FUNDAMENTAL BIORTHOGONAL SEQUENCES AND K-NORMS ON ϕ

L. CRONE, D. J. FLEMING, AND P. JESSUP

1. Introduction. A biorthogonal sequence is a double sequence (x_i, f_i) where each x_i is from some locally convex space X, each f_i is from X^* and $f_i(x_j) = \delta_{ij}$. A biorthogonal sequence is called total if the functionals (f_i) are total over X and is called fundamental if $\operatorname{sp}(x_i)$ is dense in X. If a biorthogonal sequence is both total and fundamental we refer to it as a Markushivich basis or, more simply, an M-basis.

If (x_i, f_i) is a total biorthogonal sequence for X, then X can be identified with the space of all scalar sequences $(f_i(x))$ under the correspondence $x \leftrightarrow (f_i(x))$. We refer to this space as the associated sequence space with respect to (x_i, f_i) . With this correspondence, x_i corresponds to $e_i = (\delta_{ij})_{j=1}^{\infty}$ and f_i corresponds to E_i , the *i*th coordinate functional. If X is Frechét, then the associated sequence space, with the identification topology, is an *FK*-space with (e_i, E_i) as a total biorthogonal sequence. For a discussion of the basic properties of *FK*-spaces, see [6, p. 202].

The multiplier algebra of a total biorthogonal sequence is the algebra of all scalar sequences t with the property that tx = (t(i)x(i)) is in the associated sequence space whenever x is in the associated sequence space. If the space is a Banach space, then the multiplier algebra can be given a BK-topology [3, Corollary 3.3]. Multiplier algebras of Schauder bases in Banach spaces have been investigated by Yamazaki [7; 8] and by McGivney and Ruckle [3]. In [3], McGivney and Ruckle have characterized those BK-algebras which arise as multiplier algebras of a Schauder basis in a Banach space. Multiplier algebras of various types of M-bases (in particular, series summable M-bases; cf. [5, Theorems 6.4 and 7.2]), have been investigated by Ruckle in [4].

The central result of this paper is the following characterization of those algebras which are multiplier algebras of various kinds of biorthogonal systems.

A *BK* algebra *X* containing ϕ and *e* is the multipler algebra of a *K*-norm on ϕ if and only if *X* is the dual sequence space of a *K*-norm on ϕ . Here, *K*-norm on ϕ can be replaced by any of the following: series summable *K*-norm on ϕ , strongly series summable *K*-norm on ϕ , Schauder basis, unconditional Schauder basis, series summable *M*-basis, or strongly series summable *M*-basis.

The problem of characterizing multiplier algebras of M-bases is still open.

We have found it natural and convenient to include fundamental biorthogonal sequences (or, equivalently, K-norms on ϕ), and have therefore

Received March 24, 1971 and in revised form June 25, 1971.

generalized the main results of [5] to this setting. Such straight forward generalizations are labeled propositions and proofs are included only if they are substantially different from those of [5].

In § 3 we give some preliminary results on the construction of sequence spaces which contain a given set A as a bounded subset. As an immediate corollary of a theorem in § 4, a necessary and sufficient condition (Theorem 4.7) is given for a space to be the dual of a separable Banach space.

Finally, using the Main Theorem we have been able to construct a series summable M-basis (Example 4.24) which is not strongly series summable. This solves a problem left open by Ruckle in [5]. It is of interest to note that this M-basis is not norming (see [2]).

2. Notation and terminology. Let ω denote the space of all scalar sequences. With the topology of coordinatewise convergence, ω is an *FK*-space. For $s \in \omega$, we denote the *i*th element of *s* by s(i). For $A \subseteq \omega$ and $B \subseteq \phi$, A^{ϕ} and B^{ω} are defined as follows:

$$A^{\phi} = \left\{ x \in \phi \colon \left| \sum_{i} x(i) y(i) \right| \leq 1, \text{ for each } y \in A
ight\},$$

and

$$B^{\omega} = \left\{ x \in \omega \colon \left| \sum_{i} x(i) y(i) \right| \le 1, \text{ for each } y \in B \right\}.$$

Thus, A^{ϕ} is the absolute polar of A in ϕ and B^{ω} is the absolute polar of B in ω , where ω and ϕ are placed in duality by means of the pairing

$$(x, y) = \sum_{i} x(i)y(i).$$

If A and B are subsets of ω , then we say that A absorbs B if there exists k > 0 such that $B \subseteq kA$. If A absorbs B and B absorbs A, then we say that A and B are equivalent and write $A \sim B$.

