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FUNDAMENTAL BIORTHOGONAL SEQUENCES 
AND X-NORMS ON <t> 

L. CRONE, D. J. FLEMING, AND P. JESSUP 

1. Introduction. A biorthogonal sequence is a double sequence (xt,fi) 
where each xt is from some locally convex space X, each ft is from X* and 
fiipcj) = dij. A biorthogonal sequence is called total if the functionals (f*) are 
total over X and is called fundamental if sp(xz) is dense in X. If a biorthogonal 
sequence is both total and fundamental we refer to it as a Markushivich basis 
or, more simply, an ikf-basis. 

If (xt,fi) is a total biorthogonal sequence for X, then X can be identified 
with the space of all scalar sequences (fi(x)) under the correspondence 
x <-» (fi(x)). We refer to this space as the associated sequence space with 
respect to (#*,/*). With this correspondence, xt corresponds to et = {btj)%\ 
and fi corresponds to Eu the ith coordinate functional. If X is Frechét, then 
the associated sequence space, with the identification topology, is an FK-sp&ce 
with (eu Et) as a total biorthogonal sequence. For a discussion of the basic 
properties of i^i^-spaces, see [6, p. 202]. 

The multiplier algebra of a total biorthogonal sequence is the algebra of all 
scalar sequences t with the property that tx = (t(i)x(i)) is in the associated 
sequence space whenever x is in the associated sequence space. If the space is a 
Banach space, then the multiplier algebra can be given a BK-topo\ogy [3, 
Corollary 3.3]. Multiplier algebras of Schauder bases in Banach spaces have 
been investigated by Yamazaki [7; 8] and by McGivney and Ruckle [3]. In 
[3], McGivney and Ruckle have characterized those BK-algebras which arise 
as multiplier algebras of a Schauder basis in a Banach space. Multiplier 
algebras of various types of M -bases (in particular, series summable ikf-bases; 
cf. [5, Theorems 6.4 and 7.2]), have been investigated by Ruckle in [4]. 

The central result of this paper is the following characterization of those 
algebras which are multiplier algebras of various kinds of biorthogonal systems. 

A BK algebra X containing <j> and e is the multipler algebra of a K-norm on 
<t> if and only if X is the dual sequence space of a i£-norm on <j>. Here, X-norm 
on <j> can be replaced by any of the following: series summable i£-norm on <£, 
strongly series summable i^-norm on </>, Schauder basis, unconditional 
Schauder basis, series summable M -basis, or strongly series summable M -basis. 

The problem of characterizing multiplier algebras of ikf-bases is still open. 
We have found it natural and convenient to include fundamental bior

thogonal sequences (or, equivalently, X-norms on 0), and have therefore 
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FUNDAMENTAL SEQUENCES 1041 

generalized the main results of [5] to this setting. Such straight forward 
generalizations are labeled propositions and proofs are included only if they 
are substantially different from those of [5], 

In § 3 we give some preliminary results on the construction of sequence 
spaces which contain a given set A as a bounded subset. As an immediate 
corollary of a theorem in § 4, a necessary and sufficient condition (Theorem 
4.7) is given for a space to be the dual of a separable Banach space. 

Finally, using the Main Theorem we have been able to construct a series 
summable M -basis (Example 4.24) which is not strongly series summable. 
This solves a problem left open by Ruckle in [5]. It is of interest to note that 
this M-basis is not norming (see [2]). 

2. Notation and terminology. Let co denote the space of all scalar 
sequences. With the topology of coordinatewise convergence, co is an FK-space. 
For s Ç co, we denote the ^th element of 5 by s(i). For A C co and B Q <t>, A* 
and B03 are defined as follows: 

A* = x Ç <£: 

and 

B" = ue 

Z^WyW 

J^x(i)y(i) 

^ 1, for each y Ç A 

^ 1, for each y Ç B 

Thus, A* is the absolute polar of A in <j> and Ba is the absolute polar of B in co, 
where co and $ are placed in duality by means of the pairing 

(x,y) = S x(i)y(i). 
i 

HA and B are subsets of co, then we say that A absorbs B if there exists 
k > 0 such that B Ç kA. If A absorbs B and B absorbs A, then we say that 
A and B are equivalent and write A ~ B . 

