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DEGENERATE CASES OF UNIFORM APPROXIMATION 
BY SOLUTIONS OF SYSTEMS WITH SURJECTIVE SYMBOLS 

P. M. GAUTHIER AND N. N. TARKHANOV 

ABSTRACT. We prove that each (vector-valued) function in Sobolev space on a com­
pact set K, which in the interior K° of K satisfies a system of differential equations, can 
be approximated by solutions in a neighbourhood of K plus sums of potentials of mea­
sures supported on the boundary of K. We discuss the particular case where, for all 
compact sets K, one can dispense with potentials in such approximations. 

1. Introduction. Unless otherwise indicated, we let P G dop(E —> F) be a differen­
tial operator of order/? with surjective symbol on an open set X in Rn. Here, E = Xx Cl 

and F = X x Ck are (trivial) vector bundles over X whose sections of some class C are in­
terpreted as columns of functions of the class C(X), that is C(E) = [C(X)]k and similarly 
for F. Thus, P may be represented as an (/ x /c)-matrix of scalar differential operators of 
order < p on X. We shall assume throughout that the transpose P' of the differential op­
erator P satisfies the so-called uniqueness condition for the Cauchy problem in the small 
on X. Under this condition and certain other natural conditions which we assume to be 
satisfied (see [17]), the differential operator F has a "special" right fundamental solution 
O G pdo_p(F —> E). 

In particular, for an integer s > 0 and a real number 1 < q < oo, we have the Sobolev 
space W^C(E) of sections of E whose generalized derivatives up to order s together with 
their q-th powers are integrable on compact subsets of X. 

If K is a compact subset of X, it is natural to try to define Ws,q(E\K) (also denoted by 
[Ws,q(K)]k) as the quotient of W^C(E) by the subspace of sections whose derivatives up 
to order s vanish on K. However, such a subspace is not clearly defined. The sections of 
W^C(E) (and the derivatives up to order s) are basically functions of class Lq, and hence 
it is meaningless to talk about their values at the individual points of K. We therefore 
define Ws>q(E\K) as the quotient of Wf*(£) by the closure in WS£{E) of Cg°(Rn \ K). 
According to the spectral synthesis theorem of Hedberg and Wolff [10], this closure can 
be described in terms of function values assumed "almost everywhere" in the sense of 
appropriate capacities. With the quotient topology, Ws,q(E\K) is a Banach space. 

Often, instead of W*£?(E), it is more convenient to work with the space Cfoc(£) of s 
times continuously differentiable sections of E with the usual Fréchet topology. Then, 
we are able to introduce the Banach space CS(E\K) or [Cs(K)]k as above. Clearly, CS(E\K) 
is a closed subspace of WS,°°(E\K). 
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For a (open or closed) set a C X, we denote by S(a) the (vector) space of all sections 
of E which, on (a variable neighbourhood of) <j, are infinitely differentiable solutions of 
the system Pu = 0. 

Setting W«(E\K) = Ws>q(E\K) if q < oo, and WS«(E\K) = C(E\K) if q = oo, we 
have, for any s, a natural embedding S(K) C W^/SIA-)-

The following problem has its roots in rational approximation in the plane. 

PROBLEM 1.1. Let 0 < s < p be an integer. Under which conditions on a compact 
set K C X does the closure ofS(K) in Ws,q(E\x) coincide with the subspace ofWs,q(E\f[) 
formed by weak solutions in K° of the system Pu = 0? 

We shall treat the cases 1 < q < oo (approximation in Sobolev spaces) and q — oo 
(uniform approximation) separately. 

In general, it is known that certain capacitary conditions on K are required (see, for 
example, the survey [17] and the bibliography therein). However, in some cases the an­
swer to Problem 1.1 is "for all compacts sets". We call these cases of approximation 
the degenerate ones. Degeneracy depends on a certain correlation between the dimen­
sion n of the manifold X, the order p of the operator P, and the indexes s and q of the 
space WS,(1{E\K) in which we are approximating. This correlation, at least for nowhere 
dense compact sets K, is in terms of the "principal" index d = n/q' — (p — s), where 
1 / 9 + 1 / ^ = 1. 

The present paper is devoted to a systematic study of degenerate cases of uniform 
approximation in parallel with approximation in Sobolev spaces. Contrary to approxi­
mation in Sobolev spaces, the degenerate cases of uniform approximation occur only if 
the order of the operator P is relatively high. 

Sections 2, 3 and 4 are concerned with approximation in Sobolev norms. The theo­
rems given in these sections are new, but they are very close to results of Hedberg [8, 
Section 6, pp. 261-262] (the restriction on/? in [8] are removed in [10]); and the proofs 
are basically the same as those given by Hedberg, namely an application of the spectral 
synthesis theorem of Hedberg. For these reasons these sections might be considered as a 
"sharpening of results of Hedberg and Wolff". 

