For @ e M,(R%, we denote by c, positive constants that depend only
on @. By b.,(&) we denote positive functions that depend only on Q.

LemmA 5.1. There are ¢, (k= 5,6,7) and b,(&) (k = 1, 2, 3) such that,

for |&] =1,

(5.4) (28| < cuf® |log u|"® fot 0<u<1/3,
(6.5) |u0€] > by(&)ur® |log u|*® for 0< u< b2,
(5.6) cat + b©Ep — )0 < [ Auoghu'du

<efat + (28 — a)™™®-)  for 0 < < 2B, .
If a> 2B, then, for ISI =1,
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6.7 r h(uoghudu = oo .
Proof. We have

n(€,7)

(5.8) uT& = u (nh)*(log W(Q — a,)"T\¢ ,

5
n=0

where a(j) = «;. Hence
|uftl < ¢ i‘, w9 |log uj 49 for 0 <u<1/3,
i=1

where p(j) = B;. Hence (5.4). It follows from (5.8) that there are b,(§) and
b,(¢) such that, for 0 < u < b,(8),

[w?T¢| = 27w (n(§, ))1) " [log u[" 7 (@ — )" T |

for all j satisfying T, + 0. Choose a norm ||| in C? such that |x| =
22| Tyx|l. Since arbitrary two norms are equivalent, we have a,|x| <
lxll < a;]x| for some positive @, and a,. Choosing j such that 8, = B, and
ne = n(§,j), we obtain

|| > a5 ||ug| = a5 |w®T ¢ > aa:t |uT €| .
Hence (5.5) follows. Let 0 < « < 2B8,. We have

1/3 1/3
j h(|uee|)u-a-'dugj |u%ePu-*-'du
0 0

1/3
< cij u#@-a-log uf"Odu < cil'(2n, + 1)(2B; — o) 2" -1
0

from (5.4), and
r h(u)u—'du < r u'du < cat.
1/3 1/3

This proves the second inequality in (5.6). The first inequality-is obtained

from (5.5) as follows. We may suppose b,(&) < 1. Since A(s) is increasing
in s > 0, we have

b1(§) 01(¢§)
j h(utu-*"'‘du > j R(b,(E)u® [log ul*®)u~*"'du
0 0

b1
> by(&) IO R TIC |log uf*©du

00

= bs(g)(zﬁ(f) — Ct)'zn(é)“j PREPLIGH

(28(€) —a) [logdr (&)1

> b(E)2B(§) — @)
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Since A(u%)) > ¢, for u > 1, we have
r h(ueg)u—"'du > cex' .
1

Hence the first inequality in (5.6). The proof of (5.7) for & > 28, is similar.

Proof of Theorem 5.1. For peL.(Q), the function k.(u) in the first
representation is such that k.(e*) is completely monotone in —oo < ¢t < o0
for 2-almost every & (Theorem 2.1). By modification we may assume the
exceptional set of & is void. By Bernstein’s theorem, there is, for each
&, a unique finite measure I',(da) on [0, o) such that

Ee(et) = I eI (de?) .

[0,0)

The system {I';} is measurable in & Since k.(u)—0 as u—co by (2.6), we
have I',({0}) = 0. Rewriting (2.6), we get (5.2) with the domain of inte-
gration (0, 28,) replaced by (0, o). By (5.7) of Lemma 5.1, this shows that
I'.(da) is concentrated on (0,28,) and we have the representation (5.1).
The uniqueness assertion is obvious from the uniqueness of the represen-
tation (2.4). The converse assertion follows from that of Theorem 2.1.
The assertion (5.3) follows from (5.2) by (5.6) of Lemma 5.1. If a family
{8} satisfies (5.3), then, let

a® = (| o apy L) [ pauogpu-erau) ™.

This is a positive function by (5.6). The measure I'(dx) = a(§)'Y(da)
satisfies (5.2) with ¢ = 1. The proof is complete.

Let us give some results on supports of operator-selfdecomposable
purely non-Gaussian distributions. A measure g in R? is said to be genu-
inely d-dimensional (or full), if no (d—1)-dimensional hyperplane contains
Spt z. A measure p is said to be full in an ¢-dimensional affine subspace
W of R? if Sptx C W and g is genuinely /-dimensional. The following
fact is used in Sato [8] and Yamazato [20].

LemMA 5.2, Let p be a centered, purely non-Gaussien distribution in
R? with Lévy measure v = 0. Denote by W, or W, the smallest linear sub-
space that contains Spt u or Spty, respectively. Then W,= W, and p is
full in W,.