If $\lambda \in \omega$ and $(x_n) \subseteq \omega$, then, unless otherwise stated, the statement $y = \sum_i \lambda(i) x_i$ means that $\sum_{i=1}^n \lambda(i) x_i$ converges coordinatewise to y. For X a normed space, $D_1(X)$ will denote the closed unit ball of X, and for A a subset of a linear space, K(A) denotes the absolutely convex hull of A.

If (x_i, f_i) is an *M*-basis for a normed space *X*, then the dual sequence space of this *M*-bais, denoted by X^{δ} , is defined to be the space of all sequences $(f(x_i))$ as *f* ranges over *X*^{*}. For an arbitrary normed *K*-space *Y* containing ϕ , Y^{δ} is defined to be the dual sequence space of the *M*-basis (e_i, E_i) in the *K*-space $Y^0 = \overline{\phi}$.

A linear subspace of ω , with a locally convex topology which yields continuous coordinates, will be called a K-space. The spaces

$$l_1 = \left\{ x \in \omega \colon \sum_i \ |x_i| \text{ converges} \right\}$$

and

$$bv = \left\{x \in \omega: \sum_{i} |x_i - x_{i+1}| \text{ converges}\right\},$$

are BK-spaces with respective norms

$$||x||_{l_1} = \sum_i |x_i|$$

and

$$||x||_{bv} = |x_1| + \sum_i |x_i - x_{i+1}|.$$

For a detailed discussion of multiplier algebras of M-basis, see [3] and for definitions and a duscussion of series summable M-basis and the series space, see [5].

3. Preliminary results. For $A \subseteq \omega$, let $E(A) = \bigcup_{n=1}^{\infty} nK(A)$, and give E(A) the topology of p_A , the gauge of K(A). Then E(A) is a semi-normed space which contains A as a bounded subset. If A is coordinatewise bounded, then E(A) is a normed K-space and if in addition A contains a multiple of e_i for each i, then E(A) is a normed K-space which contains ϕ . If in turn we require that $\sum_i \lambda(i) x_i \in K(A)$, for each $\lambda \in D_1(l_1)$ and $x_i \in A$, then E(A) is a BK-space containing ϕ . However, to guarantee completeness we can do with the following

PROPOSITION 3.1. Let A be an absolutely convex, coordinatewise bounded, closed subset of ω which contains a multiple of e_i , for each i. Then E(A) is a BK-space containing ϕ .

If A is a coordinatewise bounded subset of ω , then there is a smallest *BK*-space containing A as a bounded subset. We will denote this space by S(A) and it can be characterized as follows:

$$S(A) = \left\{ \sum_{i} \lambda(i) x_i : \lambda \in l_1, x_i \in A, \text{ for each } i \right\},$$

with norm

$$||x||_{A} = \inf \left\{ ||\lambda||_{l_{1}} \colon x = \sum_{i} \lambda(i)x_{i}, x_{i} \in A \right\}.$$

This is equivalent to the formulation of S(A) given by Ruckle in [5] and so we omit the argument that S(A) is a *BK*-space. Note that if $A \sim B$, then S(A) = S(B).

If A is an absolutely convex, coordinatewise bounded, closed subset of ω which contains a multiple of e_i for each *i*, then ϕ will be dense in E(A) if and only if $E(A) = S(A \cap \phi)$. If A is an absolutely convex radial subset of ϕ , then, by [5, Theorem 5.4], the coordinates will be norming on E(A) = S(A) if and only if $A^{\omega} \sim A^{\phi\phi\omega}$, which in turn is true if and only if $A \sim A^{\phi\phi}$.

