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Summary

Dominance is an important source of variation in complex traits. Here, we have carried out the first
thorough investigation of quantitative trait locus (QTL) detection using variance component (VC)
models extended to incorporate both additive and dominant QTL effects. Simulation results showed
that the empirical distribution of the test statistic when testing for dominant QTL effects did not
behave in accordance with existing theoretical expectations and varied with pedigree structure.
Extensive simulations were carried out to assess accuracy of estimates, type 1 error and statistical
power in two-generation human-, poultry- and pig-type pedigrees each with 1900 progeny in small-,
medium- and large-sized families, respectively. The distribution of the likelihood-ratio test statistic
was heavily dependent on family structure, with empirical thresholds lower for human pedigrees.
Power to detect QTL was high (0.84–1.0) in pig and poultry scenarios for dominance effects
accounting for >7% of phenotypic variance but much lower (0.42) in human-type pedigrees.
Maternal or common environment effects can be partially confounded with dominance and must be
fitted in the QTL model. Including dominance in the QTL model did not affect power to detect
additive QTL effects. Also, detection of spurious dominance QTL effects only occurred when
maternal effects were not included in the QTL model. When dominance effects were present in the
data but not in the analysis model, this resulted in spurious detection of additive QTL or inflated
estimates of additive QTL effects. The study demonstrates that dominance can be included routinely
in QTL analysis of general pedigrees; however, optimal power is dependent on selection of the
appropriate thresholds for pedigree structure.

1. Introduction

Historically, dominance has often been ignored or
treated as a nuisance parameter, for example in genetic
evaluations of livestock and quantification of vari-
ance components (VCs). The importance of detection
and quantification of dominance effects underlying
complex traits, however, is underlined by an increasing
body of evidence for dominant quantitative trait locus
(QTL) with major effects on human disease and agri-
cultural traits of economic importance. Duong et al.
(2006) found eight completely dominant QTL

associated with hypertension in congenic rat lines,
and in agriculture, examples of dominant QTL in-
clude fertility and production traits in cattle (Cohen-
Zinder et al., 2005), chicken (Ikeobi et al., 2002;
Hocking, 2005), tomatoes (Semel et al., 2006) and
maize (Zhang et al., 2006). Liu et al. (2007) performed
a genome-wide scan on an F2 DurocrPietrain cross
and found 40 additive QTL and 31 QTL showing
overdominance effects. Although definitions vary,
overdominance is a phenomenon for which there
is increasing evidence in plants as the underlying
mechanism for heterosis (Xiao et al., 1995; Frascaroli
et al., 2007). Lippman & Zamir (2007) review detec-
tion and characterization of heterosis, overdominance
and pseudo-overdominance.
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To date, the detection of these dominant QTL
effects has predominantly involved model species or
experimental crosses requiring inbred or genetically
divergent populations. Reproductive constraints ren-
der these test crosses impractical for many agricultural
species, while for human and natural populations they
are unethical and/or untenable. In commercial live-
stock populations, it is often more relevant, practical
and cost-effective to explore QTL segregating within a
population, particularly if the objective is to facilitate
selection within that population. There is evidence to
suggest that much of the variation found between
lines is segregating within lines (De Koning et al.,
2004) and, furthermore, most evolutionarily import-
ant variation appears to occur within lines (Erickson
et al., 2004).

There is, therefore, an increasing need for QTL
methodology to routinely account for genetic inter-
actions such as dominance within any population
structure. Independently developed within human
and livestock research, VC-based linkage methods
(Fernando & Grossman, 1989; Goldgar, 1990; Amos,
1994; Grignola et al., 1997; Almasy & Blangero, 1998;
Allison et al., 1999; George et al., 2000) have the ad-
vantage of simultaneously locating and estimating
genetic effects within arbitrary pedigrees. Genetic
parameters associated with the polygenic effect, and
at specific loci using marker and pedigree infor-
mation, can be estimated simultaneously. The incor-
poration of many alleles or allelic effects and all
relationships within a pedigree has been shown to in-
crease the power to detect QTL over sib-based meth-
ods (Williams & Blangero, 1999; Sham et al., 2000;
Kolbehdari et al., 2005; Rowe et al., 2006). Further-

more, linkage disequilibrium and haplotype infor-
mation can be incorporated to provide greater
accuracy (Meuwissen et al., 2002; Lee & Van der
Werf, 2006). Most importantly, there is the potential
for flexibility to incorporate random effects and their
interactions, for example, dominance, epistasis and
maternal effects, limited only by the size and structure
of the experimental population.

