J. Austral. Math. Soc. Ser. B 38(1997), 307-315

SUBHARMONIC ORBITS IN AN ANHARMONIC OSCILLATOR
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Abstract

In a recent paper, Christie and Gopalsamy [2] used Melnikov’s method to establish a
sufficient condition for the existence of chaotic behaviour, in the sense of Smale, in a
particular time-periodically perturbed planar autonomous system of ordinary differential
equations. They then concluded with an application to the dynamics of a one-dimensional
anharmonic oscillator. In this paper, the same system is considered and a condition for the
existence of subharmonic orbits in the perturbed system is deduced, using the subharmonic
Melnikov theory. Finally, an application is given to the dynamical behaviour of the one-
dimensional anharmonic oscillator system.

1. Introduction

This paper has been written as a sequel to a recent paper by Christie and Gopalsamy
[2]. In that paper, the authors established a sufficient condition for the existence of
chaotic behaviour, in the sense of Smale, in a particular time-periodically perturbed
planar autonomous system of ordinary differential equations, by using Melnikov’s
method [12]. The paper concluded with an application to the dynamics of a one-
dimensional anharmonic oscillator. In this paper, the subharmonic Melnikov theory
[8], [14] is used to obtain a criterion for the existence of subharmonic periodic orbits
of the same perturbed system as in the paper of Christie and Gopalsamy. For examples
of applications of the subharmonic Melnikov theory, see Christie et al. [3], Greenspan
and Holmes [5, 6], Grimshaw and Tian [7], Huilgol ez al. [9] and Zhao et al. [15].
To apply the subharmonic Melnikov theory, we need to assume that the correspond-
ing unperturbed system has a continuous family of periodic orbits, and we need to
parametrise this family, which is difficult in many problems, to calculate the subhar-
monic Melnikov function. We want to determine if any of these periodic orbits persist
under perturbation. In [2], Christie and Gopalsamy have established the existence
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of a double homoclinic orbit (a lemniscate) and three continuous families of periodic
orbits for the unperturbed system. They derived a parametrisation for the continuous
family of periodic orbits which filled the interior of the homoclinic loop in the first
quadrant. This parametrisation is used in this paper to calculate the subharmonic
Melnikov function for the perturbed system.

The plan of the paper is as follows. In Section 2, we calculate the subharmonic
Melnikov function and we use the subharmonic Melnikov theory to deduce a condition
for the existence of subharmonic periodic orbits of the perturbed system. Finally, in
Section 3, we apply the results of Section 2 to the one-dimensional anharmonic
oscillator problem.

2. Subharmonic orbits

In this section, we use the subharmonic Melnikov theory ([8], [14]) to investigate
the existence of subharmonic periodic orbits of the system

dx

i a*x —2y(x* + y*) + € (bsinwt + cx), 2.1).
d
d—f = —a’y + 2(x* + ),

where 0 < € « 1 is a perturbation parameter, a > 0, @ > 0 and b and ¢ are real
numbers. We know from Christie and Gopalsamy [2] that the unperturbed system
(2.1)—0 has a continuous family of periodic solutions given (in the first quadrant) by

() = avk +1 dn(a?t, k) — k sn(a?t, k) cn(a’t, k)
D) ksn2(a’t, k) + 1
, teR, (2.2
e (®) avk + 1 dn(a?t, k) + k sn(a?t, k) cn(a’t, k)
k —_

2 ksn2(a%t, k) + 1

where sn(-, k), cn(-, k) and dn(-, k) denote Jacobi elliptic functions [1] with elliptic
modulus k = +/a* — 80 /a? € (0, 1), in which the solution curves of (2.1),¢ are level
sets of the Hamiltonian given by

