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Abstract

We define the notion of a best Diophantine approximation vector to a set of linear forms. This
generalizes definitions of a best approximation vector to a single linear form and of a best
simultaneous Diophantine approximation vector. We derive necessary and sufficient conditions for the
existence of an infinite set of best Diophantine approximation vectors. Finally, we prove that such
approximation vectors are spaced far apart in an appropriate sense.

1980 Mathematics subject classification (Amer. Math. Soc): 10 F 10.

1. Introduction

This paper defines the notion of a best Diophantine approximation vector to a set
of linear forms. This definition generalizes the notions of a best approximation to
a single linear form in [1], [2], [4] and of a best simultaneous Diophantine
approximation given in [3], [5], [6], [7]. We derive necessary and sufficient
conditions for an infinite set of best Diophantine approximation vectors to exist.
Finally we prove that best approximation vectors are spaced far apart, in an
appropriate sense.

Let {/,}"=i be a set of n linear forms in m variables and let L: Rm -> R" be the
linear transformation defined by

( 1 - 1 ) L ( ( x l , . . . , x m ) ) = ( l l , l 2 , . . . , l n )

where

(1.2) /,. = <*<% + - - -+a</>x m

© Copyright Australian Mathematical Society 1983

114

https://doi.org/10.1017/S1446788700019807 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019807


[2] Best Diophantine approximations 115

for 1 =s /' < n. A seminorm \\ • \\ on R^ is a map R* -» R satisfying the axioms

(i) \\x\\ > 0,
(ii) ||ax|| =\a\ \\x\\ for a e R and x G R \
(iii) ||x, + x2 | | < ||x,|| + | |x2| | for x , , x 2 G Rk.

The basic definition is as follows.
DEFINITION. A nonzero integer vector v G Zm is a best (Diophantine) ap-

proximation vector to L with respect to the seminorms \\ • \\, on Rm and || • || 2 on R"
provided that for all w G Z" the following implications hold.

(1.4) (1) Hwll, < Hvll, =» | |L(w)||2 > HL(v)||2.

(1.5) (2 ) | |L (w) | | 2 < ||Z-(v)||2 =» llwllj > | |v | | , .

(Note that (1) and (2) are equivalent except for cases of equality.)
A best approximation vector v is nontrivial if ||v||, ¥= 0 and || L(\)\\ 2 ¥^ 0. If for

any e > 0 it is possible to find v G Zm (depending on e) such that

0 < | | v | | , <e ,

0 < | | L ( v ) | | 2 < e ,

then no nontrivial best approximation vectors can exist. We will show that this
possibility is excluded if ]| • ||,, II • ||2 and L satisfy the transversality condition
defined below. Any seminorm || • || on R* has a zero set given by

V= V(\\ • II) = {x: Hxll = 0 } ,

which is a subspace of R*. Let VUV2 denote the zero sets of II • II,, II • ll2

respectively.
DEFINITION. L is transverse with respect to II • II, and II • II2 if

(1.6) F , n L - 1 ( F 2 ) = { 0 } .

We also make the following definitions which are relevant in determining the
order type of the set of best approximation vectors.

DEFINITION. || • ||, is collapsed ii there is a nonzero x G Zm with ||x||, = 0.
DEFINITION. L is degenerate with respect to II • II2 if there exists a nonzero

v £ Z " such that || L(v)|| 2 = 0. Otherwise L is nondegenerate.
The following result characterizes the existence of best approximation vectors.

THEOREM 1.1. If L is not transverse with respect to II • II, and \\ • | |2 then there

are no nontrivial best approximation vectors. If L is transverse with respect to \\ • \\,

and II • || 2 then L has a set B of nontrivial best approximation vectors which can be

numbered {\j} for n0 <j < n] such that for all n0 <j < k < «, ,

(1.8) ||v,||, ^ llvjl, and l|L(v,)ll2 > \\L(yk)\\2.
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In addition:
(1) n0 = -oo if and only if II • II, is not collapsed and II • II, is not a norm.
(2) w, = +oo if and only if L is nondegenerate and either \\ • ||2 is not a norm or

II • || 2 is a norm and L does not have full row rank.
If nx — +oo then llvjl, -» oo and ||L(vn)||2 -» 0 as n -* oo.