Definition 3.2. Let A be a coordinatewise bounded subset of ϕ which contains a multiple of e_i , for each i. If $|| ||_A$ agrees with p_A on E(A) then we say that A is consistent.

For properties of consistent sets, see [5]; particularly, Theorem 4.2. A discussion of related concepts can be found in [4].

Definition 3.3. We say that a norm on ϕ is a K-norm if the E_i 's are continuous on $(\phi, || ||)$ and is consistent if $D_1(\phi, || ||)$ is consistent.

In light of [5, Theorem 4.2], we have:

PROPOSITION 3.4. A K-norm || || on ϕ is consistent if and only if, in any completion Y of $(\phi, || ||)$, the extensions of the E_i 's to all of Y form a total family. In particular, if || || is consistent, then the completion of $(\phi, || ||)$ can be realized as a BK-space.

The following technical lemma will be useful in § 4.

LEMMA 3.5. If A is an absolutely convex radial subset of ϕ , then A absorbs $A^{\omega\phi}$.

Proof. The weak topology on ϕ by ω , with respect to the pairing $(x, y) = \sum_i x(i)y(i)$, is, in fact, the strongest locally convex topology on ϕ . Thus, p_A is a continuous seminorm on ϕ with this topology. Since $A^{\omega\phi} = \overline{A}$ and $p_A(A) \subseteq [0, 1]$, it follows that $p_A(\overline{A}) \subseteq [0, 1]$.

4. Main results. Let (x_i, f_i) be a fundamental biorthogonal sequence for the Banach space X. Then $sp(x_i)$ can be identified with ϕ under the correspondece $x \leftrightarrow s_x$, where $s_x = \sum_i f_i(x)e_i$. The induced norm, defined by $||s_x|| = ||x||$, is a K-norm on ϕ since each f_i is continuous on X. Thus, each fundamental biorthogonal sequence gives rise to a K-norm on ϕ . Conversely, each K-norm on ϕ corresponds to at least one fundamental biorthogonal sequence for a Banach space X (e.g., consider the completion of $(\phi, || ||)$).

PROPOSITION 4.1. Let (x_i, f_i) be a fundamental biorthogonal sequence for the Banach space X, and let || || denote the induced K-norm on ϕ . Then (x_i, f_i) is an M-basis for X if and only if $A = D_1(\phi, || ||)$ is consistent.

Definition 4.2. Let || || be a K-norm on ϕ . By the δ -dual of this K-norm we mean the δ -dual of the normed space $(\phi, || ||)$.

PROPOSITION 4.3. If || || is a K-norm on ϕ and $A = D_1(\phi, || ||)$, then

$$(\phi, || ||)^{\delta} = \bigcup_{n=1}^{\infty} nA^{\omega}.$$

COROLLARY 4.4. If (x_i, f_i) is an M-basis for the Banach space X, then $(\phi, || ||)^{\delta}$ is the dual sequence space of (x_i, f_i) .

Notice that the δ -dual determines whether or not the fundamental biorthogonal sequence (x_i, f_i) is an *M*-basis, since $A^{\omega\phi}$ is consistent if and only if *A* is consistent.

The following theorem is used later to characterize multiplier algebras and has, as an immediate corollary, a characterization of duals of separable Banach spaces.

THEOREM 4.5. A BK-space Y containing ϕ is the δ -dual of a K-norm on ϕ if and only if $D_1(Y) \sim D_1(Y)^{\phi \omega}$.

Proof. If Y is the δ -dual of a K-norm on ϕ , then it is of the form $\bigcup_{n=1}^{\infty} nA^{\omega}$, and $A^{\omega} = A^{\omega\phi\omega}$. Assume that $D_1(Y) \sim D_1(Y)^{\phi\omega}$, and let X be a completion of $\bigcup_{n=1}^{\infty} nD_1(Y)^{\phi}$. Then

$$Y = \bigcup_{n=1}^{\infty} nD_1(Y)$$
$$= \bigcup_{n=1}^{\infty} nD_1(Y)^{\phi\omega}$$
$$= (\phi, || ||)^{\delta},$$

where || || is the gauge of $D_1(Y)^{\phi}$.

