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FUNDAMENTAL BIORTHOGONAL SEQUENCES
AND K-NORMS ON ¢

L. CRONE, D. J. FLEMING, AND P. JESSUP

1. Introduction. A biorthogonal sequence is a double sequence (x;, f)
where each x; is from some locally convex space X, each f; is from X* and
fi(x;) = 8;;. A biorthogonal sequence is called total if the functionals (f;) are
total over X and is called fundamental if sp (x;) is dense in X. If a biorthogonal
sequence is both total and fundamental we refer to it as a Markushivich basis
or, more simply, an M-basis.

If (x4 f:) is a total biorthogonal sequence for X, then X can be identified
with the space of all scalar sequences (f;(x)) under the correspondence
x> (fi(x)). We refer to this space as the associated sequence space with
respect to (x; f;). With this correspondence, x; corresponds to e; = (§,;)5:
and f; corresponds to E;, the ith coordinate functional. If X is Frechét, then
the associated sequence space, with the identification topology, is an FK-space
with (e;, E;) as a total biorthogonal sequence. For a discussion of the basic
properties of FK-spaces, see [0, p. 202].

The multiplier algebra of a total biorthogonal sequence is the algebra of all
scalar sequences ¢ with the property that é&x = (¢(¢)x(2)) is in the associated
sequence space whenever x is in the associated sequence space. If the space isa
Banach space, then the multiplier algebra can be given a BK-topology [3,
Corollary 3.3]. Multiplier algebras of Schauder bases in Banach spaces have
been investigated by Yamazaki [7; 8] and by McGivney and Ruckle [3]. In
[3], McGivney and Ruckle have characterized those BK-algebras which arise
as multiplier algebras of a Schauder basis in a Banach space. Multiplier
algebras of various types of M-bases (in particular, series summable M-bases;
¢f. |5, Theorems 6.4 and 7.2]), have been investigated by Ruckle in [4].

The central result of this paper is the following characterization of those
algebras which are multiplier algebras of various kinds of biorthogonal systems.

A BK algebra X containing ¢ and e is the multipler algebra of a K-norm on
¢ if and only if X is the dual sequence space of a K-norm on ¢. Here, K-norm
on ¢ can be replaced by any of the following: series summable K-norm on ¢,
strongly series summable K-norm on ¢, Schauder basis, unconditional
Schauder basis, series summable M-basis, or strongly series summable M-basis.

The problem of characterizing multiplier algebras of M-bases is still open.

We have found it natural and convenient to include fundamental bior-
thogonal sequences (or, equivalently, K-norms on ¢), and have therefore
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generalized the main results of [5] to this setting. Such straight forward
generalizations are labeled propositions and proofs are included only if they
are substantially different from those of [5].

In § 3 we give some preliminary results on the construction of sequence
spaces which contain a given set 4 as a bounded subset. As an immediate
corollary of a theorem in § 4, a necessary and sufficient condition (Theorem
4.7) is given for a space to be the dual of a separable Banach space.

Finally, using the Main Theorem we have been able to construct a series
summable M-basis (Example 4.24) which is not strongly series summable.
This solves a problem left open by Ruckle in [5]. It is of interest to note that
this M-basis is not norming (see [2]).

2. Notation and terminology. Let w denote the space of all scalar
sequences. With the topology of coordinatewise convergence, w is an FK-space.
For s € w, we denote the ith element of s by s(¢). For A C wand B C ¢, A%
and Be are defined as follows:

2. x(@)y@)

A

A¢={x€¢: gl,foreachyEA},

and

2 x(@)y (@)

i

B"’={x€w: §1,foreachy€B}.
Thus, A4¢ is the absolute polar of 4 in ¢ and B¢ is the absolute polar of B in w,
where w and ¢ are placed in duality by means of the pairing

(,9) = 2 x(@yG).

1

If A and B are subsets of w, then we say that 4 absorbs B if there exists
E > 0 such that B C kA4. If A absorbs B and B absorbs 4, then we say that
A and B are equivalent and write 4 ~ B .