The ensuing sections are concerned with uniform approximation and emphasize the 
comparison between approximation in uniform norms and approximation in Sobolev 
norms. The best known theorem of this type is the following, due to several authors; a 
convenient reference is [6, Theorem 13 and Theorem 11]. 

THEOREM 1.1 (STABILITY THEOREM). Let K be a compact subset ofRn. Then the 
following conditions are equivalent. 

(a) (Uniform harmonic approximation) Every continuous function on K which is har­
monic on can be uniformly approximated by functions harmonic on neighbourhoods 
ofK. 

(b) (Sobolev harmonic approximation) Every function in W1,2 ofKn which is harmonic 
on can be approximated in W1,2 ofW1 by functions harmonic on neighbourhoods of 
K. 
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Moreover, ifn — 2, then each of these is equivalent to the following condition, 
(c) (L2 holomorphic approximation) (n = 2) Every function in La(K) which is holo-

morphic on K° can be approximated in L2(K) by rational functions with poles ojfK. 

The classical theory of Keldysh [11] and Deny [4] gives many conditions equivalent to 
condition (a); and papers by Havin [5], Bagby [1], and Hedberg and Wolff [10] give many 
conditions equivalent to conditions (b) and (c). For a survey of the Stability Theorem, 
see [9]. 

We thank the referee as well as Joan Verdera for several helpful comments which 
we have unabashedly incorporated. We are also grateful to Lars Hedberg for sending 
us a copy of his very interesting survey of the Stability Theorem 1.1 which will appear 
soon [9]. 

2. Approximation in Sobolev spaces on compact sets by potentials with densities 
supported on the boundary. First of all, in this section we will deal with potentials of 
the form Off), where/ G £'(F) is a generalized section of F with compact support. 

Since PO = 1 on £'(F)»w e are able to conclude, as a consequence of the boundedness 
theorem for pseudo-differential operators in Sobolev spaces, that for 1 < q < 00, such 
a potential Off) belongs to W*£(E) if and only if/ G W££j?(F). 

Let Ma{F) (or [Ma(X)]1) denote the space of all measure type sections of F supported 
on a compact set a C X. 

We now present the main theorem of this section which affirms that, in fact, in order to 
successfully solve Problem 1.1, it is sufficient to know how to approximate potentials of 
derivatives of measures supported on 3^ , at least for approximation in Sobolev norms. 
The idea of reducing matters to the case of potentials of derivatives of measures appears 
also in [12] and [13]. 

THEOREM 2.1. LetO <s <pand\ < q < 00. Then, for each section u e Ws>q(E\K) 
satisfying Pu — 0 weakly in the interior ofK, and for each e > 0, there exists a solution 
ue G S(K) and sections ma G M^K{F) (\a\ < p — s — 1) such that 

(1) L - ( ^ + £ <t>(Dama))\\ <e. 

PROOF. Let us denote by Z the subspace of Ws,q(E\K) consisting of elements of the 
form 

ue + £ <5>{Dama\ 
jo-J <p—5— 1 

where ue G S(K) and ma G M^K(F) (\a\ < p — s — 1). We would like to show that any 
section u G Ws'q(E\x), satisfying Pu = 0 in the interior of K, belongs to the closure of Z 
in Ws'q(E\K). For this, by the Hahn-Banach Theorem, it is sufficient to show that for any 
continuous linear functional g on Ws,q(E\K), which vanishes on Z, we have (g, u) = 0. 

Suppose, then that g is a continuous linear functional on Ws,q(E\K) vanishing on Z. 
First of all, according to Proposition 0.4 in [ 17], we can identify g with a continuous linear 
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functional on the space W*£(E) supported on K. That is, we may suppose g G W^s,q (£'), 
where E' is the dual vector bundle of E. Since g vanishes on S(K) in particular, we may 
use Lemma 5.1 of [17] to conclude that g = P'v, where the section v = O'(g) belongs 
to W^Ts,q (Ff). We now invoke the condition that g is equal to zero on the subspace of 
Ws,q(E\x) generated by elements of the form 

E 0(Z)ama), 
\a\<p—s—\ 

where ma G M^K{F) (\a\ <p — s—l). For any such element the transposition rule gives 

(g, E Q(Dama)) = (&'(g), E Dama)=0. 
\a\<p-s-l ' X \a\<p-s-\ ' 

Hence, it is easily seen that Dav = 0(p — s — \a\,q')-a.e. outside K° for \a\ < p — s — 1 
(see, for example, [7]). Moreover, v G W^"^ (F1). We can now use the well-known 
result, proved in a number of papers of Hedberg [7] and [8] and Hedberg and Wolff [10], 
that each closed subset of Rn (in particular, the complement of K°) admits so-called 
(p — s, g^-synthesis. This means that there exists a sequence {v^} C (D(F') such that 
supp vv C £° and vv —» v in the topology of W^s,q (Ff). Finally, we have 