The following result concerns the spacing of best approximation vectors.

THEOREM 1.2. Let L be transverse with respect to II • ||, and II • II2. Let {v̂ } be
the set of best approximation vectors. If D = lm then

(1-9)

holds for all k for which

Theorems 1.1 and 1.2 are proved in Sections 2 and 3 respectively. Before giving
the proofs we indicate how the notions of best approximation in [1] — [7] are
special cases of the definition given here.

EXAMPLE 1 (Approximations to a Single Linear Form). Let

L : R " + 1 - » R via li-alxl + ---+anxn-x0.

Given a norm || • || on R", let 11 • II be the seminorm on R"+1 defined by
||(x0, * , , . . . , x n ) | | , = \\(xu...,xn)\\. II • II2 is taken to be the sup norm on R1.
Note that II • II, is collapsed. L is always transverse and is nondegenerate if and
only if

d i m Q [ l , a , , . . . , a n ] = n + I.

EXAMPLE 2 (Best simultaneous Diophantine approximations). Let

L : R " + 1 ^ R " via /,. = a.x0 - x,

for 1 < / < n. Here || • || t is the seminorm

llxll, =

and II • || 2 = II • II is an arbitrary norm on R". Note II • II, is collapsed and L is
always transverse. L is nondegenerate exactly when some a, £ Q.

In both examples, Theorem 1.1 guarantees that if L is nondegenerate then the
set B of best approximations can be written {v^} for 1 < k < oo such that (1.8)
holds.
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2. Existence of best approximation vectors

PROOF OF THEOREM 1.1. Suppose L is not transverse, so that Vi D L'\V2) =
V3 =£ 0. Let II • II e denote the Euclidean norm on Rm and m orthogonal projection
onto K3. For any e > 0 we can find a nonzero v £ Z " with

(2.1) l l v - * ( v ) | | , < e .

If A — max | aj0 \ , where the aj() are given by (1.2), then

(2.2) | |L (v ) -L(77(v) ) | | e <^e .

Now there exist positive constants cu c2 such that

c, | |x | | ,> llxll,, c2 | |y | | e> | |y | | 2 ,

for all x G Rm, y G R", where

c, = sup{||x||,: | |x | | e= 1} f o r i = 1,2.

Hence

Hvll, = ||v — 73-(v)[|, < c,e,

| |L(v) | | 2= | |L (v ) -L ( f f (v ) ) | | 2 <c 2 ^e .

Since e can be chosen arbitrarily small, there are no best approximation vectors
with Hxll, ^ 0 , ||L(x)||2=^0.

Now suppose L is transverse. Consider the w-dimensional subspace

W= {(x, L(x)) :x £ R " )

of Rm+". For x G Rm we set x* = (x, L(x)) G W. The map x ~* x* is a linear
vector space isomorphism. Define a seminorm II • || on Why

||x*|| = Hxll, + | |L(x)| |2.

Then II • II is a norm by the transversality condition. Now set

Q(c,,c2) = {x* G W: llxll, < c , a n d | | L ( x ) | | 2 < c 2 } .

This is a centrally symmetric convex body. We define a volume on W arising from
w-dimensional Lebesgue measure on Rm via the map x -> x*. Then

A = {(x, L(x)): x G Zm}

is a lattice in W whose unit cell has volume 1. Let

B(c) = {x* G W: ||x*|| ^ c } ,

and observe that

(2.3) B(c) cS2(c,c) CB(2c).

For sufficiently small c, B(2c) and hence Q,(c, c) contains only the point 0 of A
since II • II is a norm. By Minkowski's theorem, S2(c, c) contains a nonzero lattice
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point if its volume exceeds 2m, which must occur for some c by (2.3). Now take
the smallest c for which fi(c, c) has points of A on its boundary but none except 0
inside. The finite set 5* of lattice points x* on the boundary can be divided into
three classes, those with

(1) llxll, <c, \\L(x)\\2 = c,
(2)11x11, =c, | |L (x ) | | 2 <c ,
(3) Hxll, = | |L(x)||2 = c.