If \€w and (x,) C w, then, unless otherwise stated, the statement
y = > A\ (7)x; means that D> -1\ (¢)x; converges coordinatewise to y. For X
a normed space, D;(X) will denote the closed unit ball of X, and for 4 a subset
of a linear space, K (4) denotes the absolutely convex hull of 4.

If (x;, f:) is an M-basis for a normed space X, then the dual sequence space
of this M-bais, denoted by X?, is defined to be the space of all sequences
(f (x:)) as f ranges over X*. For an arbitrary normed K-space Y containing
¢, V% is defined to be the dual sequence space of the M-basis (e; E;) in the
K-space V° = ¢.

A linear subspace of w, with a locally convex topology which yields con-
tinuous coordinates, will be called a K-space. The spaces

I = {xE w: Y |x converges}

1
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and

by = {x € w: Y, |xe— xe converges} ,

1

are BK-spaces with respective norms

el = 3 fed
and

[l2]]s0 = [51] + Z |; — ®epa
1

For a detailed discussion of multiplier algebras of M-basis, see [3] and for
definitions and a duscussion of series summable M-basis and the series space,
see [5].

3. Preliminary results. For 4 C w, let E(4) = UsmK(4), and give
E(A) the topology of p4, the gauge of K(4). Then E(4) is a semi-normed
space which contains 4 as a bounded subset. If 4 is coordinatewise bounded,
then E(4) is a normed K-space and if in addition 4 contains a multiple of e;
for each <, then E(4) is a normed K-space which contains ¢. If in turn we
require that >\ (¢2)x; € K(4), for each N € Dy(l;) and x; € 4, then E(4) is
a BK-space containing ¢. However, to guarantee completeness we can do with
the following

PropPoSITION 3.1. Let A be an absolutely convex, coordinatewise bounded,
closed subset of w which contains a multiple of e;, for each t. Then E(A) is a
BK-space containing ¢.

If A is a coordinatewise bounded subset of w, then there is a smallest
BK-space containing 4 as a bounded subset. We will denote this space by
S(4) and it can be characterized as follows:

S) = {Z ANZ)x;: N € I, x, € A, for each ’L} ,
[3

with norm

lx||a = inf{||)\||l,:x = Z{ AN@)xy, x4, € A} .

This is equivalent to the formulation of S(4) given by Ruckle in [5] and so we
omit the argument that S(4) is a BK-space. Note that if 4 ~ B, then
S(4) = S(B).

If A is an absolutely convex, coordinatewise bounded, closed subset of w
which contains a multiple of e; for each 7, then ¢ will be dense in E(4) if and
only if E(4) = S(4 M ¢). If A is an absolutely convex radial subset of ¢,
then, by [5, Theorem 5.4], the coordinates will be norming on E(4) = S(4)
if and only if 4¢ ~ A## which in turn is true if and only if 4 ~ A4¢%¢,
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Definition 3.2. Let A be a coordinatewise bounded subset of ¢ which con-
tains a multiple of e;, for each 7. If || || agrees with p4 on E(4) then we say
that 4 is consistent.

For properties of consistent sets, see [5]; particularly, Theorem 4.2. A
discussion of related concepts can be found in [4].

Definition 3.3. We say that anormon ¢ isa K-norm if the E/'s are continuous
on (¢, || ||) and is consistent if Dy(¢, || ||) is consistent.

In light of [5, Theorem 4.2], we have:

PROPOSITION 3.4. A K-norm || || on ¢ is consistent if and only if, in any
completion ¥ of (¢, || ||), the extensions of the E;'s to all of Y form a total family.
In particular, if || || is consistent, then the completion of (¢, || ||) can be realized
as ¢ BK-space.

The following technical lemma will be useful in § 4.
LemMaA 3.5. If A is an absolutely convex radial subset of ¢, then A absorbs A«®.