(g, u) = (P'v, u) = lim (P,vU9 u) = 0, 
v—>oo 

which proves the theorem. 
The preceding theorem has been proved for the Cauchy-Riemann operator in the plane 

successively by Bers [3] (for q = 2), Havin [5] (for 2 < q < oo), and Hedberg (see, 
for example, [7]) in the general case. In Hedberg's work [7] a less explicit theorem for 
solutions of elliptic differential equations having two-sided fundamental solutions and 
5 = 0 was obtained. Namely, the measures ma (| oc\ < p— 1) were allowed to be supported 
on the complement of K°. Then clearly, ue can be omitted. In [8] Hedberg gave a very 
precise result similar to ours, for polyharmonic functions, in the case where K is the 
closure of a bounded open subset of Rn. 

If the compact set K is assumed to be nowhere dense, we may give a more precise 
form of our theorem. 

COROLLARY 2.1. Let K be a compact subset ofX without interior, 0 < s < p and 
1 < q < oo. Then, for each u G Ws,q(E\K) and each e > 0, there exists a solution 
ue G S(K) and a section m G MK(F) such that 

<2> \\u-{^ + ^mMw^E\K)
<€-

PROOF. Let us denote by X the subspace of Ws,q(E\ K) consisting of elements of the 
form ue + O(m), where ue G S(K) and m G MK(F). We must show that any section u G 
Ws,q(E\K) belongs to the closure of X in Ws,q(E\K). In order to see this, it is sufficient by 
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the Hahn-Banach Theorem to show that any continuous linear functional g on Ws,q(E\K), 
vanishing on £, must be equal to zero identically. 

Consider some such functional g. As in the proof of Theorem 2.1 one can realize g in 
the form g — P'v, where the section v = 0>'(g) belongs to W^~s,q (Ff) and is supported on 
K. By construction, g vanishes on the subspace of Ws-q{E\K) consisting of the elements 
O(ra), where m are (signed) vector-valued measures in Ws^p,q{F). For any such element 
we have by the transposition rule 

(gMm)) = (Q'(g),m) = 0. 

Hence we may conclude that v = 0 (p — s, q')-&.z. on K. Thus, v = 0 a.e. on X and g — 0 
which proves the corollary. 

3. Degenerate cases of approximation in Sobolev spaces on compact sets with 
empty interior. As already mentioned in the introduction, we shall make use of the 
principal index d — n/qf — (p — s). 

THEOREM 3.1. Let K be a compact subset ofX with empty interior, and 0 < s < p. 
Ifd<0, then for any section m G MK(F), the potential O(ra) belongs to the closure of 
S(K) in WS«(E\K). 

PROOF. We first note that for d < 0 it follows from Sobolev's embedding theorem 
that W^q'(Ff) C Q0C(Ff). So, if m G MK(F)\ then m G WS

K™{F), and we have O(m) G 
WS«(E\K). 

We wish to prove that each such potential O(m) lies in the closure of S(K) in Ws,q(E\K). 
To this purpose, the Hahn-Banach Theorem will be used in the standard way. 

Let g be a continuous linear functional on Ws,q(E\K) vanishing on S(K). Then accord­
ing to Lemma 5.1 in [17], one can write g = P'v, where v G W^s'q (Ff). Since v is 
continuous on X and equals zero outside K, we have v = 0 on the boundary of K and 
hence everywhere on X. Thus, g vanishes identically so that (g, O(m)) = 0 which proves 
the theorem. 

In particular, we have the following result. 

COROLLARY 3.1. Let K be a nowhere dense compact subset ofX and 0 < s < p. 
Then S(K) is dense in Ws,q{E\x)for 1 < q < qo, where qo = n/(n—p + s)ifs > p — n, 
and qo — oo if s < p — n. 

PROOF. This follows from Corollary 2.1 and Theorem 3.1. 
This fact was first proved in [17] (see also [18]) where complete references may be 

found. 
It follows from a result of Polking [14], that the range of q in Corollary 3.1 is sharp. 

EXAMPLE 3.1. Polking [14, Theorem 4] constructed, for any real number 1 < r < 
oo, a nowhere dense compact set K C X of positive Lebesgue measure and a non-zero 
bounded function in W^Jr(X) which is supported in K. The compact set K was con­
structed as a modification of the standard "swiss cheese" or Sierpinski curve in R2. The 
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term "swiss cheese" is traditionally applied to any compact set K obtained by remov­
ing from the closed unit disc an infinité sequence {#(z/)} of disjoint open discs such that 
UÏ, B^ is dense in the unit disc. Polking's example illustrates in a rather striking manner 
that the Sobolev embedding theorem is sharp. Supposing s > p — n, we apply this con­
struction with r — p — s and obtain a compact set K C X of positive Lebesgue measure 
such that Wp

K~s,n/(p~s)(X) ^ {0}. Now by a theorem in [17] one can infer that S(K) is not 
dense in Ws^n-P+S\E\K). 