If there are vectors x satisfying (1), those x with the smallest value of ||x||, are
best approximation vectors. Call this set of vectors B_{. If there are vectors x
satisfying (2), those x with the smallest value of | |L(x)||2 are best approximation
vectors. Call this set of vectors Bx. All vectors satisfying (3) are best approxima-
tion vectors if there are no x satisfying either (1) or (2), otherwise none are. Call
this set of vectors Bo. Note that at least one of B_u Bo, Bx is empty. Let (d_i, /•_,),
(d0, r0) and (</,, r,) denote the values of (||x||,, | |L(x)||2) in each of the sets B_u

Bo, BA, respectively, which are nonempty, and set them equal to (c, c) otherwise.
Now start with S2(c, r,) with c = dx and increase c until the first value d2 is

encountered at which an element of A with | |L(x)||2 < r, appears on the
boundary of ti(d2, /",). Let B2 be the set of lattice points on this boundary with
minimal | |L(x)||2 = r2. The elements of B2 are all best approximation vectors.
Now repeat this process starting with £2(c, r2) with c — d2, and continue it to
construct B3, B4, If for some £2(c, ry) we can let c -> oo with no nonzero
element of A ever appearing on the boundary having ||L(x)||2 < rJy we say this
process terminates on the right at Bj.

Now start with fl(J_,, c) with c = /•_, and increase c until the first value r_2 is
encountered at which ||x||, < d_x. Let B_2 be the set of vectors on the boundary of
®(d_2,r_2) with minimal ||x||, = d_2. Now repeat this process starting with

,c) with c — r_2 and continue it to construct B_2, B_3, If for some
_ , c) we can let c -* oo with no nonzero element of A ever appearing with

llxll, < d_j, we say this process terminates on the left at B_j.
We obtain in this way a sequence {(dj, r;): -« , <j < n2) in which d/_1 < dj

(except fory = 0,1 where equality may occur) and r,_, > ry (except for j = 0,1
where equality may occur). Note that this construction shows there are no best
approximation vectors with dj_x < \\x\\, < dj and produces all those with ||x|| =
dj\ also that there are none with /v_t > ||L(x)||2 > r} and it produces all those
with ||L(x)||2 = Tj. If truncation on the left occurs at (d_], r_j), this construction
guarantees there are no best approximation vectors with 0 < ||x||, < d_j or with
||L(x)||2 > rj. If truncation on the right occurs, it guarantees there are no best
approximation vectors with 0 < ||L(x)||2 < r_j, or with | | x | | , > ^ . Thus the
construction produces all best approximation vectors x with

lim d_k < ||x||, < lim dk
k^ OG k^ oc
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and

lim r_k > | |L (x ) | | 2 > lim rk,
k—oa k^cc

where we use the convention that if termination on the left occurs then
limk_xd_k = 0, limk^oor_k = oo, and if termination on the right, occurs, then
\imk^xdk = oo, hmk^xrk = 0.

This process of obtaining the best approximations is geometrically similar to
that of Voronoi's algorithm for finding units in a non-totally real cubic field (for
example, see [8]).

We next check that the set of elements in the union of the Bj's exhausts the set
B of best approximation vectors. Suppose not, so that there is such a best
approximation vector x. By the remarks above, it must be either that termination
on the right doesn't occur and that

limrf,, | |L (x ) | | 2 < limr-,
j — oo

or else that termination on the left doesn't occur and

Hxll, < lim d_j, | |L(x) | | 2 > lim r ..
j—ao j—oo

We will rule out both these possibilities by showing that if termination on the
right doesn't occur, then dj -> oo and r. -» 0 as j ' ^ oo, and that if termination on
the left doesn't occur, then d_j -» 0, r_j -> oo asj -» oo.

We treat the case that termination on the right doesn't occur. Pick an element
x,, e. Bj for a l ly ' s* 2. Then \\L{*.J)\\1 = r} and r2 > r3 > r4 > • • •. Now
||(x7, L(Xj))\\ = rj + dj,— oo asj -> oo since II • II is a norm and x* G A. Since rj

is bounded, d}. -» oo as 7 -> 00. It remains to show rj. -> 0 as 7r -» 00. To do this it
suffices to prove the following fact.

FACT. / / termination on the right doesn'? occur, then for any e > 0 there exists a
nonzero xGZ™ such that II L(x)|| 2 < e.

If the Fact is true, we can find some x ; e B} for which llx^H, > ||x||,, in which
case by the definition of best approximation vector ry = || L(x -)|| 2 ^ II L(x)|| 2 < e.
Hence r- -» 0 as required.