Proof. The weak topology on ¢ by w, with respect to the pairing
(x,v) = 2 x(@)y (), is, in fact, the strongest locally convex topology on ¢.
Thus, p4 is a continuous seminorm on ¢ with this topology. Since A« = A4
and p4(4) C [0, 1], it follows that p,(4) < [0, 1].

4. Main results. Let (x;, f;) be a fundamental biorthogonal sequence for
the Banach space X. Then sp(x;) can be identified with ¢ under the
correspondece x <> s, where s, = > ;f;(x)e;. The induced norm, defined by
[Is:|| = [lx||, is a K-norm on ¢ since each f; is continuous on X. Thus, each
fundamental biorthogonal sequence gives rise to a K-norm on ¢. Conversely,
each K-norm on ¢ corresponds to at least one fundamental biorthogonal
sequence for a Banach space X (e.g., consider the completion of (¢, || {]))-

PrOPOSITION 4.1. Let (x4, f4) be a fundamental biorthogonal sequence for the
Banach space X, and let || || denote the induced K-norm on ¢. Then (x., f;) is an
M-basis for X if and only if A = D1(¢, || ||) @s consistent.

Definition 4.2. Let || || be a K-normon ¢. By the §-dual of this K-norm we
mean the §-dual of the normed space (¢, || ||).

ProrosiTION 4.3. If || || is @ K-norm on ¢ and A = D1(¢, || ||), then

@ 11 ID° = U na®.
COROLLARY 4.4. If (x;, f:) is an M-basis for the Banach space X, then (¢, || ||)?
1s the dual sequence space of (x4, f1)-

Notice that the §-dual determines whether or not the fundamental
biorthogonal sequence (x, f;) is an M-basis, since 4%? is consistent if and only
if A is consistent.
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The following theorem is used later to characterize multiplier algebras and
has, as an immediate corollary, a characterization of duals of separable Banach
spaces.

THEOREM 4.5. A BK-space Y containing ¢ is the 6-dual of a K-norm on ¢ if
and only if D1(Y) ~ D{(Y)%e,

Proof. If Y is the 6-dual of a K-norm on ¢, then it is of the form Usj-imA4*,
and A¢ = 4«#%. Assume that D,(Y) ~ D;(Y)%, and let X be a completion of
Une1nD1(Y)%. Then

<
Il

@1 nD1(Y)

i

U ﬂDl( Y)¢w
n=1

= (s, 11 1D,
where || || is the gauge of D;(YV)¢.

COROLLARY 4.6. 4 BK-space containing ¢ is the dual sequence space of an
M-basis in o Banach space if and only if D1(X) ~ D1(X)% and D,(X)* is
consistent.

THEOREM 4.7. A Banach space X is the dual of a separable Banach space if
and only if X admits a total biorthogonal sequence (x;, f;) such that B ~ B% and
such that B is consistent, where B = {(fi(x)):x € D1(X)}.

Definition 4.8. The multiplier algebra of a K-norm || || on ¢ is defined to
be the set of all sequences s € w for which

sup {|[st|[:t € &, [|t]] = 1} < o0.

We denote the multiplier algebra of a K-norm || || on ¢ by M (s, || ||). By
the multiplier algebra of a fundamental biorthogonal sequence we mean the
multiplier algebra of the induced K-norm on ¢. In the terminology of [3],

M(d)’ || “) = ]l/[c[(d)v || “)reiy Ei],

and is a BK-space algebra with norm
Hellar = sup [[ss]].
lsl=1

ProrositioN 4.9 (cf. [3, Theorem 4.2; 5 Theorem 7.1]). If || || s a K-norm
on ¢, then

Mo, 11 1) = O n(ady,

where A = D1(¢, || |]).
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CoroLLARY 4.10. If (x;, fi) is an M-basis for X and || || is the induced
K-norm on ¢, then M (¢, || ||) is the multiplier algebra of the M-basis (x4, f;)
m X.

Proof. This follows from 4.9 and [5, Theorem 7.1].

If a K-norm || || on ¢ is consistent, then, by the above, M (¢, || ||) is the
multiplier algebra of the M-basis (e;, E;) in X, where X is the BK realization
of the completion of (¢, || |]).