Of course, Example 3.1 and Corollary 2.1 show that if d > 0 and K is the compact 
set constructed in Example 3.1, then for some vector-valued measure m G Ws

K
p,q(F), the 

potential O(ra) does not belong to the closure of S(K) in Ws,q(E\K). But we shall prove 
slightly more. 

We shall denote by \a the characteristic function of a set a C X. 

THEOREM 3.2. Let d > 0 and K be the compact subset ofX constructed in Exam­
ple 3.1. Then there exists a section f G C^C(F) such that the potential 0 ( X A / ) does not 
belong to the closure ofS(K) in Ws,q(E\K). 

PROOF. First we note that iff G C^C(F), the potential 0(x*/) lies in W™(E) for 
every q < oo. So the formulation of the theorem is plausible. 

Since d > 0 we have n — p + s > 0 and q> n/ (n — p + s). 
Let us assume that for each section/ G C^C(F), the potential 0 ( X A / ) lies in the closure 

of S(K) in Ws,q{E\x). It follows that for any continuous linear functional g on Ws,q(E\K), 
vanishing on S(K), we have (g, 0 ( X A / ) ) = 0. 

But according to Lemma 5.1 in [17], if v is an arbitrary element of W^*^ (Ff) then 
g — P'v is such a functional. Thus, 

(gMXKf)) = (P'vMXKf)) = {v,Xxf) = (v,/> = 0. 
Since this holds for every/ G C^C(F), it is easy to see that v = 0. Thus, WÇ^'(Ff) = {0} 
and q' < n/(p — s), which contradicts the choice of K. This contradiction proves the 
theorem. 

Let us say that a partial differential operator P(D) in R" is Lq-degenerate-for-nowhere-
dense-compacta provided that, for every compact nowhere-dense set ^ C R " of positive 
Lebesgue measure, every function in Lq(K) can be approximated in Lq(K) by solutions 
of Pu = 0 near K. From the very general theorem of Polking [15, Theorem 1.1], we 
conclude the following fact. 

THEOREM 3.3 (POLKING). If P(D) and Q(D) are elliptic operators with constant 
coefficients in Rn which have the same order, then P(D) is Lq-degenerate-for-nowhere-
dense-compacta if and only ifQ(D) is Lq-degenerate-for-nowhere-dense-compacta. 

The following result of Polking [15, Theorems 1.3 and 1.4] is also highly relevant to 
our investigation. 

THEOREM 3.4 (POLKING). Let 1 < q < oo. An elliptic operator P(D) of orderp with 
constant coefficients in Rn is Lq-degenerate-for-nowhere-dense-compacta if and only if 
q<n/(n-p). 
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4. Degenerate cases of approximation in Sobolev spaces on arbitrary compact 
sets. If the compact set K is allowed to have interior points, Corollary 3.1 becomes 
false for q in the same range. In this case, the range of q should be defined not by the ex­
istence of the embedding W\~c

s,q (X) C C\0C(X) but from the existence of the embedding 
Wfoc^W c CfoT'W W e h a v e t h e following result. 

THEOREM 4.1. Let 0 < s < p and 1 < q < n/(n — 1). Then for any sections 
wia G M^K(F) (\a\ < p — s — 1), the potential 

(3) o( £ Dama) 
\a\<p-s-l 

belongs to the closure ofS(K) in WStq(E\K). 

PROOF. First we observe that, for 1 < q < n/(n — 1), it follows from Sobolev's 
Embedding Theorem that Wrs'q'(F') C Cf0C

s,1(F'). This means that, for any sections 
ma G M^K(F) (\a\ < p — s — 1), the expression YL\a\<v-s-\ Dama belongs to Ws

d~
p,q(F). 

Then, the potential (3) lies in W^C(E) so that the formulation of the theorem is plausible. 
We would like to prove that each such potential (3) belongs to the closure of S(K) in 

Ws,q(E\K). We shall show this using the Hahn-Banach Theorem. 
Let g be a continuous linear functional on WS,(1(E\K) which vanishes on S(K). Accord­

ing to Lemma 5.1 in [17], g = P'v, where v G Wf0~^ (Fr) is supported on K. 
After a change on a set of zero measure, the section v can be made continuous together 

with its derivatives up to order {p — s — 1) on X. Since v is supported on K, it follows 
that the derivatives up to order (p — s — 1 ) of v are equal to zero on the boundary of K. 

Hence, we have 

gM £ Dama)) = (p'vM Y, D"™» 
y\a\<p-s-\ ' ' X V|</>-s- l 

= (v,P0( £ Dama 
X y\a\<p-s-\ 

= U Y Dam0 
\a\<p-s-\ 

= £ {-\p{Dav,ma) 
\oc\<p—s—\ 

= 0. 