Proof. We have Sptu C W, since fi(2) = 1 for 2z in the orthogonal
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complement W' of W,. Hence W, C W,. Let p, be the symmetrization
of x. Then Spty, € W,. Let 2, be orthogonal to Spt z,. Then

1 = 4,(t2,) = exp (2 ‘[ (cos {x, tz,) — 1)v(dx)) ,

and hence cos (%, tz,) = 1 for v-almost every x. Hence (x,2) = 0 for
v-almost every x, that is, W, C {z}*. It follows that W,= W,. If p is
not full in W,, then Spt g, is contained in a proper subspace of W, and,
by the argument above, there is a non-zero 2, in W, such that W, C {z,}*,
which is absurd. Therefore g is full in W,.

THEOREM 5.2. If 4 is a centered, purely non-Gaussian distribution in
L(@Q), then p is full in a Q-invariant linear subspace of R°.

Proof. Let v be the Lévy measure of g If v = 0, then the assertion
is trivial. Suppose v = 0. Let 2 be the probability measure in the first
representation of x. Let W be the smallest @-invariant linear subspace
that contains Spt 2. Then, by Lemma 5 of Yamazato [20], W is the smal-
lest linear subspace that contains Spty. Hence, by Lemma 5.2, g is full
in W.

§6. Operator-stable distributions

Let Qe M. (R%) and « > 0. We call a distribution g operator-stable
with exponent («, @) or, in short, (@, @)-stable, if pe ID(R?) and, for every
t > 0, there is a(t) € R? such that

6.1) 2= %uxd,, .
The relation (6.1) is equivalent to
6.2 pt= 17 uxd,

with some b(t) e R*. Thus p is operator-stable with exponent («, @) if and
only if x is operator-stable with exponent (1, «”'Q). In Sharpe’s termi-
nology in [12], it is operator-stable with exponent «¢~'Q. In our new
naming, stable distributions with exponent « are (e, I)-stable, and vice
versa. Results on stable distributions with exponent « thus find natural
generalization to («, @)-stable distributions. Sharpe [12] determines con-
ditions on @ in order that there exist full (1, @)-stable distributions.
Further he finds a structure of general full operator-stable distributions
and an expression of their Lévy measures (see also Hudson-Mason [1]).
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But he does not determine the whole structure of Gaussian operator-
stable distributions. It is done by Schmidt [11] in some degree. We will
describe all operator-stable distributions without the fullness assumption.
The following two lemmas are basic.

Lemma 6.1 (Jurek [2]). If p is (a, Q)-stable for some a > 0, then pe
L.(Q).

Proof. For 0 <t <1, we have
Y= #M*#l—ta — tq/l*aa(z)*#h“ .

Hence peLy(Q). It follows that u, = 6, *x#' "€ Ly(Q). Hence uc L(Q)
by Proposition 1.1. Repeating this, we get yxe L.(Q).

LeEMMA 6.2 (Sharpe [12]). Let p be infinitely divisible with Lévy repre-
sentation (7, A,v). Then, p is («, Q)-stable if and only if

6.3) $4(t¥2) = t°¢(2)  for zeR*, t>0,
and
(6.4) tY)E) =tw(E) for E€c #R%), t>0.

Proof. By (6.2) it is enough to consider only the casea = 1. If a =1,
this is Proposition 5 of Sharpe [12].

We continue to use the decompositions (3.2), (3.4), (4.3), and (4.9)
associated with @ and the projectors T, T, U,, and U}

THEOREM 6.1. Let p be Gaussian with covariance operator A. Then,
p is («, Q)-stable if and only if (3.5) is satisfied and

(6.5) AT; =0  for every j such that Re a; # «/2 .

Proof. Suppose that g is (o, @)-stable. By Theorem 3.1 and Lemma
6.1, it satisfies (3.5). Since (6.3) holds also for ze C? we have, noting
e *¢T’ze V} and using (3.5),

e ¢ (T72) = ¢p(e ¥ T)2) = e ¥ Re=ig (T'2) ,

where a(j) = ;. Hence we obtain (6.5). Conversely, if (3.5) and (6.5) are
satisfied, then we get, using (3.7),

Ba(e2) = 31 u(e U Ti) = 3 e Mg (T2) = e7'4,(2) ,

which implies («, @)-stability of p by Lemma 6.2. The proof is complete.
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THEOREM 6.2. Let u be a purely non-Gaussian infinitely divisible distri-
bution with Lévy measure v. Let W, be the direct sum of all the subspaces
W, for which Rea; > a/2. Then p is (@, @)-stable if and only if

66) wE)= f 2(de) j Cuueidu for Ee AR,

SeNW(a)

where 2, is a finite measure on SyN W, For every finite measure 2, on
SeN W, there exists an (o, Q)-stable purely non-Gaussian distribution with
Lévy measure v described by (6.6).