Although undeniably an important source of vari-
ation, non-additive effects are notoriously difficult to
estimate due to confounding with other sources such
as common maternal environment (Gengler et al.,

1997; Misztal, 1997). Computational complexity
combined with the more generic problems of setting
appropriate thresholds to account for multiple testing
and lack of suitable data have inhibited the extension
of VC methodology to incorporate interactions such
as dominance and epistasis. Although extensions to
VC QTL linkage models to incorporate dominance
are widely discussed (Sham et al., 2000; Diao & Lin,
2005), they have rarely been implemented, indicating
a need for further investigation before the full poten-
tial of these methods can be unleashed.

In the present study, extensive simulations have
been used to explore the power and potential for
partitioning QTL effects into additive and dominant
components using VC methods for linkage analysis.
Varying full-sib and half-sib population structures
have been used to evaluate accuracy and the power to
detect additive and dominant genetic effects in pedi-
grees that are representative of commercial livestock
and human scenarios.

2. Materials and methods

(i) Statistical genetic models for VC analysis

Population-wide linkage equilibrium between QTL
and marker alleles was assumed for all analyses.
Following the two-step approach described by
George et al. (2000), for each putative QTL position,
marker information was used to estimate identity-
by-descent (IBD) coefficients for all relationships in
the pedigree. In the second step, different QTLmodels
were fitted for given genome locations using the fol-
lowing models :

where y is a vector of phenotypic observations, b is a
vector of fixed effects, u, a, d, m and e are vectors
of random additive polygenic effects, additive and
dominance QTL effects at the putative QTL position,
non-genetic maternal effects and residuals, respect-
ively, and X, Z and W are incidence matrices relating
to records of fixed and random genetic and maternal
effects, respectively.

Variances for polygenic and QTL effects are dis-
tributed as follows: Var(a)=Gs2

q, Var(d)=Ds2
d,

var(e)=Is2
e and var(u)=As2

a. For the non-genetic
maternal effect : Var(m)=Is2

m.

y=Xb+Zu+e (null or polygenic) (1)

y=Xb+Zu+Za+e (null+additive QTL) (2)

y=Xb+Zu+Za+Zd+e (null+additive QTL+dominance QTL) (3)

y=Xb+Zu+Wm+Za+Zd+e (null+maternal+additive QTL+dominance QTL) (4)
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Here, A is the standard additive relationship matrix
based on pedigree data only, G is the QTL additive
genetic relationship matrix based on marker infor-
mation and D is the QTL dominance genetic re-
lationship matrix representing the probability that
two individuals have the same pair of alleles in com-
mon based on marker information. VCs for each
model were estimated using REML (Patterson &
Thompson, 1971) implemented in the ASReml pack-
age (Gilmour et al., 1995).

(ii) Calculating the relationship matrices A, G and D
needed for the mixed model analysis

The relationship matrices G and D for a given QTL
position are calculated from the gametic IBD matrix
as outlined by Liu et al. (2002). The gametic IBD
matrix is a 2nr2n matrix containing the probability
of identity of descent between either of the two
gametes of an individual with the gametes of the
remaining individuals in the pedigree. In contrast to
George et al. (2000), who used aMonte Carlo method,
the gametic IBD matrix was estimated with the re-
cursive method of Pong-Wong et al. (2001), which
uses the two first-available fully informative or phase-
known flanking markers. The G and D matrices are
conditional on flankingmarker information and there-
fore unique for each position evaluated for a QTL;
hence, the calculation of G and D requires the prior
calculation of the gametic IBD matrix conditional on
linked marker information at the position of the
putative QTL. Here, the matrices were calculated
every 5 cM. In order to estimate the VCs for the dif-
ferent models, ASReml requires the inverse of the
relationship matrices A, G and D. The version of
ASReml used calculates the inverse of the A matrix
directly from pedigree data, but the inverse for G and
D were calculated from the gametic matrix, inverted
using a separate routine and then passed into
ASReml.