If X 6 co and (xn) Ç co, then, unless otherwise stated, the statement 
y = Y,i^(i)xi means that J^ni=i\(i)Xi converges coordinatewise to y. For X 
a normed space, Di(X) will denote the closed unit ball of X, and for A a subset 
of a linear space, K(A) denotes the absolutely convex hull of A. 

If (xi}fi) is an ikf-basis for a normed space X, then the dual sequence space 
of this ikf-bais, denoted by X5, is defined to be the space of all sequences 
(/ (#*)) a s / ranges over X*, For an arbitrary normed i£-space Y containing 
0, Y8 is defined to be the dual sequence space of the M -basis (eh Et) in the 
i^-space F° = $. 

A linear subspace of co, with a locally convex topology which yields con
tinuous coordinates, will be called a X-space. The spaces 

h = )X Ç. co: 23 \xi\ converges} 
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and 

bv = ix G co: ^ \xi — xi+i\ converges^ , 

are J3i£-spaces with respective norms 

11*1 In = Z M 
and 

I Ml»» = |*l| + 2 \%i — Xi+l\-
i 

For a detailed discussion of multiplier algebras of ikf-basis, see [3] and for 
definitions and a duscussion of series summable M -basis and the series space, 
see [5]. 

3. Preliminary results. For i ç w , let £(-4) = \J%-inK(A), and give 
E(A) the topology of pA, the gauge of K(A). Then E(A) is a semi-normed 
space which contains A as a bounded subset. If 4̂ is coordinatewise bounded, 
then £(-4) is a normed X-space and if in addition A contains a multiple of et 

for each i, then £(-4) is a normed X-space which contains <f>. If in turn we 
require that £f \ ( i )#* € -^(-4)» f° r e a c n ^ £ D\(h) and #* G ^4, then £(-4) is 
a J5X"-space containing 0. However, to guarantee completeness we can do with 
the following 

PROPOSITION 3.1. Let A be an absolutely convex, coordinatewise bounded, 
closed subset of co which contains a multiple of eu for each i. Then E(A) is a 
BK-space containing </>. 

If A is a coordinatewise bounded subset of w, then there is a smallest 
BK-sp&ce containing A as a bounded subset. We will denote this space by 
5(-4) and it can be characterized as follows: 

S (A) = \%2 \(i)xt: X G h, xt G A, for each if , 

with norm 

||x||A = inf y \\\\\h: x = ^ \{i)xuxt Ç A \ . 

This is equivalent to the formulation oiS(A) given by Ruckle in [5] and so we 
omit the argument that 5 (-4) is a Z3i£-space. Note that if A ~ B, then 
S (A) =S(B). 

If A is an absolutely convex, coordinatewise bounded, closed subset of co 
which contains a multiple of et for each i, then <j> will be dense in £(^4) if and 
only if E(A) = S (A C\ </>). If A is an absolutely convex radial subset of <£, 
then, by [5, Theorem 5.4], the coordinates will be norming on £(^4) = S (A) 
if and only if Aa ~ A**", which in turn is true if and only if 4̂ —̂' A**. 
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Definition 3.2. Let A be a coordinate wise bounded subset of <j> which con
tains a multiple of eu for each i. If || \\A agrees with pA on E(A) then we say 
that A is consistent. 

For properties of consistent sets, see [5]; particularly, Theorem 4.2. A 
discussion of related concepts can be found in [4]. 

Definition 3.3. We say that a norm on 0 is a K-norm if the E / s are continuous 
on (</>, || ||) and is consistent if Di{<j>, || ||) is consistent. 

In light of [5, Theorem 4.2], we have: 

PROPOSITION 3.4. A K-norm || || on <f> is consistent if and only if, in any 
completion Y of (#, 11 11 ), the extensions of the Et's to all of Y form a total family. 
In particular, if \\ \\ is consistent, then the completion of (0, || ||) can be realized 
as a BK-space. 

The following technical lemma will be useful in § 4. 

LEMMA 3.5. If A is an absolutely convex radial subset of 4>, then A absorbs A"*. 

Proof. The weak topology on <£ by œ, with respect to the pairing 
(x,y) = J^iX(i)y(i), is, in fact, the strongest locally convex topology on <j>. 
Thus, pA is a continuous seminorm on <f> with this topology. Since Aa<l> — Â 
and pA(A) C [0, 1], it follows that pA(Â) C [0, 1]. 

