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ABSTRACT

This paper deals with the bivariate generalized Poisson distribution. The distribution is
fitted to the aggregate amount of claims for a compound class of policies submitted to
claims of two kinds whose yearly frequencies are a priori dependent. A comparative
study with the bivariate Poisson distribution and with two bivariate mixed Poisson
distributions has been carried out, based on data concerning natural events insurance
in the USA and third party liability automobile insurance in France.
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1. INTRODUCTION

Whereas numerous bivariate discrete distributions are used in the statistic field
(KOCHERLAKOTA and KOCHERLAKOTA, 1992), only a few of them, apart from the
bivariate Poisson distribution, have been applied in the insurance field. It is worth
noting the studys by PlCARD (1976), LEMAIRE (1985) and PARTRAT (1993).

In this paper, we discuss the bivariate generalized Poisson distribution (BGPD) in
detail. The distribution is derived from the generalized Poisson distribution (CONSUL,
1989; AMBAGASPITIYA and BALAKRISHNAN, 1994) using the trivariate reduction me-
thod. In section 2 we present some properties of the BGPD. The method of moments is
used in section 3 for estimation of the parameters. We illustrate the usage of this me-
thod through two examples in section 4.

2. BIVARIATE GENERALIZED POISSON DISTRIBUTION (BGPD)

2.1 Development of the distribution

We use the trivariate reduction method to construct the distribution (KOCHERLAKOTA

and KOCHERLAKOTA, 1992). Let N,,N2 and N3 be independent generalized Poisson
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random variables (GPD), N, ~ GPD (\, 0,), i = 1, 2, 3. Let X = N{ + N3 and
Y - N2 + N3. We get the joint probability function (p.f.) of (X, Y) as

mm(r,s)

P{X = r,Y = s)= ^Mr-k)f2(s-k)f3(k), (2.1)
k=0

where ft(n) is the p.f. of the random variable N,.

Since N ~ GPD(k, 0), if its p.f. is given by (CONSUL and SHOUKRI, 1985)

'exiK-A-Hfl) 1
„, U,l,2,...l

0 , otherwise

where X > 0, max(-l, -^/m) < 0 < 1 and m > 4 is the largest positive integer for
which X + 9m > 0 when 0 < 0, from (2.1) we have

P(X = r,Y = s) = p(r,s) = A[A2A3exp{-(A, + A2 + A 3 ) - r0 , -.?02}

|
^ (r-Jt)!(s-Jk)!Jfc!

+02-03)}, r, seJV.

(A, + (r - Jk)0, )r"*"' (A2 + (s - k)62)
s~k~X (A3 + Jfc0, )*"' (2.3)

2.2 Properties of the distribution

Remark All the formulas that follows for the GPD are taken from AMBAGASPITIYA

and BALAKRISHNAN (1994) and the general equations for a bidimensional distribution
are from KOCHERLAKOTA and KOCHERLAKOTA (1992).

Probability generating function (pgf)

The pgf of a random variable N is defined by Y\ (0 = £ ( f N) a nd t n e Pgf °f tne Pair

of random variables (X, Y) is J~[ (tx, t2) =E[t*tl).

Let the pgf's of the random variables under consideration be Y\ (0 . i = 1. 2, 3.

Then the joint pgf of (X, Y) is

For simplicity, we assume the parameters 0, > 0, i = 1, 2, 3. AMBAGASPITIYA and
BALAKRISHNAN (1994) has expressed the pgf of the GPD in terms of Lambert's W
function when 0> 0, as follows:

Y\ N U) = expj - - [w(-dz exp(-0)) + d] L (2.5)
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where the Lambert's W function is defined as W(x) expf W(x)) - x. For more details
about this function see CORLESS et al. (1994).

From (2.4) and (2.5), the pgf of (X, Y) is

i, t2) = exp-j L W(-6xtx exp(-0,)) W(-82t2 exp(-02)) -
1 2

(2.6)

with X = A,, + A2 + A,,.

Moment generating function (mgf)

If the mgf of N, is M, (t), i = 1, 2, 3 then the mgf of (X, Y) is

M(t,, f 2) = Af i (?! )M2 (r2 )M3 (fj +t2).

The mgf of the GPD, when 6 > 0, is given by

Mw (0 = exp j - ~ [W(-O exp(-0 +1)) + e\ \.

Using (2.8) in (2.7) we get

0, Qi

(2.7)

(2.8)

-02 +12))-

(2.9)

Moments

The expressions for the first four central moments of the GPD are as follows:

E(N) = H1=AM

V(N) = ju2 = AM3

H3 = A(3M - 2)M4

/ I 4 = 3 A 2 M 6 + A ( I 5 M 2 - 2 0 M + 6)M5, where M = (1 - 0)"1.

(2.10)

Since X = N, + N, and Af,, ^ independent, we have £fXj = £fAr,J + E(N3) and
= V(N,) + V(NJ, so that

(2.11)
E(Y) = A2M2 + A3M3
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Let /irs =E\(X-nx)
r(Y-Hy)s} be the (r, s)th central moment of (X, Y). The

equation for firs given fi^} the k'* central moment of N,, i - 1, 2, 3, is

Hence

This is enough to apply the method of moments.