Proof. Assume that g is («, @)-stable. For any Fe %(S,), let F=
{u¢: e F,u > 1} and define A(F) = av(F). Then 2, is a finite measure
on S, since F C {x:|x|>1}. Define a measure v, by

w(E) = j 2(dg) j: 1@e)u-*'du  for Eec BRY) .
Se
Let ¢ > 0 and E = {u®¢: £e F, u > a}. Then
w(E) = f 2(d2) j " ureidy = a-la(F) = a-w(F) .
F a

Since F = {(u/a)¢: e F, u> a} = (1/a)°E, we have
au(F) = a~*(a®)E) = w(E) ,

using (6.4) of Lemma 6.2. Hence v,(E) = v(E). It follows that v, =v. We
have

0 > J'h(lx|)u(dx) - j 2(de) r P w8 u--'du
Se 0
b1(§)
> [ 2@ [ nogurndu,
Se 0
using (5.5) of Lemma 5.1 and choosing b,(§) < 1/3. Since
J\bl(é) h(bz(g)up(e))u—aqdu — oo for ‘8(5) < oz/2 ,

we see that (&) > «/2 for A-almost every &, that is, 2, is concentrated in
S;NW,. Conversely, if the Lévy measure v of p is expressed as (6.6)
with some 2, then (6.4) is an easy consequence and g is («, @)-stable. In
order to prove the last sentence in the theorem, it is enough to show
that, for any finite measure 2, on S,N W, the measure v defined by (6.6)

satisfies fh(]x])v(dx) < oo, Using (5.6) of Lemma 5.1, we get
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Ilo(dé) f: h(ueghu"'du < ¢ J (dE) (@t + (28, — @)~ ®-1) |

which is finite, since, for some ¢ > 0, f(&) > 2-'a + ¢ uniformly in & e W,
and since n(§) < d. The proof is complete.

Remark 6.1. A purely non-Gaussian distribution p is (&, @)-stable if
and only if pe Ly(@) and, in the first representation of g,

(6.7 k(w) = a(®u",

(6.8) a(€) is measurable and 0 < a; < a(€) < a, <
with some constants a,, a,, and

(6.9) 2(d¢) is concentrated in S,N W, .

In fact, it is obvious that (6.7)—(6.9) imply (6.6). Choose ¢ > 0 so that
there is no eigenvalue «; satisfying 2-'« <Re«; < 27'a + . There are con-
stants ¢,, ¢;, and ¢, such that (2.1) and (2.2) hold with ¢; = 27« + ¢ for all
x € W, (Urbanik [15] p. 139). It follows that there are positive constants
¢, and ¢; such that

¢ < j:' h(ueu-*-'du < ¢,

for all £e SoNW,. If x4 is (a, @)-stable, we choose

b© = ([, nusehu-=du)”,  a@=b@ [ be) i@,

QNWa)

k(w) = a®u,  A(d§) = a(§)'A(d9) ,

which are shown to give the first representation satisfying (6.7)—(6.9).

An arbitrary (@, @)-stable distribution is decomposed into two (a, @)-
stable distributions, one of which is Gaussian and the other is purely
non-Gaussian, together with a decomposition of the basic space R?. This
is shown by the following theorem. Note that we do not impose the full-
ness assumption.

THEOREM 6.3. Let pe ID(R?), let p, be the centered Gaussian com-
ponent of p and let p, be the centered purely non-Gaussian component of
p. Then, p is («, Q)-stable if and only if there exist Q-invariant linear
subspaces W and W® such that WO N W® = {0} and, for each j, p; is
full in W and («, Q;)-stable as a measure on W, where @, is the restric-
tion of @ to W,
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Remark 6.2. The theorem above reduces general (a, @)-stable distri-
butions to the full case studied by Sharpe [12]. Thus the eigenvalues of
the operator @, have real parts equal to «/2 and the minimal polynomial
of @, does not have double roots, while the eigenvalues of @, have real
parts greater than «/2. But note that there does not necessarily exist a
Q-invariant linear subspace W® such that R? = W® @ W® @ W®,