(iii) Test statistic

A test statistic for a given location was obtained by
comparing the likelihood of the full vs. the null model.
The log likelihood-ratio test (LRT) statistic was
calculated as twice the difference between the log
likelihood of the full model and the reduced model.
Power was estimated both empirically using thresh-
olds derived from 1000 chromosome-wise replicates,
and using tabulated values assuming that the test
statistic is x2 distributed with degrees of freedom equal
to the number of extra parameters estimated in the
full model compared with the reduced model. This
is conservative for a test at a single location in the
genome as the test statistic under the null hypothesis
is likely to be distributed as a complex mixture of

distributions (Self & Liang, 1987; Stram & Lee, 1994;
Allison et al., 1999; Visscher, 2006). For QTL map-
ping, it has been suggested that the most straightfor-
ward method of achieving the critical null value is to
halve the P value obtained for x2k, where k is the
number of extra VCs in the full model (Visscher,
2006). In practice, this mixture of distributions x20x1

is equal to using the 10% critical threshold for a 5%
type 1 error rate.

Three tests were carried out: (i) additive QTL (2) vs.
null (1) to test significance of the QTL VC under a
purely additive model (denoted 1v0); (ii) additive
QTL+dominance QTL (3) vs. null (1) to test signifi-
cance of QTL VCs under a model including additive
and dominance effects (denoted 2v0); and (iii) addi-
tive QTL+dominance QTL (3) vs. additive QTL (2)
to test the significance of the dominance VC (denoted
2v1). To estimate the effect of common environment,
the model including additive and dominance QTL
effects was further extended to incorporate a random
dam effect (4), representing a maternal or full-sib
family effect.

(iv) Population structure

The method was implemented in three simulated
populations, representative of poultry, pig and
human pedigrees (Table 1). The parental generation
was simulated by random sampling without replace-
ment from an unrelated base population. Under each
scenario, random mating of parents was simulated to
obtain a second generation of 1900 progeny.

A 20 cM chromosome was simulated with five
markers spaced at 5 cM intervals and a bi-allelic QTL
between the second and third markers at 7.5 cM.
To simulate polygenic variance, ten unlinked additive
effects of 0.2 were simulated each with an allele fre-
quency of 0.5 following Alfonso & Haley (1998). The
phenotypes generated under a polygenic model were
normally distributed, indicating that these unlinked
QTL were sufficient to provide a reasonably struc-
tured polygenic variance.

Dominance effects were simulated ranging from
partial to overdominance over a range of additive ef-
fects. These are summarized in Table 2. The variances
of the QTL additive (a) and dominance (d ) effects

Table 1. Population parameters for simulated
pedigrees

Sires
Dams
per sire

No. of
half-sibs
per sire

No. of
full-sibs
per dam

Chicken 19 5 100 20
Pig 10 19 190 10
Human 633 1 – 3
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were calculated as 0.5 a2 and 0.25d 2, respectively, be-
cause allele frequencies were set to 0.5.

For each individual, a residual effect was sampled
from a normal distribution withmean 0 and a variance
of 1.5. As the error variance was constant, phenotypic
variance and overall heritability increased with genetic
effects. In the base scenario with no QTL simulated,
polygenic heritability was 0.11. Total heritability
(polygenic and QTL) ranged from 0.1 to 0.31 with
dominance QTL effects ranging from 0 to 9% of the
phenotypic variance. For each scenario where QTL
were simulated, 100 replicates were analysed and the
test statistics described above calculated at 2, 7, 12
and 17 cM.

(v) Maternal effect

Common environment or direct maternal effects are
often, at least partially, confounded with dominance.
To explore the effect on detection of dominance QTL,
random maternal effects were simulated in the pig
population. A maternal effect was simulated by sam-
pling for each full-sib family from a normal distri-
bution with variance of 0.1 and assigning this value to
each full-sib offspring. A residual effect was sampled
from a normal distribution withmean 0 and a variance
of 0.75. The implication of potential maternal effects
was evaluated in three different ways: a maternal
effect was simulated with a range of dominance QTL
effects. Firstly, the maternal effect was not fitted in the

model to test for spurious detection of dominance.
Secondly, a maternal effect was included in the linear
model to test whether the model correctly accounts
for the maternal variance. Finally, no maternal effect
was simulated but a maternal component was in-
cluded in the linear model to test whether the domi-
nance variance was correctly identified or incorrectly
estimated as a maternal effect.