Question. 1f a K-norm on ¢ is not consistent, must there exist a consistent
K-norm on ¢ with the same multiplier algebra?

THEOREM 4.11. A BK-algebra X containing ¢ and ¢ is the multiplier algebra
of a K-norm on ¢ if and only if D1(X) ~ Dy (X)%e.

Proof. If X is the multiplier algebra of a K-norm on ¢, then by 4.9 it is of the
form Us=in (4 A4°)e. The result follows since (4A4%) ~ (4A4®)v¢e,

Suppose that D;(X) ~ D;(X)*. Then

I
Cs

X

n=1

Il

U nlDi(X)Di ()T

Il

U Dy (0" Dy 0T

M (e, [] 1D,

where || || is the gauge of D;(X)¢. We have used the fact that D;(X)*D;(X) ~
D, (X)¢. (It is clear that D;(X)¢D;(X) absorbs D;(X)?, since D;(X) contains
a multiple of e. Let z,x € Di(X) and y € D;(X)?. Then |(xy,2)| =
[(y, 2x)| £ K, where K is such that D{(X)D:(X) € KD:(X). Thus,
xy € KDi(X)?.)

TueorEM 4.12. Let X be a BK-algebra containing ¢ and e; then X is the
multiplier algebra of a K-norm if and only if X is the 6-dual of a K-norm.

Proof. This is an immediate corollary of 4.5 and 4.11.

The concept of a multiplier algebra defines an equivalence relation on the set
of all K-norms on ¢. Two norms are in the same equivalence class if they have
the same multiplier algebra. Theorem 4.11 constructs a distinguished element
in each equivalence class, namely, the gauge of D:(X)® We denote this
K-norm by | ).

Definition 4.13. Let || || be a K-norm on ¢. The series space, % (¢, || ||),
is defined by & (@, || ||) = S(44¢) where 4 = Di(¢, || ||).
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Note that, for 4 consistent, this coincides with the definition of series space
given by Ruckle in [5].

Definition 4.14. A K-norm || || on ¢ is called series summable if
e €L I 1D

ProposiTiON 4.15. Let || || be a K-norm on ¢. Then the following are
equivalent:

(i) e € L, | 1)

(i) Mg, |l 1D =@l D%
(ili) AAe is consistent, where A = Di(o, || |]);
(iv) Di(M (¢, || |]))? is consistent.

Proof. The equivalence of the first 3 conditions follows much as in [5].
(iii) & (iv). This follows since:

Dy(M (g, || D) = (Ade)e
is consistent if and only if 44 is consistent.

By (iv), the multiplier algebra determines whether or not a K-norm on ¢
is series summable. This theorem also shows that the multiplier algebra does
not determine whether or not a K-norm is consistent, since there exist
BK-spaces with M-bases which are not series summable. The distinguished
K-norm || || in the equivalence class determined by such an M-basis is not
consistent, by Proposition 4.15. An example is given on page 524 of [5].

THEOREM 4.16. Let X be a BK-algebra containing ¢ and e. Then the following
are equivalent:
(1) X s the multiplier algebra of o series summable K-norm on ¢;
(ii) D1 (X) ~ D1 (X)%* and D1(X )¢ is consistent;
(iii) X 4s the dual sequence space of an M-basis;
(iv) X 4s the 5-dual of a series summable K-norm on ¢.

Proof. (i) & (ii). The necessity follows by 4.15. By 4.11, X is the multiplier

algebra of a K-norm on ¢ and so by 4.15 this K-norm is series summable.
(ii) < (iii). This is Corollary 4.6.

(i) = (iv). Suppose that X = M (¢, || ||), where || || is a series summable

K-norm on ¢. Then by 4.15, X = % (¢, || ||)?, and as in the proof of 4.15,

ML (@, || ||) = M (s, || ||). Therefore, (e, E;) is a series summable M-basis

for & (&, || [I). Thus, X = (8, || [I')%, where || [I"is the norm on (s, | ||)
restricted to ¢.