Proof of Theorem 6.3. Suppose that g is (a, @)-stable. Then, by Lemma
6.2, both g, and g, are (@, @)-stable. Let W® be Spty, and let W® be
the smallest linear subspace containing Spty,. Recalling Lemma 6.1, we
can freely use our theorems on L.(Q). By Theorem 4.2, W® is @Q-invariant.
By Theorem 5.2, W® is Q-invariant and p, is full in W®. Denote by [#/],
the restriction of g, to W. We see that [¢];, is (a, @,)-stable. For we
have

t9llyy = [Py = -l = ln)  *0-0,0

where a,(f) e W, By Theorem 6.1 and Lemma 4.2, the eigenvalues of @,
have real parts «/2, while, by Theorem 6.2 and Lemma 5.2, the real parts
of the eigenvalues of @, are greater than «/2. Hence we have W N W®
= {0}.

Conversely, suppose that W® and W® are @Q-invariant linear sub-
spaces and that, for j = 1, 2, p; is a probability measure with support in
WY and [g] is (a, @,)-stable. Then it is easy to see that g, is (¢, @)-
stable and that pg*u, is also («, @)-stable. The proof is complete.

§7. Relations between completely operator-selfdecomposable distri-
butions and operator-stable distributions

We will establish relations between the classes L.(@) and S(Q), which
extend results of Urbanik [16], [17], Thu [13], and Sato [7]. By Proposition
1.2, the class S(Q) is the totality of probability distributions which are
(a, @)-stable for some « > 0.

THEOREM 7.1. Let s be the number of distinct real parts of eigenvalues
of Q. If pis a Gaussian distribution in L.(Q), then p can be expressed
as the convolution of at most s Gaussian distributions in S(Q).

Proof. We may suppose that p is centered. If pe L.(Q), then, by
Theorem 6.1, the decomposition of x# in Theorem 4.2 gives representation
of ¢ as a convolution of Gaussian distributions that belong to S(Q). Again
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by Theorem 6.1 we see that it is written as the convolution of at most s
Gaussians in S(Q).

THEOREM 7.2. If pe L.(Q), then p is the limit of a sequence {u,} such

that each p, is a convolution of a finite number of purely non-Gaussian
distributions in S(Q).

Proof. Let peL.(Q). We may assume that it is centered. Consider
the case where g is purely non-Gaussian with the expression (5.1) such
that, for some ¢ > 0, ['((dx) is concentrated in (¢, 28, — ¢) for each £¢ S,.
Then we can choose measures I'{"(d«) satisfying the following conditions:
I'®(da) is concentrated on the points {2-"k: k= 1,2, ...} in the interval
(s, 2B; — ¢), ['¥(dea) converges to I'((da) for each & as n— oo, the total
mass of I'™(da) does not exceed that of I'.(da) for each &, and {I'™} is
measurable in & Define g, by

fa(2) = exp qu Z(dé)J I'™(de) j: g(z, ud)u—"'du .

(&,28¢8~¢)
By Lemma 5.1 and by |g(z, x)| < c,h(x]), the integral r g(z, u®u—'duis
0

bounded in « € (¢, 28 — ¢) and £€ S, and is continuous in «. Hence
j I'®(da) fg(z, w0)u-*'du — JFe(doz) f 2(z, u)u--'du

as n— co. Since (5.2) and (5.6) imply that the total mass of I'.(da) is
bounded in &€ S,, we see that £,(2) - £i(2). It follows from Theorem 6.2
that g, is a convolution of a finite number of purely non-Gaussian distri-
butions in S(Q). If x is purely non-Gaussian, then the assertion is proved
by approximation of its I'.(da) measure by X .5.-)(@)[ (da) as ¢ | 0. Now
recall Theorem 7.1. Then we see that, in order to complete the proof, it
is enough to show that any («, @)-stable Gaussian distribution g is a
limit of purely non-Gaussian distributions in S(@). Let A be the covari-
ance operator of p. For 0 < p <1 let g be a symmetric, (28, I)-stable
distribution such that (5(2) = exp (—27'|2[). Let p, = A"y}, Since 1 is
purely non-Gaussian, so is y, Since

£4(2) = exp (—27'94(2)") ,
we have, by (6.3),

2172) = a(2) .
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Hence y; is (2B, Q)-stable. As B11, p; tends to p. The proof is complete.
As a consequence we have the following.

THEOREM 7.3. The class L.(Q) is the smallest class closed under con-
volution and convergence and containing the class S(Q).
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