(vi) Null distribution

Chromosome-wise type 1 error rates were determined
empirically for all three population structures. A total
of 1000 replicates were used to explore 1, 5 and 10%
thresholds under the null scenario (both additive and
dominance QTL effects set to zero). Point-wise test
statistics were determined with 1000 replicates at the
QTL position. Empirical distributions for point-wise
tests were compared with tabulated values for x2k,
where k is equal to the number of extra VCs estimated
using P values for 1, 5 and 10%, and under the as-
sumption that halving the P value accounts for a
mixture of distributions using P values of 2, 10 and
20% for 1, 5 and 10% thresholds. A 5% threshold
was determined for empirical power calculations and
comparisons based on the analysis of 1000 replicates.

The empirical distribution of the LRT under the
null scenario appeared to vary across pedigrees, in
particular, differing between human and livestock.
This could be due to the difference in number of full

Table 2. Summary of scenarios

Scenario

QTL effect Heritability (h2)

TotalaAdditive QTL Dominant QTL
Additive (a) Dominant (d ) g2

q
=s2

P s2
d/s

2
P s2

a+s2
q+s2

d/s
2
P

1 0.00 0.00 0.00 0.00 0.11
2 0.10 0.00 0.00 0.00 0.12
3 0.20 0.00 0.01 0.00 0.13
4 0.30 0.00 0.03 0.00 0.14
5 0.00 0.50 0.00 0.04 0.15
6 0.40 0.00 0.04 0.00 0.16
7 0.00 0.60 0.00 0.05 0.16
8 0.00 0.70 0.00 0.07 0.18
9 0.50 0.00 0.07 0.00 0.18
10 0.00 0.80 0.00 0.09 0.19
11 0.50 0.50 0.07 0.03 0.21
12 0.60 0.60 0.09 0.05 0.24
13 0.80 0.40 0.16 0.02 0.27
14 0.70 0.70 0.12 0.06 0.27
15 0.80 0.50 0.15 0.03 0.28
16 0.80 0.60 0.15 0.04 0.29
17 0.80 0.70 0.15 0.06 0.30
18 0.80 0.80 0.15 0.07 0.31

s2
P is the phenotypic variance.

a Total heritability includes polygenic variance (s2
a) of 0.2, residual variance 0.75, expected additive QTL variance (s2

q)
estimated by (a2/2) and expected dominant QTL variance (s2

d) estimated by (d 2/4).
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Fig. 1. Proportion of replicates where test for dominance (2v1) is significant (P<0.05) when comparing the full
model and the additive model. A total of 100 chromosome-wise replicates in (top to bottom) (a) poultry, (b) pig and
(c) human pedigrees under partial to complete dominance. Simulated additive effect fixed at 0.8 comparing
tabulated 5% x21, x

2
1x0 thresholds and 5% empirical threshold. Mixture threshold is estimated by using tabulated 10%

x21 threshold.
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sibs per family (three for humans compared with 10 or
20 for livestock) or the lack of half-sib relationships in
the human pedigree. To explore this, chromosome-
wise null LRT distributions were determined for five
additional pedigrees. The number of offspring re-
mained constant at 1900 but pedigreeswith 1 or 2 dams
per sire and 3, 5 or 10 offspring per dam were com-
pared with pig and poultry pedigrees to explore the
effects of family structure on the distribution of the
null test statistic.

3. Results

All results shown are based on 5% empirical thresh-
olds from 1000 chromosome-wise replicates. Full
results for all populations and scenarios can be found
in Supplementary Table S1 for power to detect addi-
tive and dominant QTL effects, S2 for power in
pig populations with maternal or common environ-
ment effects and S3 for estimates of VCs.