COROLLARY 4.6. A BK-space containing ϕ is the dual sequence space of an M-basis in a Banach space if and only if $D_1(X) \sim D_1(X)^{\phi\omega}$ and $D_1(X)^{\phi}$ is consistent.

THEOREM 4.7. A Banach space X is the dual of a separable Banach space if and only if X admits a total biorthogonal sequence (x_i, f_i) such that $B \sim B^{\phi \omega}$ and such that B^{ϕ} is consistent, where $B = \{(f_i(x)): x \in D_1(X)\}$.

Definition 4.8. The multiplier algebra of a K-norm || || on ϕ is defined to be the set of all sequences $s \in \omega$ for which

$$\sup \{ ||st||: t \in \phi, ||t|| \leq 1 \} < \infty.$$

We denote the multiplier algebra of a K-norm || || on ϕ by $M(\phi, || ||)$. By the multiplier algebra of a fundamental biorthogonal sequence we mean the multiplier algebra of the induced K-norm on ϕ . In the terminology of [3],

$$M(\phi, || ||) = M_c[(\phi, || ||), e_i, E_i],$$

and is a BK-space algebra with norm

$$||t||_M = \sup_{||s|| \le 1} ||ts||.$$

PROPOSITION 4.9 (cf. [3, Theorem 4.2; 5 Theorem 7.1]). If || is a K-norm on ϕ , then

$$M(\phi, || ||) = \bigcup_{n=1}^{\infty} n(AA^{\omega})^{\omega},$$

where $A = D_1(\phi, || ||)$.

COROLLARY 4.10. If (x_i, f_i) is an M-basis for X and || || is the induced K-norm on ϕ , then $M(\phi, || ||)$ is the multiplier algebra of the M-basis (x_i, f_i) in X.

Proof. This follows from 4.9 and [5, Theorem 7.1].

If a K-norm || || on ϕ is consistent, then, by the above, $M(\phi, || ||)$ is the multiplier algebra of the *M*-basis (e_i, E_i) in *X*, where *X* is the *BK* realization of the completion of $(\phi, || ||)$.

Question. If a K-norm on ϕ is not consistent, must there exist a consistent K-norm on ϕ with the same multiplier algebra?

THEOREM 4.11. A BK-algebra X containing ϕ and e is the multiplier algebra of a K-norm on ϕ if and only if $D_1(X) \sim D_1(X)^{\phi \omega}$.

Proof. If X is the multiplier algebra of a K-norm on ϕ , then by 4.9 it is of the form $\bigcup_{n=1}^{\infty} n(AA^{\omega})^{\omega}$. The result follows since $(AA^{\omega})^{\omega} \sim (AA^{\omega})^{\omega\phi\omega}$.

Suppose that $D_1(X) \sim D_1(X)^{\phi \omega}$. Then

$$X = \bigcup_{n=1}^{\infty} nD_1(X)^{\phi\omega}$$
$$= \bigcup_{n=1}^{\infty} n[D_1(X)^{\phi}D_1(X)]^{\omega}$$
$$= \bigcup_{n=1}^{\infty} n[D_1(X)^{\phi}D_1(X)^{\phi\omega}]^{\omega}$$
$$= M(\phi, || ||),$$

where || || is the gauge of $D_1(X)^{\phi}$. We have used the fact that $D_1(X)^{\phi}D_1(X) \sim D_1(X)^{\phi}$. (It is clear that $D_1(X)^{\phi}D_1(X)$ absorbs $D_1(X)^{\phi}$, since $D_1(X)$ contains a multiple of *e*. Let $z, x \in D_1(X)$ and $y \in D_1(X)^{\phi}$. Then $|(xy, z)| = |(y, zx)| \leq K$, where *K* is such that $D_1(X)D_1(X) \subseteq KD_1(X)$. Thus, $xy \in KD_1(X)^{\phi}$.)

THEOREM 4.12. Let X be a BK-algebra containing ϕ and e; then X is the multiplier algebra of a K-norm if and only if X is the δ -dual of a K-norm.

Proof. This is an immediate corollary of 4.5 and 4.11.