Recurrence relations

The terms in the first row and column can be computed using the univariate generali-
zed Poisson distribution, as is seen from

/?(0,0) = exp{-A}

p(O,s) =^2(^2+^2)
s
 e x p r _ A _ ^ 2 j = f{s-X2,e2)exp{-(Xl + A,)}, s > 0

)r + A,)}, r > 0.

Given the probabilities in the first row and column, the probabilities for r > 1, s > 1
can be computed recursively as

min{r, ?} *

p(r,s) — A3 exp{A} jT —p(r — k,0)p(0, s — 1
k=0 *•

Independence

Using (2.12) we have cov(X,Y) = A3M33, hence

Px,Y = 1/2

Since A,3 > 0 and M3 > 0, it follows that for this model px v > 0. This shows that the
condition of zero correlation is a necessary and sufficient condition for the indepen-
dence of the random variables X and Y.
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Marginal distributions

The marginal distributions are:
( - 1 / \r-i-l

! j ^ _ |

exp{-/(0,-0,)}
\s-i-l

.) _.

exp{-i(02-0,)}.

In particular, if 9, - 62 = G3 = 0, this reduces toX ~ GP(X, + X3, 6) and Y ~
GP(X2 +13, 6).

3. ESTIMATION OF THE PARAMETERS: METHOD OF MOMENTS

Let (xf y,), /= 1,2, ..., n b e a random sample of size n from the population. We will
assume that the frequency of the pair (r, s) is nrs for r = 0, 1,2, ..., s = 0, 1,2, ... We
recall that ^ nrs = n. Also

i1=1

i °2x=-^(r-x)2nr+
r=0 r=0

1=1 s=0

1=1

1=1

r,s=O

1
n

r,s=0

(3.1)

The classical method of moments consists of equating the sample moments to their
populations equivalents, expressed in terms of the parameters. The number of mo-
ments required is six, equal to the number of parameters. Using (3.1), (2.11) and
(2.12) we have
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X = A|Mj + A3M3

y = X2M2 + A3M3

CT| = A 1 M 1
3 + A 3 M 3

3

CTy=A2M2
3+A3M3

3

All = ^ 3 M 3

<=>

_ Mil
M3

M,=

. X - A3M3
A, =

Ml

A 2 = -
M2

(3.2)

where a =

We use the fact that 0 < 1, so M = > 0, when chosen the solution for M,,

1 = 1,2,3.
1-0

4. NUMERICAL EXAMPLES

Example 1: The North atlantic coastal states in the USA (from Texas to Maine) can
be affected by tropical cyclones. We divided these states into three geographical
zones:

Zone 1: Texas, Louisiane, The Mississipi, Alabama;
Zone 2: Florida;
Zone 3: Other states.

We were interested in studying the joint distribution of the pair (X, Y), where X and
Y are the yearly frequency of hurricanes affecting respectively zone 1 and zone 3. To
do that we used the data in table 1, first row in each cell, giving the realizations of
(X, Y) observed during the 93 years from 1899 to 1991 (PARTRAT, 1993).

For these data we compute

x = 0.74194, a\ = 0.62158, /}, , = 0.02532,

y= 0.47312, ^^ = 0.52885, A21 =0.128341.

Under the hypothesis (X, Y) bivariate Poisson distributed P2(XI,X2, fi), we have
from PARTRAT (1993), method of maximum likelihood, the m.l.e. A, =0.71876,
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A2 = 0.44994, /} = 0.02317. The theoretical frequencies for P2[iY,i2,£i\

table 1, middle row in each cell.

are given in

TABLE 1

COMPARISON OF OBSERVED AND THEORETICAL YEARLY FREQUENCIES OF HURRICANES

(1899-1991) HAVING AFFECTED ZONE 1 AND ZONE 3

Zone 3
Zonel

0

1

2

3

s

0

27
28 24
26 29

24
20 30
23 81

8
7 29
7 90

1
2 12
1 24

60
57 95
59 24

1

9
1271
11 26

13
9 79
10 29

2
3 75
3 47

0
1 16
0 56

24
27 41
25 58

2

3
2 86
2 84

1
2 35
2 62

1
0 96
0 92

2
0 32
0 28

7
6 49
6 66

3

2
0 48
0 65

0
0 42
0 61

0
0 19
0 20

0
0 06
0 06

2
1 15
152

I
41
44 29
41 04

38
32 86
37 33

11
12 19
12 49

3
3 66
2 14

93

first row : observed frequency
middle row : theoretical frequency for P2

last row : theoretical frequency for BGPD.

The x1 goodness-of-fit test, after grouping in 7 categories: (0, 0), (0, 1), (0, 2 and

above), (1, 0), (1, 1), (2, 0), (other cases) to fulfill the Cochran cntenum, lead us to

zlbi = ^(obs-th)2 lth = 5.96 and a significance value a verifying 0.20 < a <

0 54.