1
H(x,y) =d*xy - E(x2 +y) =0, (2.3)

where o is a constant such that o < a*/8.
We concentrate on the dynamics of the one-parameter family of periodic orbits
under perturbation. We want to know if any of these periodic orbits will persist under
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perturbation. The system (2.1), is of the form

d
d—’t‘ = i, y) +egi(x, v, 1)

dy_
dr

. Ly, el
fZ(x7 )’) +682(xa y’t)

and we write

_(NHx,y) _ [(&x,y,0)
ﬂx’”‘(fz(x,y)) and g("’y”)‘(gz(x,y,t)>‘

Since the unperturbed system (2.1)._o is Hamiltonian, then for relatively prime
positive integers m and n, the subharmonic Melnikov function is defined ([8], [14])
by

mT /2
M (1) = f fla(®) A glgu(®), t + 1) dt, L € R, 2.4

mT /2

where g, (t) = (x,(2), y:(¢)), and the resonance condition is T (k) = mT /n, in which
T (k) is the period of ¢, and T = 2m/w is the period of the perturbation. If the
subharmonic Melnikov function has a simple zero, and the condition % # 0is
satisfied, then for 0 < € < €(n), (2.1), has a subharmonic orbit of period mT [8,
Theorem 4.6.2].

From (2.2), the resonance condition is
T(k) = 2K(k)/a2 =mT /n=2am/(wn), (2.5)

where K (k) is the complete elliptic integral of the first kind [1]. In what follows, we
choose n = 1 for simplicity and abbreviate K (k) by K as necessary. From (2.1),,
(2.2) and (2.4), we have for ¢, € R,

mT

2

M (50) = —b/

%(1) sinfw(t + 1p)]dt 2.6)

- C/:T[—azxk(t)yk(t) + 262 () (2 + v (O)1 dr.
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Using integration by parts on the first integral results in

mT /2 d .
/ D (1) sinfw (t + 15)] dt Q@
—mT /2 dt
mT/2 mT /2
= Y (#) sin[w(t + to)]| - / Yi(t) coslw (t + £)] dt
-mT /2 -mT /2
mT /2
= —a)/ yi(t) coslw(t + t5)] dt
-mT/2
mT/2 mT /2
= —wCoSs wz‘o/ i (¢) cos wt dt + wsin wtO/ yi(t)sinwt dt.
—mT /2 -mT/2
Now substituting (2.2) produces
mT/2
f yi(t) cos wt dt (2.8)
-mT/2
avk +1 ["'T/Z dn(a?t, k) + k sn(a’t, k) cn(a’t, k)
= — cos wt dt
2 -mT /2 k Snz(azt, k) + 1

VEk+1 % dn(u, k) + ksn(u, k) cn(u, k) mmu
= cos ( ) du
2a K ksnZ(u, k) + 1 K
_ KVk+1
T 2
where A, is the mth Fourier cosine coefficient of the function

dn(u, k) + k ,k .k
Ry = SO TILDERD, we kK.

Ap,

Similarly,

mT /2
/ Y (?) sin wt dt 2.9)

mT /2

JEk+1 % dn(u, k) + ksn(u, k)en(u, k) . /mmu
= sm( )du
2a J_k ksn?(u, k) + 1 K

_kVEFT,
- 2a m»

where B, is the mth Fourier sine coefficient of F,. By using contour integration
([10]), one can show that the Fourier series expansion of F; is ([11])

F(u) = 5 (2.10)

/4
Kvk+1

4 14 i cosh(2nW) cos (mtu) sinh(2nW) sin (nnu)]
Kk + 1 % | cosh(2nWy) K cosh(2n W) K ’
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where Wy = 7 K'/2K and W = a(K’ — up)/2K in which K’ = K (k’), where k' =
/1 — k2 is the complementary modulus [1], and u, satisfies cn(ug, k') = /k/(k + 1),
0 < uy < K'. From (2.10), we obtain

_ 7t cosh2m W) _ 7 sinh(2mW) @.11)
™ KJk + 1coshQmW,) " KJk+ Lcosh@mW,)'
and thus (2.8) and (2.9) lead respectively to
mT /2 h 2 w
f () cos ot dtf = =oSCEmW). 2.12)
-mT /2 2a cosh(2m W)
and
mT/2 7 sinh(2m W)
Dsinwtdt = —————. 2.13
./_mr/z Yt sine 2a cosh(2m Wy) @.13)
Hence, from (2.7),
mT /2 e
f ——(t) sinfw (¢t + to)] dt 2.14)
—mry2 Al
Tw

= 22 cosh@mWy) [sinh(2m W) sin wt, — cosh(2m W) cos wto].