The theorem now follows immediately from the Hahn-Banach Theorem. 
Combining the results from Sections 2 and 4, we obtain the following fact. 

COROLLARY 4.1. Let K be any compact subset of X. Then for 0 < s < p and 
1 < q < n/(n — 1), the space S(K) is dense in the subspace of Ws,q(E\K) formed by weak 
solutions of the system Pu = 0 on K°. 

PROOF. This follows from Theorems 2.1 and 4.1. 
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Corollary 4.1 appeared in full generality first in [17] (see also [18]). Complete refer­
ences may be found in these papers. 

There is a well-known example of Hedberg [7] explaining why the range for q in 
Corollary 4.1 is sharp. Namely, Hedberg [8, Example 6.6] constructed, for each integer 
r — 1,2,..., a compact set K C X with non-empty interior such that 2)(#°) is not dense 
in WjfiX). If we apply this construction with r = p — s, we obtain an example of a 
compact set K C X with non-empty interior for which 2)(£°) is not dense in W%Ts,n(X). 
In view of Theorem 5.4 in [17] this means that S(K) is not dense in the subspace of 
Ws,n^n~l\E\K) formed by weak solutions of the system Pu = 0 o n ^ ° . We require a 
slight modification of Hedberg's example. 

EXAMPLE 4.1. Suppose that we are given an integer r — 1,2,... and a non-negative 
integer 6 such that r — n<S<r—l. We wish to construct a compact set ̂ C R " and 
a function (p G W^J r~~ (Rn) supported on K such that <p does not belong to the closure 
of <D(K°) in W^hn/ir~è)(Rn). By the (<5+ l ,n/(r - 6))-synthesis property of Hedberg [7, 
8] and of Hedberg and Wolff [10], it is enough to construct a compact set ̂ C R " and 
a function (p G W^J (Rn) such that for some multi-index a, with \a\ = 8, we have 
Da(f(x) ^ 0 on a subset of dK with positive (r — S, n/(r — ^))-capacity. Denote the unit 
ball in R" by B\ and the (n — l)-dimensional (closed) ball {x G Rn : \x\ < 1 /2,xn — 0} 
by S. We shall choose suitable disjoint (open) balls B^\ v — 1,2,..., with centers xv G S 
and radii rv, and set 

v O O 

K = Bl\ \JB(U\ 
v=i 

Let Ru > rv. We can find functions uv G C^c(0, oo), v — 1,2... such that UJV(Q — 1 for 
0 < £ < ru, cjviÇ) = 0 for £ > Ru, 0 < UJV < 1, and moreover 

Kd/rfOWOl < C{\og(Rv/rvj)~
Xi-K j = l ,2 , . . . , r . 

Set (pu — ujvi\x — xv\), v — 1,2,..., and choose a function ipo G *D(B\) such that 
^o W = -4 m a neighbourhood of 5. It is easily verified that 

f\Er(tpo<pv)\
n«r-s>dx < C(\og(K/rv)y-n/<r-S\ 

for all | a| < r, if Ru is small enough. We have used the letter C to denote various positive 
constants that may take different values. Now choose {Rv} so that 

oo 

£*r' <o/2y\ 

and {JCJ/} so that the balls { x e R " : \x — xv\ < Rv} are disjoint. Finally choose {r^} so 
that 

t{log(Rvlrv)f-
i)ln~{<oo. 
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Since (r — 5)/n — 1 < 0, this is possible. Let us consider the function 

Clearly y G Wr^r-8)(Rn) and supp y C A'. But every x G S that is not contined in one 
of the balls {x G Rn : |x — xv \ < Ru } is a boundary point of ^ . On the line perpendicular 
to S through such a point, we have ip = Lpo, and thus (d/dxnf(p(x) = <5! Since the set 
of such points has positive (n — l)-dimensional Hausdorff measure, <p has the desired 
properties. 

It is interesting to note that the boundary of K in Example 4.1 has finite (n — 1)-
dimensional Hausdorff measure. 

Certainly, Hedberg's example [7] together with Theorem 2.1 show that already for 
q = n/(n — 1) there is a compact set K C X and there are sections ma G MdK(F) 
(M <P — s — 1) such that the potential, 

o( £ Dama)ew^(£)ns(*°), 

does not belong to the closure of S(K) in WS,(1(E\K). But one can prove slightly more. We 
recall that the index (n/'q' — (p — s)) is denoted by d. 

THEOREM 4.2. Let 0 < s < p, n/(n — 1) < g < o o and fef £ be any non-negative 
integer with —d <6<p — s — I. Then, if K is the compact subset ofX constructed in 
Example 4.1 for r = p — s, there exist sections ma G M^K{F) (\a\ < 8) such that the 
potential, 

Of £ Dama) G ^-^(£)nS(Jf°) , 

does no/1 belong to the closure ofS(K) in Ws,q(E\K). 