4. Main results. Let (Xi,fi) be a fundamental biorthogonal sequence for 
the Banach space X. Then sp(x0 can be identified with <j> under the 
correspondece x <-» sx, where sx = Y,ifi(x)ei- The induced norm, defined by 
\\sx\\ = 11#||, is a K-norm on <j> since each ft is continuous on X. Thus, each 
fundamental biorthogonal sequence gives rise to a .K-norm on 0. Conversely, 
each K-norm on <t> corresponds to at least one fundamental biorthogonal 
sequence for a Banach space X (e.g., consider the completion of ($, || | | )) . 

PROPOSITION 4.1. Let (xufi) be a fundamental biorthogonal sequence for the 
Banach space X, and let\\ \\ denote the induced K-norm on <j>. Then (xufi) is an 
M-basis for X if and only if A = Di{<j>, \\ \\) is consistent. 

Definition 4.2. Let || || be a K-norm on 0. By the 5-dual of this K-norm we 
mean the <5-dual of the normed space (#, || | | ) . 

PROPOSITION 4.3. If \\ \\ is a K-norm on <t> and A = Z>i(0, || | | ) , then 

( 0 , | | | | ) s = U nA". 
n=l 

COROLLARY 4.4. / / (xu fi) is an M-basisfor the Banach space X, then (#, 11 11 )s 

is the dual sequence space of {xufi). 

Notice that the 5-dual determines whether or not the fundamental 
biorthogonal sequence (xufi) is an M -basis, since A03* is consistent if and only 
if A is consistent. 
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The following theorem is used later to characterize multiplier algebras and 
has, as an immediate corollary, a characterization of duals of separable Banach 
spaces. 

THEOREM 4.5. A BK-space Y containing <t> is the 8-dual of a K-nortn on <f> if 
and only if DX(Y) ~Z>i(y)*». 

Proof. If F i s the 5-dual of a iT-norm on <f>, then it is of the form \Jn=inAa, 
and A» = A"*». Assume that Di(Y) ~ Di(Y)*», and let X be a completion of 
U~=i^£>i(F)*. Then 

F = U nD1(Y) 

= U nD1{Yfê 

= ( * , l l ID5-
where || || is the gauge of Di{Y)*. 

COROLLARY 4.6. A BK-space containing <t> is the dual sequence space of an 
M-basis in a Banach space if and only if D\(X) ~ Di{X)^ and Di(X)+ is 
consistent. 

THEOREM 4.7. A Banach space X is the dual of a separable Banach space if 
and only if X admits a total biorthogonal sequence (xitft) such that B ~ B*w and 
such that B* is consistent, where B = {(ft(x))'.x £ D\(X)}. 

Definition 4.8. The multiplier algebra of a i£-norm || || on cj> is defined to 
be the set of all sequences s £ co for which 

sup {\\st\\:t e <2>, \\t\\ g 1} < oo. 

We denote the multiplier algebra of a i£-norm || || on </> by M(</>, || | | ) . By 
the multiplier algebra of a fundamental biorthogonal sequence we mean the 
multiplier algebra of the induced i^-norm on </>. In the terminology of [3], 

M(</>, || ||) = Mc[{<j>, || | | ) , * „ £ , ] , 

and is a J3i£-space algebra with norm 

| | / | |M = sup \\ts\\. 
l l s l l ^ l 

PROPOSITION 4.9 (cf. [3, Theorem 4.2; 5 Theorem 7.1]). If \\ \\ is a K-norm 
on 0, then 

oo 

M ( * , | | II) = U n(AA°)°, 

where A = Z>i(0, || | | ) . 
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COROLLARY 4.10. / / {xuft) is an M-basis for X and \\ \\ is the induced 
K-norm on </>, then M{<j>, \\ \\) is the multiplier algebra of the M-basis {xuft) 
in X. 

Proof. This follows from 4.9 and [5, Theorem 7.1]. 

If a i£-norm || || on 0 is consistent, then, by the above, M{4>, || ||) is the 
multiplier algebra of the ikf-basis (eiy Et) in X, where X is the BK realization 
of the completion of (<£, || | | ) . 