The concept of a multiplier algebra defines an equivalence relation on the set of all K-norms on ϕ . Two norms are in the same equivalence class if they have the same multiplier algebra. Theorem 4.11 constructs a distinguished element in each equivalence class, namely, the gauge of $D_1(X)^{\delta}$. We denote this K-norm by $|| ||_{(x)}$.

Definition 4.13. Let || || be a K-norm on ϕ . The series space, $\mathscr{G}(\phi, || ||)$, is defined by $\mathscr{G}(\phi, || ||) = S(AA^{\omega})$ where $A = D_1(\phi, || ||)$.

Note that, for A consistent, this coincides with the definition of series space given by Ruckle in [5].

Definition 4.14. A K-norm || || on ϕ is called series summable if $e \in \mathscr{S}(\phi, || ||)^{\delta}$.

PROPOSITION 4.15. Let || || be a K-norm on ϕ . Then the following are equivalent:

(i) $e \in \mathscr{S}(\phi, || ||)^{\delta};$

(ii) $M(\boldsymbol{\phi}, || ||) = \mathscr{G}(\boldsymbol{\phi}, || ||)^{\delta};$

(iii) AA^{ω} is consistent, where $A = D_1(\phi, || ||)$;

(iv) $D_1(M(\phi, || ||))^{\phi}$ is consistent.

Proof. The equivalence of the first 3 conditions follows much as in [5]. (iii) \Leftrightarrow (iv). This follows since:

 $D_1(M(\phi, || ||))^{\phi} = (AA^{\omega})^{\omega\phi}$

is consistent if and only if AA^{ω} is consistent.

By (iv), the multiplier algebra determines whether or not a K-norm on ϕ is series summable. This theorem also shows that the multiplier algebra does not determine whether or not a K-norm is consistent, since there exist BK-spaces with M-bases which are not series summable. The distinguished K-norm || || in the equivalence class determined by such an M-basis is not consistent, by Proposition 4.15. An example is given on page 524 of [5].

THEOREM 4.16. Let X be a BK-algebra containing ϕ and e. Then the following are equivalent:

- (i) X is the multiplier algebra of a series summable K-norm on ϕ ;
- (ii) $D_1(X) \sim D_1(X)^{\phi \omega}$ and $D_1(X)^{\phi}$ is consistent;

(iii) X is the dual sequence space of an M-basis;

(iv) X is the δ -dual of a series summable K-norm on ϕ .

Proof. (i) \Leftrightarrow (ii). The necessity follows by 4.15. By 4.11, X is the multiplier algebra of a K-norm on ϕ and so by 4.15 this K-norm is series summable.

(ii) \Leftrightarrow (iii). This is Corollary 4.6.

(i) \Rightarrow (iv). Suppose that $X = M(\phi, || ||)$, where || || is a series summable K-norm on ϕ . Then by 4.15, $X = \mathscr{S}(\phi, || ||)^{\delta}$, and as in the proof of 4.15, $M(\mathscr{S}(\phi, || ||) = M(\phi, || ||)$. Therefore, (e_i, E_i) is a series summable *M*-basis for $\mathscr{S}(\phi, || ||)$. Thus, $X = (\phi, || ||')^{\delta}$, where || ||' is the norm on $\mathscr{S}(\phi, || ||)$ restricted to ϕ .

 $(iv) \Rightarrow (i)$. This follows from 4.12.

We note that the M-basis in (iii) above will necessarily be series summable and that the K-norm in (iv) will be consistent.

Definition 4.17 (cf. [5, Theorem 7.2]). A K-norm || || on ϕ is said to be strongly series summable if $M(\phi, || ||) = M(\phi, || ||)^{\delta\delta}$.

PROPOSITION 4.18. Let || || be a K-norm on ϕ . Then the following are equivalent:

(i) $M(\phi, || ||) = M(\phi, || ||)^{\delta\delta};$

(ii) $e \in M(\phi, || ||)^{\delta\delta};$

(iii) there is a sequence $(u_n) \subseteq \phi$ such that $\lim_n u_n(k) = 1$, for all k, and $\sup_n ||u_n||_M < \infty$.