PROOF. First we observe that, for our choice of 8, we have p—6 — 1 > s, so elements 
of Wf0"^"u(£) can be considered to be elements of WS«{E\K). 

According to Theorem 6.1 in Hedberg [7], [8] and results in Hedberg and Wolff f 10], 
the subspace of W^K~ ,q{F) consisting of elements of the form 

Y, Dama, maeMdK(F), \<x\<6, 
\a\<S 

is dense in W^~l'q(F). Hence it is enough to prove that there is a section/ G W^~]'q(F) 
such that the potential 0(f) does not belong to the closure of S(K) in Ws,q(E\K). 

Suppose, on the contrary, that for every section/ G WdK~{,q(F), the potential 0( / ) 
belongs to the closure of S(K) in Ws'q(E\K). It follows that for each continuous linear 
functional g on Ws'q(E\K), we have (g, 0(/)) = 0. 

But according to Lemma 5.1 in [17], the set of such functionals is precisely the set of 
g = p'v, where v is an arbitrary element of W%~s,q (Ff). Then we have 

(g,*(f)) = (P'^W)) = (v,/W)> = (v,/) = 0. 
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Since this holds for every/ G WdK
 l,q(F), it is easy to see that Dav = 0(<5+l —|a|,</)-a.e. 

on dKfor \a\ <6. 

In Example 4.1 we have the existence of a function (p G w^s,n'^~s~ (X) supported 
on K such that for some multi-index a with \a\ = 6 the derivative Da(f is not equal 
to zero on a subset of dK of positive (n — l)-dimensional measure. Moreover we have 
chosen our range for q such that W^c

s,n' ~ (X) C W^s,q (X). Thus, our assumption 
contradicts the choice of the compact set K. This contradiction proves the theorem. 

In particular, for d > 0, and 6 — 0, Theorem 4.2 is analogous to the case of nowhere 
dense compact sets considered in Theorem 3.2. 

5. Uniform approximation on compact sets by potentials with densities sup­
ported on the boundary. We shall now consider Problem 1.1 for uniform approxi­
mation, that is, for q = oo. It is easy to calculate that d — n — p + sm this case. We do 
not know in general whether Theorem 2.1 is valid for q = oo. This is perhaps, a difficult 
problem. However Corollary 2.1 carries over to q = oo without any difficulty 

THEOREM 5.1. Let K be a compact subset ofX with empty interior, and 0 < s < p. 
Then, for each u G CS(E\K) and each e > 0, there exists a solution ue G S(K) and a 
section f G C^C(F) such that 

(4) h-^^(XKf))\\a(EW)<e. 

PROOF. If K has zero «-dimensional Lebesgue measure, the section xttf, as a gen­
eralized section of the bundle F, is equal to zero too, so that 0 ( X A / ) = 0. In this case 
Theorem 5.1 asserts that the subspace S(K) is everywhere dense in CS(E\K). But this fol­
lows from the Hartogs-Rosenthal type theorem for solutions of systems with surjective 
symbols (see Theorem 3.4 in [17]). 

It remains to consider approximation on compact sets K C X of positive «-dimen­
sional measure. In this case, for any section/ G C^C(F) we have \KI £ ^ m p ( F ) so 
that, by the boundedness theorem for pseudo-differential operators in Sobolev spaces, 
the potentials 0 ( X A / ) belong to the space W™c(E) for each q < oo. In particular, by the 
Sobolev Embedding Theorem, one can see that 0 (%A/) G Cp

x~c (E). 
Let us denote by Z the subspace of CS(E\K) consisting of elements of the form ue + 

®(XKf), where ue G S(K) and / G C^C(E). We claim that any section u G CS(E\K) 
belongs to the closure of Z in CS(E\K). In order to see this it is enough, by the Hahn-
Banach Theorem, to show that any continuous linear functional g on CS(E\K) vanishing 
on Z must vanish identically. 

Let g be some continuous linear functional on CS(E\K) vanishing on Z. First, according 
to Proposition 0.2 in [17], we can identify g with a continuous linear functional on the 
space C\oc(E) supported on K. Since g vanishes, in particular, on S(K), it follows from 
Lemma 12.9 in [19] that we have g = P'v, where the section v = O'(g) is supported on K. 
Moreover, it is easy to see from the Sobolev Embedding Theorem and the boundedness 
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theorem for pseudo-differential operators in Sobolev spaces that v G Wf07
V ,q (F), for 

each q' < n/(n — 1). 
We now invoke the condition that g is equal to zero on the subspace of CS(E\ K) formed 

by potentials 0 ( X A / ) with/ G C^c(F). For any such potential we have, by the transpo­
sition rule, 

(gMXKf)) = (P'yMXKf)) = (v,mXKf)) = (v,XKf) = (v,/> = 0. 