We now evaluate the second integral in (2.6). Substituting (2.2) in this integral and
simplifying produces

mT /2
/ (=225 (Oye(t) + 22O ) + Y2 dt @.15)

mT /2
_a'k(k+1) ["TPT14 (k — 2)sn?(a’t, k) + (k2 — 2k)sn*(a’t, k)
- 4 T2 [ (1 + ksn?(a?t, k))?
+ k3sn®(a’t, k) + (—2k — 2)sn(a?t, k)cn(a?t, k)dn(a®t, k)
(1 + ksn2(a?t, k))?
(2k? + 2k)sn’(a?t, k)cn(a®t, k)dn(a’t, k)] r
(1 + ksn2(a?t, k))?
_ak(k+1) /" [1 + (k — 2)sn*(u, k) + (k* — 2k)sn*(u, k)
4 -K

(1 + ksn?(u, k))?
+ k3sn®(u, k) + (—2k — 2)sn(u, k)cn(u, k)dn(u, k)
(1 + ksn?(u, k))3
(2k? + 2k)sn*(u, k)en(u, k)dn(u, k)
(1 + ksn2(u, k))? ]
_ a’kk +1) /‘" 1 4+ (k — 2)sn?(u, k) + (k2 — 2k)sn*(u, k) + k3sn®(u, k) du
4 _x (1 + ksn2(u, b))

’
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since the functions

sn(u, k)en(u, k)dn(u, k) and N sn®(u, k)en(u, k)dn(u, k)
(1 + ksn2(u, k))? “ (A + ksn?(u, k))?
are both odd. The integrand in (2.15) is an even function of u, so
mT/2
/ [—ax, (O3 (t) + 22D + )] dt 2.16)
mT/2

2k(k+1) /‘ 14k =2)sn?(u, k)+(k*—2k)sn*(u, k)+k>sn(u, k)
(1 + ksn?(u, k))3

2k(k+1) du sn2(u, k)du
2 [/0 (1 + ksn?(u, k))3 +k _2)/; (1 + ksn2(u, k))?

K sn*(u, k)du 3 5 sn®(u, k)du
+k(k_2)/0 (I+k sn2(u, k))? k A (1+ksn2(u,k))3]

Evaluating the integrals in (2.16) by using [1] produces the results

ol((;iksilzu, 0 4(k+1)2 [(2"2“‘—1)1( (k)+3E (k) + ”(22"(2__;?:‘_;:2_)] i
st 1 Twoko-eorgms] e
Ox(k();r;(zz’(’;)’d;)a =4k2(1:+1)2 [(k+1)K(k)—E(k) - 2(;:1)] , (2.19)
/0 K((k;f:;(:z (];),d:)ﬁ R (/:-H)Z [( WH—DK WHSE®) - %] ’ (2.20)

where E (k) is the complete elliptic integral of the second kind [1]. Substituting
(2.17)—(2.20) in (2.16) and simplifying, finally produces

mT/2 a? a?
/ [—a2xk(z)yk(t)+2x,3(t)(x,3(t)+y,f(t))]dz=7(k2—1)K(k)+7E(k). 22D

—-mT/2
Overall, from (2.6), (2.14) and (2.21), the subharmonic Melnikov function for
n=1andt € Ris
nhw

M™(t) = m[cosh&m W) cos wty — sinh(2m W) sin wiy]
(2.22)
2 2
+ 20—k w - S E®
_ b wy/cosh(4mW) ) i
= 2acosh@mW,)  Sn@h+A) +55 (1 — KK (k) — = E(k),
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where B = — arctan(coth(2mW)) and K (k) = wma®/w is the resonance condition.
It has been verified that