(i) Power to detect dominance effects

Figures 1a, b and c give the proportion of replicates
detecting dominance using 5% empirical and tabu-
lated thresholds for x21 and a mixture x21x0. Testing
for dominance involved comparing the additive QTL
model with the full model incorporating both an ad-
ditive QTL and a dominant QTL effect (denoted 2v1).
For the pig and poultry pedigrees, power under
empirical and the x21x0 mixture of distributions was in
close agreement. For human pedigrees, both x21 and
x21x0were conservativewhen comparedwith empirical
thresholds. Power under the empirical 5% threshold
wasy100% in the poultry scenario,y84% for the pig

scenario and y42% for humans when the QTL
dominance variance was about 7% of the phenotypic
variance (dominant effect=0.8, i.e. complete domi-
nance). Under x21 thresholds this dropped to y95,
y75 andy25. Power to detect dominance was greater
for all pedigrees using empirical thresholds. Although
the ranking did not change when using tabulated
values, power to detect dominance, particularly in
humans, was much lower and differences between
models greater. When comparing the full model with
the null model (denoted 2v0), all replicates detected a
QTL for the pig and poultry scenarios, and 96%
(84% under tabulated thresholds) of replicates de-
tected a QTL for the human scenario (Supplementary
Table S1).

Figure 2 shows the estimates for the additive and
dominance QTL VCs from the comparison of the full
model with the null model (2v0). In all replicates, a
QTL was detected at the 5% significance level.
Scenarios shown were for complete dominance with
effects ranging from 0.5 to 0.8 (also given in Sup-
plementary Table S2). These show that although
estimates are wide-ranging, they appear to accurately
estimate the mean.

(ii) Overdominant, spurious additive and dominant
QTL effects

Figure 3 shows power to detect simulated additive
effects ranging from 0.1 to 0.5, or 1–7% of phenotypic
variance. Power reached 90% when the additive
variance amounted to >4% of the phenotypic vari-
ance. In this case, no dominance effect was simulated
and there was little spurious dominance detected.
Furthermore, power to detect an additive effect was
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Fig. 2. Estimates of VCs from simulated poultry data. Box plots showing the range of variance estimates. Full dominance
is simulated. Variance estimates for single marker position (for 1000 replicates of each scenario) for additive and dominant
QTL effects. The black circles indicate the expected VCs. All replicates were significant for a QTL when testing under the
full model (additive and dominance QTL effects vs. null).
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similar whether or not the extra dominance compo-
nent was included in the analysis. This shows that a
routine scan including dominance would not result in
too great a loss of power even in the absence of any
dominant effects. Although results are shown only
for the pig population, the same pattern was seen
for poultry and human scenarios. Figure 4, however,
shows that spurious additive QTL effects were found
when dominant QTL effects were not fitted. With
dominant QTL effects ranging from 0.5 to 0.8 and
simulated additive effects of zero, i.e. overdominance,
there is both spurious detection of an additive
QTL effect if dominance was not included in the
model and inflated estimates of additive variance
(Table 3).

(iii) Maternal effects and dominance in the
pig scenario

Figure 5 clearly shows that a simulated maternal ef-
fect can masquerade as a dominant QTL effect. In the
most extreme case when a dominance effect of 0 was
simulated, ignoring the common environment re-
sulted in a type 1 error of 67%. When a maternal
effect was fitted in the model, maternal effects and
dominance appear to be successfully separated with
little or no loss of power (Table 4). If a maternal effect
was fitted when not present, there was little loss of
power (for results see supplementary Tables S2 and
S3), indicating that a maternal component fitted in the
absence of a maternal effect should not prevent de-
tection of variance due to dominance.

(iv) Null distribution

Table 5 shows that the point-wise test statistic was
conservative for all models when compared with

Table 3. Estimates of variance due to additive QTL and
additive and dominantQTLeffects under overdominance
when the additive QTL effect of zero is simulated

Expectation

Additive
QTL vs. null
model (1v0)

Additive+dominant
QTL vs. null model (2v0)

Add Dom Add Add Dom

0 0.062 0.020 0.008 0.067
0 0.090 0.036 0.009 0.098
0 0.122 0.037 0.008 0.122
0 0.160 0.067 0.010 0.161

Variances are mean estimates at the highest chromosome-
wise test statistic across 100 iterations in a simulated pig
population.
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Fig. 3. Percentage of replicates detecting additive QTL effects (P<0.05) using the full model (add+dom) and the additive
model (add) and testing the difference between the two (dom) in a simulated pig population. A dominance effect of zero is
simulated.
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dominant QTL effects when an additive effect of zero is
simulated.
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tabulated x2 values. This was also true if the mixture
of distributions was taken into account by assuming a
P value of 0.1 to derive a 5% critical threshold. Table
5 shows that for the test for dominance the equivalent
P value under the x21 distribution to a 5% empirical
threshold was actually 0.21 for pig and poultry and
0.35 for human pedigrees. The test for additive QTL
effects although still conservative was much closer to
tabulated values, particularly 10% thresholds with
equivalent P value under the x21 distributions of 0.14,
0.15 and 0.11 for poultry, pig and human pedigrees,
respectively.