Since/ is arbitrary, v = 0 a.e. on X. Hence g — 0 which proves the theorem. 
Of course we could use the above reasoning to obtain a stronger formulation of Corol­

lary 2.1. However for this it is sufficient to use the above theorem and the density of 
CS(E\K) in Ws,q(E\K) for q < oo. On the other hand, we are unable to improve Theo­
rem 2.1. 

6. Degenerate cases of uniform approximation on nowhere dense compact sets. 
Extrapolating on Corollary 3.1, one can formulate the following proposition. 

PROPOSITION 6.1. Let K be a compact subset ofX with empty interior. Then S(K) is 
dense in Cs{E\K)for 0 < s < p — n. 

Of course this is meaningful only if p > n. Proposition 6.1 was confirmed for the 
first time in full generality in the recent survey [17] to which we refer for references. In 
fact, we shall verify this proposition as a consequence of the previous section and the 
following result. 

THEOREM 6.1. Let 0 < s < p be such that d < 0, and let 6 be any non-negative 
integer withe < —d. Then, given sections ma G M^K(F), \a\ <6, the potential 

(5) <&( £ Dama) 
\\<b J 

belongs to the closure ofS(K) in CS(E\K). 

PROOF. Suppose we are given sections ma G M^K(F), \a\ < 6. Then the order of 
singularity of the section J2\a\<èD

ama does not surpass 6. Since all derivatives up to 
order (p — n — 1) of the kernel O are continuous, we have that the potential given by (5) 
is in C^~c

n~l~6(E). But from our choice of 6, it is easy to see that/? — n — 1 — 6 > s so 
that the potential given by (5), which is in C\oc(E), may be considered as an element of 
CS{E\K). 

We wish to prove that each such potential (5) belongs to the closure of S{K) in CS{E\K). 
To this end, we will use the Hahn-Banach Theorem in the standard way. Let g be a 
continuous linear functional on CS(E\K) which vanishes on S(K). From Proposition 0.2 
in [17], it follows that g may be realized as a continuous linear functional on C\oc{E) 
with support in K. As in the proof of Theorem 5.1, one can check that g — P'v where the 
section v = 0 ;(g) is supported in K, and then show that v G C^£~l(Ff). Since v vanishes 
outside K, the derivatives up to order —d — 1 of v are equal to zero on the boundary of K. 
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By hypothesis, we have S < (—d — 1). Hence, 

\a\<c \0(\<o 

= (v,/><& £ Dama) 

= Y](-\p(Dav,ma) 
\a\<6 

= 0. 

To complete the proof it suffices to invoke the Hahn-Banach Theorem. 

Certainly the strongest result which can be obtained from Theorem 6.1 is for 6 — 

- d - l . 

COROLLARY 6.1. Suppose that K is a compact subset ofX with empty interior, and 

0 < s < p are such that d < 0. Then S(K) is dense in CS{E\K). 

PROOF. This follows from Theorems 5.1 and 6.1. 

Proposition 6.1 has now been confirmed, and Corollary 3.1 has been extended to q = 

oo. A question remains as to whether the range for s in Corollary 6.1 is sharp. We shall 

now extrapolate the result of Theorem 3.2. 

THEOREM 6.2. Let 0 < s < p be such that d > 0, and let K be the compact subset 

ofX constructed in Example 3.1. Then there exists a section/ E C^C(F) such that the 

potential O(XAZ) £ Cj^ (E) does not belong to the closure ofS(K) in Cs(E\x) and hence 

S(K) is not dense in C(E\K). 

PROOF. In fact, it follows from Theorem 3.2 that there exists a section/ G C\£C(F) 

such that the potential 0 ( X A / ) G C^~c
l(E) does not belong to the closure of S(K) in 

Ws>nld(E\K). A fortiori this potential does not belong to the closure of S(K) in CS(E\K) 

which proves the theorem. 

7. Distinguished case of uniform approximation on nowhere dense compact sets. 
As far as the case s = p—n (that is, d — 0) is concerned, there may be no simple universal 

answer. Whether S(K) is dense in CS(E\K) depends also on the particular differential 

operator P. For one differential operator P, it may be so, and for another P it may be 

quite the reverse. This is in contrast with the case of approximation in Sobolev spaces. 

We shall illustrate this by two examples in R2: the operators À and <52. But first, we 

mention a simple example in R1. 