"}1_1}30 M™ (15) = M(to), h eR,

as required by Guckenheimer and Holmes [8, Theorem 4.6.4], where M is the standard
Melnikov function obtained in Christie and Gopalsamy [2].
From (2.22), the subharmonic Melnikov function has infinitely many zeros provided
a’c cosh2mWy)
b w+/cosh(dm W)

The zeros of the subharmonic Melnikov function will be simple if dM™! /d1, # 0 at
the zeros of M™/!. From (2.22), we have

dmm™! = b w?/cosh(dmW)
dty, " 2acoshmW,)

sin(wty + B) = [(k* — DK (k) + E(k)]. 2.23)

cos(wto + B), € R. (2.24)

Hence, M™/! has simple zeros if
sin*(wty + B) < 1
and using (2.23), this reduces to
a®c? cosh’ 2mWy)[(1 — kK (k) — E(k))? < 7°b*w’ cosh@mW). (2.25)

Note from (2.25) that the subharmonic Melnikov function has simple zeros for
¢ = 0, and if ¢ # 0, then ¢ has to be small enough to satisfy (2.25). Now in order
to use Guckenheimer and Holmes [8, Theorem 4.6.2] to establish the existence of a
subharmonic periodic orbit of (2.1), of period mT for sufficiently small €, we need to
show that % # 0, where o (k) = H(qg(¢)). We use (2.5) and k = +/a* — 80 /a* to
obtain

dT(k) dT(k) dk _ 8 d_Ii 0
do()  dk do(k) a'Ja'—8o dk
dK

since 7~ > 0. Hence, we conclude that if (2.25) is satisfied where K (k) = nma*/w,

then for sufficiently small €, the system (2.1), has a subharmonic orbit of period mT.

3. An application to a one-dimensional oscillator

In [2], Christie and Gopalsamy considered the dynamics of an anharmonic oscillator
parametrically driven at twice the resonant frequency wp. Such a system has recently
been applied in optics in relation to the squeezing of light by DiFilippo et al. [4], and
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Wielinga and Milburn [13] have considered an equivalent model in the context of
quantum-mechanical tunnelling. Christie and Gopalsamy [2] studied the potential for
a one-dimensional oscillator with a small (Ja|z? < 1) quartic anharmonic correction
whose frequency is modulated at 2w, by a weak (¢, < 1) parametric drive :

1 1
U(z,t) = 5.///0)(2,22<1 + €, sinQQuwot) + EazZ), (3.1)

where ./ denotes the mass of a particle undergoing the oscillatory motion. Neglecting
the higher-order harmonics, oscillations with frequency w, together with a dynamic
phase were considered as follows :

z(®) = r(t) cos(wgt — 6(1)) (3.2)
= C(t)cos wyt + S(t) sin wyt,

where C(t) = r(t) cos(0(2)) and S(t) = r(¢) sin(6(2)).
By making use of an approximation, Christie and Gopalsamy [2] derived the
equations of motion

dC €y 3awy
—=__C 2 2 .
I 2 A S(C° + 59, (3.3)
ds €1y 3(10)0 2 o
_— = ——S —
7 7 2 C(C*+ 59
If we assume that €, > 0 and o < 0, the system (3.3) is identical to (2.1)._¢ with
a’> = eqan/4 and @ = —16/3wy.

Then, an external potential of the form e,z sin wyt sin wt was applied, where 0 <
€, <« 1 is a perturbation parameter and w > 0 the frequency of the perturbation. The
perturbed system is governed by the equations

ac €1y 3(16!)0 2 2 € .

R o POt 4
ar n + 3 S(C°+ 89+ YA o sin wt, (3.4)
das _ €1y 30!0)0 2 2

i 2 S 3 C(C+ §59).

The system (3.4) is identical to the system (2.1), with a®> = €,wo/4, o = —16/3wy,
b=1,c=0and € = /2.4 w,. From (2.25), if K (k) = nma?/w, the subharmonic
Melnikov function for the system has simple zeros, so a subharmonic orbit of period
2w m /o exists for sufficiently small e,
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