Chromosome-wise type 1 error rates were close to
tabulated thresholds for the additive model, for all
three simulated pedigrees. Tabulated type 1 error
rates for the full model and for dominance, however,
remained conservative. None of these tabulated
values were corrected for multiple testing.

Figure 6 compares distributions of the empirical
test statistic with x2 distributions. In particular, for
the test for dominance the empirically derived null
statistic appears to vary according to pedigree struc-
ture, i.e. is lower in humans. This is apparent to a
lesser extent in the model testing for both additive and
dominance and somewhat reversed in the additive
test.

Figure 7/Table 6 compares distributions of the test
statistic under the null hypothesis of no QTL for eight
pedigree structures. These vary from human families
with three full-sibs to more complex structures such
as poultry with 20 full-sibs and 200 half-sibs. It is
apparent that the three human pedigrees, i.e. single
dam families, have very similar distributions seem-
ingly regardless of the number of full-sibs. Similarly,
the three pedigrees with two dam families have similar
distributions to each other but clearly different from
those of the human or larger livestock families. The
pig and poultry distributions are similar to each other
although the pig distribution appears slightly more
conservative. The x21x0 distribution appears to be
comparable with the pig and poultry distribution, al-
though again as these were chromosome-wise tests
that are uncorrected for multiple testing, they cannot
be directly compared with nominal values.

4. Discussion

This study provides a comprehensive evaluation of
the performance of VC analysis over a range of domi-
nant QTL effects. The method was successfully used
to estimate and apportion variances due to polygenic,
additive, dominant and non-genetic effects. Power
>95% was achieved when testing for dominant QTL
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Fig. 5. Effects of simulating and/or fitting direct maternal effects on proportion of replicates where test for dominance
(2v1) is significant (P<0.05) when comparing the full model and the additive model. A total of 100 chromosome-wise
replicates in the pig population under partial to complete dominance (additive QTL effect fixed at 0.8). ‘No mat effect ’, no
maternal effect simulated or fitted; ‘mat effect ’, maternal variance of 0.1 simulated but not fitted; ‘mat effect fitted’,
maternal variance of 0.1 simulated and fitted.

Table 4. Variance estimates for dominant QTL effect
of 0.8 and maternal effects

Maternal
effect
simulated

Maternal
effect fitted

Dom
variance
(0.16)

Maternal
variance
(0.10)

N N 0.17 –
Y N 0.25 –
Y Y 0.20 0.09
N Y 0.17 0.02

Values in parentheses are simulated or expected variances.
Variances are mean estimates at the highest chromosome-
wise test statistic across 100 iterations in a simulated pig
population.
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effects accounting for 7% of the total variance for a
simulated poultry population. Power to detect additive
QTL was also high (y97% for an additive effect ex-
plaining 7% of phenotypic variance. Although the
upper range of the simulated QTL effects is high, these
values are plausible in terms of the published literature.

Simulation results showed that, unlike the test for
additive QTL effects, the empirical distribution of the
test statistic when testing for dominant QTL effects
did not behave in accordance with existing theoretical
expectations. Theoretically, the asymptotic distri-
bution of the LRT is a mixture of x2 with different
degrees of freedom when testing VCs under the null
hypothesis that they are zero (Self & Liang, 1987;
Stram & Lee, 1994). For example, with one extra VC,
the null distribution is a mixture of 1

2 x0 (i.e. variance is
zero) and 1

2 x1 (i.e. variance is non-zero). With a model
including two VCs, such as additive and dominant
QTL effects, the expectation of the distribution would
be a mixture of 1