(iv) = (i). This follows from 4.12.

We note that the M-basis in (iii) above will necessarily be series summable
and that the K-norm in (iv) will be consistent.

Definition 4.17 (¢f. [5, Theorem 7.2]). A K-norm || || on ¢ is said to be
strongly series summable if M (¢, || ||) = Mg, || |])%.
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ProposiTioN 4.18. Let || || be a K-norm on ¢. Then the following are
equivalent:
Q) M, Il 1) = M, || )%
(i) e € M(g, || 1%
(iii) there is a sequence (u,) C ¢ such that lim, u,(k) = 1, for all k, and
supy [[un|| s < 0.

Proof. (i) = (ii). e € M (9, || |])-
(ii) = (1). Since Un_im(4A*)#* is a BK-space containing 44 as a
bounded subset (Proposition 3.1), we have

6,1 DS U naa™ = Mo, || 1)),

and, therefore, ¢ € M (¢, || ||)?® € L (9, || ||). By 4.15, (¢, || ||) is series
summable and the distinguished element in the equivalence class determined
by M(s, || ||) is consistent. Now, since M (¢, || ||) is known to be the
multiplier algebra associated with an M-basis, the result follows by [5,
Theorem 7.2].

(ii) & (iii). This follows exactly as in [5, Theorem 7.2].

CoROLLARY 4.19. Every strongly series summable K-norm on ¢ 1is series
summable.

We know that there are inconsistent K-norms in every equivalence class of
K-norms which are not series summable. The next result shows that there are
no inconsistent K-norms in any strongly series summable equivalence class.

TuEOREM 4.20. Every strongly series summable K-norm on ¢ is consistent.

Proof. Assume that (¢, || ||) is strongly series summable. Then there exists
(#4,) € ¢ such that u,(k) — 1 on #, for each k, and sup, ||u||s < ©. It
suffices to show that there exists a K > 0 such that || 2\ (¢)sy|| £ K, for all
N € Dy(ly) and all (s;) S 4 = Di(¢, || |])- Let X € D1(}1) and (s;) & A. Then
for fixed n,

=0,

= lim “ > A@E)sat,
m t=m+1

lim [u, Y, N@)s; — uy > A@)s,

m i=1 i=1

since u, has finitely many non-zero coordinates and
lim D N@)si(kB)u,(k) = 0,
m

=m+1

for each k. Since

=K =K,

Uy i A)s; 1}2 IO
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this gives that

i=1
But lim, ||#,s — s|| = 0, for each s € ¢, so
> N@)si| =K.
=1

LEmma 4.21. A BK-space X containing ¢ is the dual sequence space of a
norming M-basis in a Banach space if and only if D1(X)#% ~ D, (X).

Proof. Assume that X is the dual sequence space of a norming M -basis.
Then by [5, Theorem 4.4] there is a consistent balanced subset 4 of ¢ such that
X = Up.mmde, where A¢ ~ A%, But D;(X) ~ 4%, and so

Di(X) ~ Ao ~ A% ~ (Jot)t0 ~ Dy (X )9¢d0,
Conversely, assume that D;(X) ~ D;(X)#¢, Thus,
D1(X) ~ Dy(X)¢9¢ ~ D (X)9#980 ~ Dy (X )%
Now,
Dy (X)$ ~ Dy (X)b6906 ~ Dy (X b9
and, hence, D;(X)¢ is consistent. For,

Di(X)* ~ Dy(X)** = Dy(U nD1(X)*) N ¢

and, hence, D;(X)¢ is the intersection of ¢ with the unit ball of a BK-space.

By 4.6, X is the dual sequence space of an M-basis and this M-basis is norming
by [5, Theorem 5.4].

THEOREM 4.22. Let X be a BK-algebra containing ¢ and e. Then the following
are equivalent:

(1) X s the multiplier algebra of a strongly series summable K-norm on ¢;
(if) Di(X) ~ D1(X)#%%;
(iii) X 4s the dual sequence space of a norming M-basis;
(iv) X 4s the 6-dual of a strongly series summable K-norm on ¢.