Proof. (i) \Rightarrow (ii). $e \in M(\phi, || ||)$.

(ii) \Rightarrow (i). Since $\bigcup_{n=1}^{\infty} n (AA^{\omega})^{\phi \omega}$ is a *BK*-space containing AA^{ω} as a bounded subset (Proposition 3.1), we have

$$\mathscr{S}(\phi, || ||) \subseteq \bigcup_{n=1}^{\infty} n(AA^{\omega})^{\phi\omega} = M(\phi, || ||)^{\delta},$$

and, therefore, $e \in M(\phi, || ||)^{\delta \delta} \subseteq \mathscr{S}(\phi, || ||)^{\delta}$. By 4.15, $(\phi, || ||)$ is series summable and the distinguished element in the equivalence class determined by $M(\phi, || ||)$ is consistent. Now, since $M(\phi, || ||)$ is known to be the multiplier algebra associated with an *M*-basis, the result follows by [5, Theorem 7.2].

(ii) \Leftrightarrow (iii). This follows exactly as in [5, Theorem 7.2].

COROLLARY 4.19. Every strongly series summable K-norm on ϕ is series summable.

We know that there are inconsistent K-norms in every equivalence class of K-norms which are not series summable. The next result shows that there are no inconsistent K-norms in any strongly series summable equivalence class.

THEOREM 4.20. Every strongly series summable K-norm on ϕ is consistent.

Proof. Assume that $(\phi, || ||)$ is strongly series summable. Then there exists $(u_n) \subseteq \phi$ such that $u_n(k) \to 1$ on n, for each k, and $\sup_n ||u_n||_M < \infty$. It suffices to show that there exists a K > 0 such that $|| \sum_{i} \lambda(i) s_i|| \leq K$, for all $\lambda \in D_1(l_1)$ and all $(s_i) \subseteq A = D_1(\phi, || ||)$. Let $\lambda \in D_1(l_1)$ and $(s_i) \subseteq A$. Then for fixed n,

$$\lim_{m} \left\| u_n \sum_{i=1}^{\infty} \lambda(i) s_i - u_n \sum_{i=1}^{m} \lambda(i) s_i \right\| = \lim_{m} \left\| \sum_{i=m+1}^{\infty} \lambda(i) s_i u_n \right\| = 0,$$

since u_n has finitely many non-zero coordinates and

$$\lim_{m} \sum_{i=m+1}^{\infty} \lambda(i) s_{i}(k) u_{n}(k) = 0,$$

for each k. Since

$$\left\| u_n \sum_{i=1}^m \lambda(i) s_i \right\| \leq K \left\| \sum_{i=1}^m \lambda(i) s_i \right\| \leq K,$$

this gives that

$$\left\|u_n\sum_{i=1}^{\infty} \lambda(i)s_i\right\| \leq K.$$

But $\lim_{n} ||u_{n}s - s|| = 0$, for each $s \in \phi$, so

$$\left\|\sum_{i=1}^{\infty} \lambda(i) s_i\right\| \leq K.$$

LEMMA 4.21. A BK-space X containing ϕ is the dual sequence space of a norming M-basis in a Banach space if and only if $D_1(X)^{\phi\phi\phi\omega} \sim D_1(X)$.

Proof. Assume that X is the dual sequence space of a norming M-basis. Then by [5, Theorem 4.4] there is a consistent balanced subset A of ϕ such that $X = \bigcup_{n=1}^{\infty} nA^{\omega}$, where $A^{\omega} \sim A^{\phi\phi\omega}$. But $D_1(X) \sim A^{\omega}$, and so

$$D_1(X) \sim A^{\omega} \sim A^{\phi\phi\omega} \sim (A^{\omega\phi})^{\phi\phi\omega} \sim D_1(X)^{\phi\phi\phi\omega}$$

Conversely, assume that $D_1(X) \sim D_1(X)^{\phi\phi\phi\omega}$. Thus,

$$D_1(X) \sim D_1(X)^{\phi\phi\phi\omega} \sim D_1(X)^{\phi\phi\phi\omega\phi\omega} \sim D_1(X)^{\phi\omega}$$