4 x0 (both VCs are zero), 1
2 x1 (one is

non-zero) and 1
4 x2 (both are non-zero). Visscher

(2006) provides a thorough review.
Problems with incorrect assumptions about the

distribution include inflated type II errors leading to
reduced power. Extending the linear model to include
a dominance component resulted in a conservative
test when imposing a x21 distribution for the LRT
statistic. The test remained conservative even when
thresholds were halved under the assumption of a
mixture of distributions. One explanation might be
that additive and dominant QTL effects are not en-
tirely independent. Furthermore, the null distribution
for the dominance test varies with family structure, in
particular, with the number of dam families per sire.
Distributions of the test statistic in Figure 7/Table 6
appear to group by number of dam families, with
human-type pedigrees with a single dam per sire most
conservative, regardless of family size. The number of
full-sibs within dam families did not appear to affect
the distribution. It is possible that the lack of half-sib
families might result in confounding of additive and

dominance effects at the QTL. Theoretically, if both
components need to be estimated within dam, lack of
information might lead to a higher probability of VCs
being zero.

Results showed that power is also affected by
population structure. Power to detect dominance at
the QTL was similar for pig and poultry populations
but much lower for humans.

This was unsurprising as the human population
consisted of many small families with low numbers of
full-sibs, making it difficult to detect dominance.
Increased power might be achieved in human studies
from a pedigree with more generations providing in-
formation from relationships such as grandparents
and cousins, but this needs to be explored further.

It is anticipated that further correction for multiple
testing for large linkage groups or genome-wide test-
ing would be necessary. The distribution, however, of
H0 when testing for multiple linked positions is un-
resolved and authors have used different approxi-
mations (Xu & Atchley, 1995; Pratt et al., 2000;
Piepho, 2001; Nagamine et al., 2004). Procedures
such as permutation and bootstrapping enable the set-
ting of empirical thresholds and circumvent problems
associated with failure of distributional assumptions
and independence of multiple tests (Churchill &
Doerge, 1994; Visscher et al., 1996), although com-
putational complexity can restrict their use within the
VC framework.

The method described by Piepho relies on the
gradient of change in likelihood. However, this
method still assumes that the test statistic for a single
test follows a standard x2 distribution under the null
hypothesis and therefore does not address the issue of
mixture distributions that is apparent for these types
of analyses. It is difficult to ascertain whether the
method is appropriate here, when the test statistic
follows a mixture of distributions and likelihoods
under the null scenario are very flat.

There is strong evidence to suggest that a common
environment effect should be routinely evaluated in

Table 5. Empirical 5% thresholds for LRT test statistic (and the corresponding P value under x2 distribution).
A total of 1000 replicates simulated for single point-wise and multiple chromosome-wise testing under the null
scenario of no QTL effects

Point-wise Chromosome-wise

Poultry Pig Human Poultry Pig Human

2v0 3.18 (0.20) 3.30 (0.19) 3.00 (0.22) 4.86 (0.09) 4.94 (0.08) 4.58 (0.10)
2v1 1.60 (0.21) 1.58 (0.21) 0.86 (0.35) 2.62 (0.11) 2.70 (0.10) 1.48 (0.22)
1v0 2.20 (0.14) 2.08 (0.15) 2.62 (0.11) 3.78 (0.05) 3.46 (0.06) 3.78 (0.05)

The 2v0 testing model including an additive QTL and a dominant QTL effect vs. a null model with P value in parentheses
assuming x22 ; the 2v1 testing model including an additive and a dominant QTL effect vs. an additive QTL model with P value
in parentheses assuming x21 ; and the 1v0 testing model including an additive QTL vs. a null model with P value in parentheses
assuming x21.
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all VC QTL models as, if unaccounted for, most of
the variation due to common environment masquer-
ades as dominance. We have shown that the presence
of common environmental effects has little effect on
false-negative rates but a potentially huge impact on
false-positive rates.