To prove the Fact, we observe that its conclusion is equivalent to the statement
that for any positive e the region S2(c, e) contains a nonzero point of A, for some
sufficiently large c — c(e). This occurs if:

1. || • II2 is not a norm. In this case L"'(0) is a non-trivial subspace of Rm. Then
the set {x: | |L(x)||2 < e} contains a small open ball around the origin translated
by all elements of L~'(0), hence has infinite volume in Rm. Consequently the
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volume of S2(c, e) is unbounded as c -> oo, and so contains nonzero lattice points
of A for sufficiently large c by Minkowski's theorem.

2. L does not have full rank m. Then L(Zm) projects onto a ^-dimensional
subspace S of R", where k < m — 1. A standard pigeonhole principle argument
then proves for any e there exist nonzero x £ Zm with || L(x)|| 2 < e.

The exceptional case is where II • II2 is a norm and L has full rank m. In this
case L(Zm) is a lattice, and for any c0 there are only a finite number of x G Zm

such that | |L(x)||2 < c0, so termination on the right occurs in this case. This
proves the fact.

One shows that dj -> 0 and ry -> oo as 7r -» 00 if termination on the left does not
occur by similar arguments.

We obtain a numbering {v,} of the elements of B that satisfies (1.8) by ordering
the elements of each Bj in a way that satisfies (1.8), concatenating the sets Bj using
the obvious ordering, and picking v0 G Bo.

It remains to specify the conditions under which termination on the left or right
occurs.

If || • ||, is not a norm, then fl(C[, c2) has unbounded volume as c2 -> 00.
Minkowski's theorem then asserts that for large enough c2 there must exist
nonzero lattice points with ||x||, < c,, 11 L(x)|| 2 < c2. Thus termination on the left
can occur only if there is a nonzero x G Zm with ||x||, = 0, that is, II • II, is
collapsed. If II • II, is a norm there exists c0 so that ||x||, < c0 contains only
O G Z " and termination on the left occurs.

If II • II2 is not a norm then fl(c,, c2) has unbounded volume as c, -» 00. As
above, lattice points with Hxllj-Cc,, | |L(x)||2 < c2 must occur. In this case
termination on the right can occur only if there is an x with || L(x)|| 2 = 0, that is,
L is degenerate with respect to || • || 2. If || • || 2 is a norm and L has rank m, then
it was shown earlier that termination on the right occurs. If L has rank < m, then
II L(x)|| 2 < e has an infinite number of solutions, and termination on the right can
occur only if L is degenerate with respect to 11 • || 2.

3. Spacing of best approximation vectors

PROOF OF THEOREM 1.2. Let D-lm, and set l l v J | , = r 0 ) | |L(vJ | | 2

Suppose that

(3-1) ' Hvt + r f l l ,<2| |vJ | 1 .

By definition of a best approximation vector, we know that for w ¥= 0 in Zm,

(3.2) llwll, < r o =» | |Z . (w 1 ) | | 2 > r 1 .
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Now consider the seminorm 11 • \\c defined on W^by

| | (x ,L(x)) | | c = llxll, + c| |L(x)| |2

where c > 0. Then 11 • II c is actually a norm on W by the transversality condition.
For x G Rm let x* = (x, L(x)) G W. We choose c = rQ/rx so that

Since || L(\k+i)\\ 2 < II L(\k)\\ 2, (3.1) yields, for 0 <= / < A

(3.3) Hvjf+I-llc<3r0.

N o w f o r O < / < 7 < A

w = vk+j - vk+, ¥= 0.

Using (3.2) we obtain that either ||w||, > r0 or II L(w)|| 2 > r,, so that in either case

(3.4) llw*||c= llv* - v / | | c > r 0 .

For x* G W let

B(x*, X) = (y* G W: ||x* - y*|| c < X).

Now consider the 7m + 1 balls B(\^+i, ^r0) for 0 ^ / < lm. The triangle inequal-
ity and (3.4) show these are disjoint sets. Hence they occupy a volume (7m + \)V
where V is the volume of B(0, \r0). But by (3.3) all these balls sit inside the ball
5(0, lr0), which has volume lmV. This contradiction proves Theorem 1.2.
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