Question. If a K-norm on 0 is not consistent, must there exist a consistent 
K-novm on <f> with the same multiplier algebra? 

THEOREM 4.11. A BK-algebra X containing </> and e is the multiplier algebra 
of a K-norm on <j> if and only if Di(X) ~ Di(Xyu. 

Proof. If X is the multiplier algebra of a i£-norm on </>, then by 4.9 it is of the 
form US=iw(i4^4w)w. The result follows since (AA")" ~ (AA")"*". 

Suppose that DX{X) ~ DX{X)^. Then 

CO 

X = U nDxQCf* 
7 2 = 1 

= U nlD^XfD^X)]" 

oo 

= U nlD^XfD^XTV 
n - l 

= M(0, || | | ) , 

where 11 11 is the gauge of Dx (Xy. We have used the fact that Dx (X)+Di (X) ~ 
D^XY. (It is clear that D^X^D^X) absorbs Di(X)+, since Dx(X) contains 
a multiple of e. Let z,x£Di(X) and y £ Dx(Xy. Then \(xy,z)\ = 
\(y,zx)\^K, where K is such that Dl{X)D1{X) C KDX{X). Thus, 
xy G KD^X)*.) 

THEOREM 4.12. Let X be a BK-algebra containing <j> and e; then X is the 
multiplier algebra of a K-norm if and only if X is the h-dual of a K-norm. 

Proof. This is an immediate corollary of 4.5 and 4.11. 

The concept of a multiplier algebra defines an equivalence relation on the set 
of all i£-norms on <j>. Two norms are in the same equivalence class if they have 
the same multiplier algebra. Theorem 4.11 constructs a distinguished element 
in each equivalence class, namely, the gauge of Di(X)b. We denote this 
i£-norm by || ||(X). 

Definition 4.13. Let || || be a i£-norm on 0. The series space, J^(<£, || | | ) , 
is defined by 5^(0, || ||) = S(AA«) where A = Z>i(0, II ID-
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Note that, for A consistent, this coincides with the definition of series space 
given by Ruckle in [5]. 

Definition 4.14. A i£-norm || || on 0 is called series summable if 
e € y(<t>, || II)6-

PROPOSITION 4.15. Let \\ \\ be a K-norm on 0. Then the following are 
equivalent: 

(i) e 6 y(<l>,\\ II)5; 
(ii) M ( 0 , || ||) = y ( < U II)5; 

(iii) AAa is consistent, where A = Z>i(0> II II); 
(iv) Di(M(<t>, || 11 ) )0 is consistent. 

Proof. The equivalence of the first 3 conditions follows much as in [5], 
(iii) <=> (iv). This follows since: 

Di(M(4>, II II))* = (AA*y* 

is consistent if and only if 4̂̂ 4W is consistent. 

By (iv), the multiplier algebra determines whether or not a i£-norm on 0 
is series summable. This theorem also shows that the multiplier algebra does 
not determine whether or not a i£-norm is consistent, since there exist 
jBi^-spaces with Tkf-bases which are not series summable. The distinguished 
i£-norm || || in the equivalence class determined by such an M -basis is not 
consistent, by Proposition 4.15. An example is given on page 524 of [5]. 

THEOREM 4.16. Let X be a BK-algebra containing 0 and e. Then the following 
are equivalent: 

(i) X is the multiplier algebra of a series summable K-norm on 0; 
(ii) DX(X) ~ Di(X)*" and DX(XY is consistent; 

(iii) X is the dual sequence space of an M-basis; 
(iv) X is the b-dual of a series summable K-norm on <j>. 

Proof, (i) «=> (ii). The necessity follows by 4.15. By 4.11, X is the multiplier 
algebra of a i^-norm on <j> and so by 4.15 this i£-norm is series summable. 

(ii) <=> (iii). This is Corollary 4.6. 
(i) => (iv). Suppose that X = M(0, || | | ) , where || || is a series summable 

i£-norm on 0. Then by 4.15, X = 5f(4>j II II)5» and as in the proof of 4.15, 
M(y(4>> 1111)= M(<f>, || | | ) . Therefore, (eu Et) is a series summable Af-basis 
for 5^(0, || | | ) . Thus, X = (0, || IH5, where || ||' is the norm o n ^ ( 0 , || ||) 
restricted to <p. 