Now,

$$D_1(X)^{\phi} \sim D_1(X)^{\phi\phi\phi\omega\phi} \sim D_1(X)^{\phi\phi\phi}$$

and, hence, $D_1(X)^{\phi}$ is consistent. For,

$$D_1(X)^{\phi} \sim D_1(X)^{\phi\phi\phi} = D_1(\bigcup_n n D_1(X)^{\phi\phi\omega}) \cap \phi$$

and, hence, $D_1(X)^{\phi}$ is the intersection of ϕ with the unit ball of a *BK*-space. By 4.6, X is the dual sequence space of an *M*-basis and this *M*-basis is norming by [5, Theorem 5.4].

THEOREM 4.22. Let X be a BK-algebra containing ϕ and e. Then the following are equivalent:

- (i) X is the multiplier algebra of a strongly series summable K-norm on ϕ ;
- (ii) $D_1(X) \sim D_1(X)^{\phi\phi\phi\omega}$;
- (iii) X is the dual sequence space of a norming M-basis;
- (iv) X is the δ -dual of a strongly series summable K-norm on ϕ .

Proof. (i) \Rightarrow (ii). Since X is a multiplier algebra, $D_1(X) \sim D_1(X)^{\phi \omega}$, so $D_1(X) \cap \phi$ is equivalent to $D_1(X)^{\phi \phi}$. This, and the fact that $X = X^{\delta \delta}$, gives that $D_1(X) \sim D_1(X)^{\phi \phi \phi \omega}$.

 $(ii) \Rightarrow (i).$

$$D_1(X)^{\phi\omega} \sim D_1(X)^{\phi\phi\phi\omega\phi\omega} = D_1(X)^{\phi\phi\phi\omega} \sim D_1(X)$$

Thus, by 4.11, X is the multiplier algebra of a K-norm on ϕ . Now

https://doi.org/10.4153/CJM-1971-108-7 Published online by Cambridge University Press

 $D_1(X) \sim D_1(X)^{\phi \omega}$ implies that $D_1(X)^{\phi \phi} \sim D_1(X) \cap \phi$, so

$$X^{\delta\delta} = \bigcup_{n=1}^{\infty} n(D_1(X) \cap \phi)^{\phi\omega}$$
$$= \bigcup_{n=1}^{\infty} nD_1(X)^{\phi\phi\phi\omega}$$
$$= \bigcup_{n=1}^{\infty} nD_1(X)$$
$$= X.$$

Thus, the K-norm is strongly series summable.

(ii) \Leftrightarrow (iii). This follows from Lemma 4.21.

(i) \Leftrightarrow (iv). The proof here is the same as the argument for the (i) \Leftrightarrow (iv) part of 4.16.

Thus, we have that a *BK*-algebra X containing ϕ and e is the multiplier algebra of a \triangle if and only if X is the dual sequence space of a \triangle , where \triangle can be any of: *K*-norm on ϕ , series summable *K*-norm on ϕ , strongly series summable *K*-norm on ϕ , unconditional Schauder basis, Schauder basis, series summable *M*-basis, or strongly series summable *M*-basis.

Since we know that every strongly series summable K-norm is consistent the following are consequences of [3, Theorem 4.7].

PROPOSITION 4.23. Let || || be a K-norm on ϕ . Then:

(i) $bv \subseteq M(\phi, || ||)$ if and only if (e_i, E_i) is a Schauder basis for the BK-completion of $(\phi, || ||)$;

(ii) $m = M(\phi, || ||)$ if and only if (e_i, E_i) is an unconditional Schauder basis for the BK-completion of $(\phi, || ||)$.

Using the above results, we are now able to give an example of a series summable M-basis which is not strongly series summable, and thus answer a question rasied in [5].

Example 4.24. We will construct a BK-space X with a non-norming M-basis such that X^{δ} is an algebra containing e. By 4.12, 4.16, and 4.22, this M-basis is series summable but not strongly series summable.