We demonstrated that incorporating a dominance
effect in a genome scan has very limited detrimental
effect on the power to detect purely additive QTL.
Detection of spurious dominance was also rare, sug-
gesting that dominance could be routinely included in
genome scans. We have also shown by simulation
that, if not fitted in the analysis model, dominance
may be detected as spurious additive effects or inflated

0 50 100 150 200 250 300

0
2

4
6

8
10

12

(a)

(b)

(c)

14

Replicates

LR
T

 a
dd

 +
 d

om

χ2 dist. 2 DF
χ2 dist. mixture 1 and 2 DF
Poultry
Pig
Human

0 50 100 150 200 250 300

0
2

4
8

6
10

Replicates

LR
T

 d
om

χ2 dist. 1 DF
χ2 dist. mixture 1 and 0 DF
Poultry
Pig
Human

0 50 100 150 200 250 300

0
4

2
6

8
10

Replicates

LR
T

 a
dd

χ2 dist. 1 DF
χ2 dist. mixture 1 and 0 DF
Poultry
Pig
Human

Fig. 6. Distribution of empirical point-wise test statistic in
pig, poultry and human pedigrees for (from top to bottom)
(a) additive and dominance effects, (b) dominance effects
and (c) additive effects compared with x21 and x21x0

distributions. The top 300 values of 1000 replicates are
displayed.
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Fig. 7. Comparison of distribution of empirical
chromosome-wise test statistic for dominance effects under
null hypothesis of no QTL in pedigrees with varying full-
sib (FS) and half-sib (HS) structures. x21x0 is also plotted
for comparison. All pedigrees have 1900 total offspring.
The top 150 values of 1000 replicates are displayed for
clarity.

Table 6. Empirical 5% thresholds for LRT test
statistic when testing for dominance and corresponding
P value under x21 distribution. A total of 1000
replicates simulated for chromosome-wise testing
under the null scenario of no QTL effects

Pedigree Sires
Dams
per sire

Progeny
per dam

LRT 5%
empirical
threshold

1 (human) 633 1 3 1.46
2 380 1 5 1.14
3 190 1 10 1.38
4 317 2 3 2.1
5 190 2 5 2.02
6 195 2 10 2.06
7 (chick) 19 5 20 2.62
8 (pig) 10 19 10 2.70
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estimates of additive genetic variance. This suggests
that dominant QTL effects can be detected as additive
QTL when additive-only models are used; see also
Misztal et al. (1998) and Pante et al. (2002) for similar
effects with polygenic dominance. This has important
implications for predicting response to selection as the
success of any selection programme is dependent on
correctly identifying the mode of inheritance and
proportion of variance explained by the QTL. For
example, Hayes & Miller (2000) have shown that in-
cluding dominance effects in mate selection can be a
powerful tool for exploiting previously untapped
genetic variation, whereas Dekkers & Chakraborty
(2004) have discussed maximization of crossbred
performance by incorporating information from
overdominant QTL.

A further confounding factor not studied here
might be polygenic dominance. It is, however, un-
likely to have affected our results as most of the in-
formation for polygenic dominance would have come
from the covariance of full-sibs and should have been
accounted for by the common environment effect.
This might not be the case within other relationships
in deeper, more complex, pedigrees, suggesting that
the inclusion of a polygenic dominance effect may be
valuable when examining such data structures.

5. Conclusions

VC methods were implemented to detect dominant
QTL. Type 1 error rates and power were explored
using extensive simulations. Results indicate that if
the mixture of distributions is taken into account,
nominal x2 thresholds were appropriate when testing
for additive QTL but conservative when testing for
dominant QTL in all pedigrees and particularly in the
case of the populations with sires mated to only one
or two dams. Ascertaining the correct null distri-
bution is a difficult issue, but one that merits revisit-
ing. Here, we have shown that although theoretically
the tabulated x2 values are fairly robust, the expected
probability of non-zero variances varies with popu-
lation structure ; thus there are instances when greater
power is achieved by empirically deriving the correct
distribution of the test statistic. Power to detect
dominant QTL effects was high in livestock pedigrees
with little spurious dominance and could be success-
fully routinely employed under the proviso that com-
mon environment or direct maternal effects are
accounted for.

Effects of extra generations or extended pedigrees
are yet to be explored but may provide greater power
for structures with few dam families. Future aims are
to extend the linear model to include other non-
additive effects such as epistasis and to simulate be-
haviour of the test statistic under varying modes
of inheritance, size and structure of pedigree.
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thank the Biotechnology and Biological Sciences Research
Council, the Research Councils UK, Genesis Faraday and
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