Proof. (i) = (ii). Since X is a multiplier algebra, D;(X) ~ D;(X)%, so
D:(X) M ¢ is equivalent to D;(X)%¢. This, and the fact that X = X%, gives
that D1(X) ~ D, (X )#¢de,

@) = ().
Dy(X )# ~ Dy (X )t = Dy (X)#%e ~ Dy (X).

Thus, by 4.11, X is the multiplier algebra of a K-norm on ¢. Now
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D;(X) ~ D;(X)% implies that D;(X)* ~ D;(X) N ¢, so

X% = U n(D:@) N g™
= G nDl(X)W
= L_)l ’ﬂ.Dl(X)

Thus, the K-norm is strongly series summable.

(ii) < (iii). This follows from Lemma 4.21.

(i) < (iv). The proof here is the same as the argument for the (i) & (iv)
part of 4.16.

Thus, we have that a BK-algebra X containing ¢ and e is the multiplier
algebra of a A if and only if X is the dual sequence space of a A, where A can
be any of: K-norm on ¢, series summable K-norm on ¢, strongly series
summable K-norm on ¢, unconditional Schauder basis, Schauder basis, series
summable M-basis, or strongly series summable M-basis.

Since we know that every strongly series summable K-norm is consistent
the following are consequences of [3, Theorem 4.7].

ProrosiTioN 4.23. Let || || be a K-norm on ¢. Then:

() bv S M (o, || ||) if and only if (e;, E;) is a Schauder basis for the
BK-completion of (¢, || |]);

(i) m = Mo, || ||) if and only if (e;, E;) is an unconditional Schauder basis
for the BK-completion of (¢, || |]).

Using the above results, we are now able to give an example of a series
summable M-basis which is not strongly series summable, and thus answer a
question rasied in [5].

Example 4.24. We will construct a BK-space X with a non-norming M-basis
such that X? is an algebra containing e. By 4.12, 4.16, and 4.22, this M-basis
is series summable but not strongly series summable.

Let X, denote the set /; with the norm

©

1 0
]| = 2 e + | 20
i=1 i=1
This norm is equivalent to the usual /; norm, since
1& 1 o
=2 e Sl = o+ 1) 2wl
n =1 (2 i=1

Let ¥, denote the dual of X,. Then Y, is the set I, with the norm ||-||™,
determined in the usual way by X,. Let My, Mo, ..., M; = {m;;}51 be a
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partition of the positive integers into countably many infinite subsets. For
a sequence x, define Q,(x) = {x (M)} 51
Finally, define X to be the space of all sequences x such that

= 5 (15 stnl +

n=1 Jj=

Lol

Z x(mnj)

=1

) = 5 le®llo <.

n=1

It is not difficult to see that (X, ||-||) is a BK-space containing /; densely.
Furthermore, the dual, ¥, is given by the set of all sequences y such that
lly|| = sup [|Q.(¥)||™ < o, and is a BK space (see [1, p. 31]).

It can be shown that Y is an algebra containing e. It remains to show that
the coordinate functionals are not norming on X. Let 4 = D1(X) M ¢. As we
remarked in § 3, it is sufficient to show that 4 does not absorb 4%¢.

Let 4, = D1(X,) M ¢. Then

inf{k > 0:4,% C kd,} = n/2,
for each n. For,
[|(n/2)erlly = (/2)(A + 1/n) > n/2.

Lety; = (n/2)(ex — e;). Then y; € 4, and lim; y; (k) = (n/2)e,(x), for all .
Since A%* is the coordinatewise closure of 4 in ¢, (n/2)e; € A#%.) It follows
that there is no x > 0 such that A¢* C «A4.

Finally, we note that (e;, E;) is not a basis for X since it is not strongly series
summable, but that X does possess a basis {z;;}5 ;=1 where

e1 fi=mnji=1

Qn(zij) =4€; — €1 if n,j>1
0 otherwise.
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