We consider now the case of (X, Y) BGPD-distributed. Then from the method of
moments we have

A, =0.81257, #! =-0.10868

l2 = 0.44555, 62 = 0.03995

A3 = 0.00538, 03 = 0.40306

The theoretical frequencies in this case are given in table 1, last row in each cell,
and xlbs = 2-66 for the same categories; 0 < a < 0.85.
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Example 2: Automobile third party liability insurance.
The claims experience of a large automobile portfolio in France including 181038
liability policies was observed during the year 1989. The corresponding yearly claim
frequencies, collected in table 2 (first row in each cell), have been divided into mate-
rial damage only (type 1) and bodily injury (type 2) claims. We obtain

&2
X= 0.05388, £ n =0.00019,

a\ = 0.00552, £2, - 0.00023.

x = 0.05100,

y = 0.00553,

TABLE 2

COMPARISON OF OBSERVED AND THEORETICAL YEARLY FREQUENCIES

first row : observed frequency
second row : theoretical frequency for P-G2

third row : theoretical frequency for P-IG2

last row : theoretical frequency for BGPD.

Type 2
Typel

0

1

2

3

4
and above

I

0

171345
171348 7
171348 7
171351 30

8273
8275 5
8279 5
8248 39

389
398 2
391 5
415 41

31
19 1
213
22 18

1
1 0
14
1 32

180039
180042 5
180042 4
180038 60

1

918
897 1
897 5
923 08

73
86 3
84 9
71 01

5
62
70
3 52

1
04
06
0 19

0
01
01
001

997
990 1
990 1
997 81

2 and above

2
47
46
0 02

0
07
08
0 14

0
0
01
1 37

0
0
0
0 06

0
0
0
0

2
54
55
1 59

I
172265 00
172250 50
172250 80
172274 40

8346 00
8362 50
8365 20
8319 54

394 00
404 40
398 60
420 30

32 00
19 50
21 90
22 43

100
1 10
150
1 33

181038 00
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For the comparative study we have, from PARTRAT (1993):

a = 0.10840

f= 1.00772Bivariate Poisson Gamma P-G2 (a; r, [}): the m.l.e.

The theoretical frequencies are provided in table 2, second row in each cell.

a =0.10840

• Bivariate Poisson Inverse Gaussian P-IG2 (a; jx, y): the m.l.e.

The theoretical frequencies are provided in table 2, third row.

Under the hypothesis (X, Y) BGPD, we have, using (3.1)

4 =0.04945, £,=0.02701

£ = 0.05101

7 = 0.05155

A2= 0.00537, 02 =-0.00266

4=0.00016, 03 = 0.04976

row.

, the theoretical frequencies are given in table 2, last

The x2 goodness-of-fit test is applied on the 9 following categories: (0, 0); (0, 1);
(0, 2 and above); (1, 0); (1, 1 and above); (2, 0); (3, 0); (4 and above, 0); (other cases).
For this grouping we obtain:

• In the P-G2 case: xlb.s = 11.94 and a significance value 0.03 < a < 0.15;

• In the P-IG2 case: xlbs ~ 8.8 and a significance value 0.12 < a < 0.36.
In the BGPD case we used 7 categories: (0, 0); (0, 1); (1, 0); (1, 1); (2, 0); (3, 0);

(other cases), and we have xlbs ~ 6.36 with a significance value 0.00 < a < 0.4.

REFERENCES

AMBAOASPITIYA, R. S. & BALAKRISHNAN, N. (1994). On the compound generalized Poisson distributions.
ASTIN Bulletin 24, 255-263.

CONSUL, P. C. (1989). Generalized Poisson Distributions: Properties and Applications. Marcel Dekker Inc.,
New York/Basel.

CONSUL, P. C. & SHOUKRI, M. M. (1985). The generalized Poisson distribution when the sample mean is
larger than the sample variance. Communications in Statistics-Simulation and Computation 14, 1533-
1547.

CORLESS, R. M., GONNET, G. H., HARE, D.E.G. &JEFFREY, D. J. (1994). The Lambert W function. To appear

in Advances in Computational Mathematics.
KOCHERLAKOTA, S. & KOCHERLAKOTA, K. (1992). Bivariate discrete distributions, Marcel Dekker Inc.
LEMAIRE, J. (1985). Automobile insurance: Actuarial models, Kluwer Publ.

https://doi.org/10.2143/AST.27.1.542065 Published online by Cambridge University Press

https://doi.org/10.2143/AST.27.1.542065


32 RALUCA VERNIC

PARTRAT, C (1993) Compound model for two dependent kinds of claim, XXIVe ASTIN Colloquium, Cam-
bridge

PICARD, P (1976) Generalisation de l'etude sur la survenance des sinistres en assurance automobile, Bulle-
tin de I'lnstitut des Actuaires Frangms, Vol. 297, 204-267

RALUCA VERNIC

Department of Mathematics and Informatics
University "Ovidius" of Constanta
Bd. Mamaia 124
8700 Constanta
Romania

https://doi.org/10.2143/AST.27.1.542065 Published online by Cambridge University Press

https://doi.org/10.2143/AST.27.1.542065