Let X_n denote the set l_1 with the norm

$$||x||_{(n)} = \frac{1}{n} \sum_{i=1}^{\infty} |x_i| + \left| \sum_{i=1}^{\infty} x_i \right|.$$

This norm is equivalent to the usual l_1 norm, since

$$\frac{1}{n}\sum_{i=1}^{\infty} |x_i| \leq ||x||_n \leq \left(\frac{1}{n}+1\right)\sum_{i=1}^{\infty} |x_i|.$$

Let Y_n denote the dual of X_n . Then Y_n is the set l_{∞} with the norm $|| \cdot ||^{(n)}$, determined in the usual way by X_n . Let $M_1, M_2, \ldots, M_i = \{m_{ij}\}_{j=1}^{\infty}$ be a

https://doi.org/10.4153/CJM-1971-108-7 Published online by Cambridge University Press

partition of the positive integers into countably many infinite subsets. For a sequence x, define $Q_n(x) = \{x(m_{nb})\}_{b=1}^{\infty}$.

Finally, define X to be the space of all sequences x such that

$$||x|| \equiv \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{j=1}^{\infty} x(m_{nj}) | + \left| \sum_{j=1}^{\infty} x(m_{nj}) \right| \right) = \sum_{n=1}^{\infty} ||Q_n(x)||_{(n)} < \infty.$$

It is not difficult to see that $(X, ||\cdot||)$ is a *BK*-space containing l_1 densely. Furthermore, the dual, *Y*, is given by the set of all sequences *y* such that $||y|| \equiv \sup ||Q_n(y)||^{(n)} < \infty$, and is a *BK* space (see [1, p. 31]).

It can be shown that Y is an algebra containing e. It remains to show that the coordinate functionals are not norming on X. Let $A = D_1(X) \cap \phi$. As we remarked in § 3, it is sufficient to show that A does not absorb $A^{\phi\phi}$.

Let $A_n = D_1(X_n) \cap \phi$. Then

$$\inf\{\kappa > 0: A_n^{\phi\phi} \subseteq \kappa A_n\} \geq n/2,$$

for each *n*. For,

$$||(n/2)e_1||_{(n)} = (n/2)(1 + 1/n) > n/2$$

Let $y_i = (n/2)(e_1 - e_i)$. Then $y_i \in A_n$ and $\lim_i y_i$ (κ) = $(n/2)e_i(\kappa)$, for all κ . Since $A^{\phi\phi}$ is the coordinatewise closure of A in ϕ , $(n/2)e_1 \in A_0^{\phi\phi}$.) It follows that there is no $\kappa > 0$ such that $A^{\phi\phi} \subseteq \kappa A$.

Finally, we note that (e_i, E_i) is not a basis for X since it is not strongly series summable, but that X does possess a basis $\{z_{ij}\}_{i,j=1}^{\infty}$ where

$$Q_n(z_{ij}) = \begin{cases} e_1 & \text{if } i = n, j = 1\\ e_j - e_1 & \text{if } n, j > 1\\ 0 & \text{otherwise.} \end{cases}$$

References

- 1. M. M. Day, Normed linear spaces (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1962).
- V. F. Gaposhkin and M. I. Kadets, Operator bases in Banach spaces, (Russian) Mat. Sb. (N.S.) 61 (103) (1963), 3-12.
- R. J. McGivney and W. Ruckle, Multiplier algebras of biorthogonal systems, Pacific J. Math. 29 (1969), 375-387.
- 4. W. Ruckle, Lattices of sequence spaces, Duke Math. J. 35 (1968), 491-504.
- 5. —— Representation and series summability of complete biorthogonal sequences, Pacific J. Math. 34 (1970), 509–526.
- 6. A. Wilansky, Functional analysis (Blaisdell, New York, 1964).
- S. Yamazaki, Normed rings and unconditional bases in Banach spaces, Sci. Papers College Gen. Ed. Univ. Tokyo. 14 (1964), 1-10.
- Normed rings and bases in Banach spaces, Sci. Papers College Gen. Ed. Univ. Tokyo. 15 (1965), 1-13.

Clarkson College of Technology, Potsdam, New York