(iv) =» (i). This follows from 4.12. 

We note that the M -basis in (iii) above will necessarily be series summable 
and that the i£-norm in (iv) will be consistent. 

Definition 4.17 (cf. [5, Theorem 7.2]). A i£-norm || || on 0 is said to be 
strongly series summable if M(0, || ||) = M(0, || | | )5 0 . 
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PROPOSITION 4.18. Let \\ \\ be a K-norm on <f>. Then the following are 
equivalent: 

(i) Jlf (0, || ||) = M(cf>, || | | )« ; 
(ii) e 6 M(4>, || ||)*5; 

(iii) there is a sequence (un) Ç 0 such that \imnun(k) = 1, for all k> and 
supw IKIU < °°-

Proof. ({)=>(ii).ee M(4>,\\ | | ) . 
(ii) => (i). Since {Jn-iniAA")*" is a BK-space containing AAa as a 

bounded subset (Proposition 3.1), we have 

y(*, c U n(AA"T = M(<t>f 

and, therefore, e 6 Affo, || | | )5 5 Ç ^ f a , || | | )5 . By 4.15, (<£, || ||) is series 
summable and the distinguished element in the equivalence class determined 
by Af(0, || ||) is consistent. Now, since Af(0, || ||) is known to be the 
multiplier algebra associated with an ikf-basis, the result follows by [5, 
Theorem 7.2]. 

(ii) «=> (iii). This follows exactly as in [5, Theorem 7.2]. 

COROLLARY 4.19. Every strongly series summable K-norm on <j> is series 
summable. 

We know that there are inconsistent i£-norms in every equivalence class of 
i£-norms which are not series summable. The next result shows that there are 
no inconsistent i£-norms in any strongly series summable equivalence class. 

THEOREM 4.20. Every strongly series summable K-norm on # is consistent. 

Proof. Assume that (#, || ||) is strongly series summable. Then there exists 
(un) Q 4> such that un(k) —> 1 on n, for each k, and supn H ^ H M < oo. It 
suffices to show that there exists a K > 0 such that || 2iX(i)st|| S K, for all 
X G Di(h) and all (st) Ç A = Dxfa || | | ) . Let X 6 Di(h) and (st) C A. Then 
for fixed n, 

lim Un S Mfyi - W n E M*)Sl 
i=l 

= lim ^ \{i)SiUn 
i=m+l 

= 0, 

since un has finitely many non-zero coordinates and 

lim ]T) ^(ï)Si(k)un{k) = 0, 

for each k. Since 

< X X) X(i)5f £K, 
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this gives that 

Un Z) *(*)* <K. 

But limw \\uns — s\\ = 0, for each 5 Ç </>, so 

]£ x(*>« < # . 

LEMMA 4.21. 4̂ BK-space X containing <j> is the dual sequence space of a 
norming M-basis in a Banach space if and only if D^X)*4"*™ ~ D\(X). 

Proof. Assume that X is the dual sequence space of a norming M-basis. 
Then by [5, Theorem 4.4] there is a consistent balanced subset A of <j> such that 
X = \Jn~inA", where 4̂W ~ A**". But Di(X) ~ ,4 e0, and so 

Di(X) ^ Aa ~ A^œ ~ (A^U" r*^> Di(X)4><M>a. 

Conversely, assume that Di(X) ~ Di(X)***». Thus, 

Di(X) ~ DxiX)***» ~ Z?i (*)****" ~ D^X)*». 

Now, 

Z>iPO* ~ D^X)**** ~ D^X)*** 

and, hence, Di(X)* is consistent. For, 

£>i(X)* ^ DtÇX)*** = £>i(U nD^X)**") C\ <t> 
n 

and, hence, Di(X)* is the intersection of 0 with the unit ball of a i3i£-space. 
By 4.6, X is the dual sequence space of an ikf-basis and this if-basis is norming 
by [5, Theorem 5.4]. 

THEOREM 4.22. Let X be a BK-algebra containing </> and e. Then the following 
are equivalent'. 

(i) X is the multiplier algebra of a strongly series summable K-norm on </>; 
(ii) D1(X)^D1(X)^-; 

(iii) X is the dual sequence space of a norming M-basis; 
(iv) X is the 8-dual of a strongly series summable K-norm on <f>. 

Proof, (i) => (ii). Since X is a multiplier algebra, Di(X) ~ DiiX)*", so 
Dx{X) C\ <f> is equivalent to DxÇX)**. This, and the fact that X = X88, gives 
thatZ>i(Z) ~Z?i(X)^*«. 

(ii) => (i). 

Di(X)& ~ DiiX)*****» = D1(X)***»~D1(X). 

Thus, by 4.11, X is the multiplier algebra of a i^-norm on 0. Now 
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P i ( Z ) ~ Z?i(*)*- implies that D^X)** ~ Dt(X) C\ 0, so 

X " = U n(Di(X) H *)' #03 

U »ZM*)* 
n - 1 

= U nD1(X) 
n=l 

= x. 
Thus, the i^-norm is strongly series summable. 

(ii) <=> (iii). This follows from Lemma 4.21. 
(i) <=> (iv). The proof here is the same as the argument for the (i) <=> (iv) 

part of 4.16. 

Thus, we have that a -Bi£-algebra X containing </> and e is the multiplier 
algebra of a A if and only if X is the dual sequence space of a A, where A can 
be any of: X-norm on <£, series summable i£-norm on 0, strongly series 
summable i^-norm on <£, unconditional Schauder basis, Schauder basis, series 
summable M -basis, or strongly series summable M -basis. 

Since we know that every strongly series summable iT-norm is consistent 
the following are consequences of [3, Theorem 4.7]. 

PROPOSITION 4.23. Let \\ \\ be a K-norm on <j>. Then: 
(i) bv C M{<t>> || ||) if and only if (eu Et) is a Schauder basis for the 

BK-completion of (</>, | | 11 ) ; 
(ii) m = M((j), || ||) if and only if (eu Et) is an unconditional Schauder basis 

for the BK-completion 0/ (#, || | | ) . 

Using the above results, we are now able to give an example of a series 
summable M -basis which is not strongly series summable, and thus answer a 
question rasied in [5]. 

Example 4.24. We will construct a BK-space X with a non-norming M-basis 
such that X8 is an algebra containing e. By 4.12, 4.16, and 4.22, this ikf-basis 
is series summable but not strongly series summable. 

Let Xn denote the set h with the norm 

Ml<»> = - Z W + 7 J %i 

This norm is equivalent to the usual l\ norm, since 

- 2-j \xi\ ^ n ft. | ^ ( i + i ) Ë N 

Let Yn denote the dual of Xn. Then Yn is the set lœ with the norm ||- | | (n ), 
determined in the usual way by Xn. Let Mi, M2, . . . , Mt = {wî;}7=i be a 
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partition of the positive integers into countably many infinite subsets. For 
a sequence x, define Qn(x) = {x(rnnh)}™=i. 

Finally, define X to be the space of all sequences x such that 

00 / 1 OO 

oo{mnj)\ + 
3=1 

Z) ll(?»(*)||(»> <00. 
w = l 

It is not difficult to see that (X, | |- | |) is a i3i£-space containing /i densely. 
Furthermore, the dual, F, is given by the set of all sequences y such that 
\\y\\ = sup \\Qn(y)\\(n) < oo, and is a BK space (see [1, p. 31]). 

It can be shown that Y is an algebra containing e. I t remains to show that 
the coordinate functionals are not norming on X. Let A = Di(X) C\ 0. As we 
remarked in § 3, it is sufficient to show that A does not absorb A**. 

Let An = Di(Xn) C\ <t>. Then 

for each n. For, 

inf{/c > Q:An"QKAH} è »/2, 

|(«/2)^i||cn) = (»/2)( l + 1/») > »/2. 

Let y t = (n/2)(ei — et). Then yf Ç An and l i m ^ ^ (K) = (w/2)e<(ic), for all /c. 
Since ^4^ is the coordinatewise closure of A in </>, (n/2)ei G -4o**.) It follows 
that there is no K > 0 such that A** C JC4. 

Finally, we note that (ei9 Et) is not a basis for X since it is not strongly series 
summable, but that X does possess a basis {z{j}™j==i where 

ie± if i = n, j = 1 

^ — ei if », i > 1 
0 otherwise. 
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