EXAMPLE 7.1. Consider the differentiation operator P(D) = — A / ^ T d/dx on the real 

axis R1. We claim that, for any compact set ^ C R 1 with empty interior, the subspace 

S(K) is dense in C(K). In fact, by Tietze's Theorem, it is easy to see that our definition 

of the space S(K) and the intrinsic definition of that space, using functions defined only 

on K and the induced topology of K, coincide. Let u G C(K) be any continuous function 
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on K, and e > 0 be an arbitrary real number. We can extend u to a function continuous 
on some segment [a, b] with K C (a, b). Let us again denote this continuation by u. 
Since u is uniformly continuous, there exists a real S > 0 such that \u(x) — u(y)\ < e for 
x,y G [a, b] and |JC — >̂ | < 6. We choose now an integer N such that (b — a)/N < 6/2, 
and divide the segment [a, b] into N parts with the help of points 

Xj = a + ((b-a)/N)'j9 7 = 0,1 iV. 

Since K is a nowhere dense compact set, it follows that, in each interval (XJ, xj+\ ), we can 
find a point aj+\ $ K. Having removed the points a\ and aN, if need be, we may assume 
that K C (ay, aN). We note that \aj+\ — cij\ < 6 for y = 1,2,... ,N — 1. Let us define now 
a locally constant function ue in a neighbourhood of K. Namely, we set ue(x) = U(XJ) for 
x G (aj9 cij+\ ), where j = 1,2,... ,7V— 1. Then ue satisfies Pue = 0 in a neighbourhood of 
K. On the other hand, let us evaluate the difference \ut(x) — u(x)\ for* G K. If the point 
x falls in an interval (a7-, oy+i ), |JC7 — JC| < 5 so that 

|we(x) — u(x)\ = \U(XJ) — u(x)\ < e. 

Thus we have \\ut — M||C(K) < e and so we is the required approximation of w. 
In this example, we had n = 1, p = 1, and s = 0, so d = 0. 

EXAMPLE 7.2. On the other hand, let P = A be the Laplace operator in the space 
R2. We shall construct a compact set ^ C R 2 with empty interior such that S(K) is not 
dense in C(K). For this purpose we shall use a modification of the standard construction 
of a "swiss cheese". We choose ro = 1 and take some decreasing sequence {r7} C (0, 1) 
which converges to zero. For example, one can set r; = 2~jJ = 1,2, In each ring 

Rj = {xe R2 : rj < \x\ < r;-_i}, 

where j = 1,2,..., we choose an everywhere dense system {#-/7)]v=i?2,... of pairwise 
disjoint open discs. Since the harmonic capacity, denoted henceforth by cap, of each disc 
B^ can be calculated via its radius, we can choose these radii so that 

oo 

Ecapflf^e,, 

The sequence tj,j = 1,2,..., will be given later. We note that by the subadditivity of 
harmonic capacity we have 

CO 

cap\Jrf><ej, 7 = 1 , 2 , . . . . 

Consider the compact set 
v OO 

* = { W < i } \ U < } -
It is clear from the construction that this compact set is nowhere dense and the point x = 0 
belongs to K. We claim that with a suitable choice of the sequence {e7}, the complement 
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of K is thin at the point x = 0. In fact, according to the well-known Wiener criterion [24] 
the set R2 \ K is thin at the point x = 0 if and only if 

oo 

£./cap(tf;\*)<oo. 

But 
oo 

so that cap(/?y \K) < CJ. It follows that one may take, for example, ey = y~3. Now we can 
use the classical Keldysh Theorem [11] adapted to the two-dimensional situation (see, 
for example, 1.3.7 in [2]). Namely, in order for S(K) to be dense in C(K) it is necessary 
and sufficient that the complement of K be thick at each point of K. Thus, for a suitable 
choice of the sequence {e,-}, the subspace S(K) is not dense in C(K), which furnishes the 
desired example. Note that K may have positive measure. 

In Example 7.2, we had n = 2, p = 2 and s = 0, so that also d = 0. 

Recall that a partial differential operator P(D) in Rn is Z^-degenerate-for-nowhere-
dense-compacta provided that, for every compact nowhere-dense set ^ C R " of positive 
Lebesgue measure, every function, in Lq(K) can be approximated in Lq{K) by solutions 
of Pu = 0 near K. It follows from Theorem 3.4 that there exist compact nowhere dense 
sets K C R2 for which condition (c) of the Stability Theorem 1.1 will fail, and hence the 
other conditions of the Stability Theorem fail. Thus, the existence of a compact set having 
the properties of Example 7.2 is actually known. Example 7.2 is also (independently of 
the present paper) included in Hedberg's survey paper [9]. For R3, an example similar to 
Example 7.2 is given in [11, Section 5]. 

In Theorem 3.3 we stated the fact that if P(D) and Q{D) are elliptic operators with 
constant coefficients in R" which has the same order, then P(D) is L^-degenerate-for-
nowhere-dense-compacta if and only if Q(D) is Z^-degenerate-for-nowhere-dense-
compacta. It is natural to ask whether a similar fact holds for uniform approximation. 
However, this is not true for operators of order 2 in R2; in fact, we have established 
(Example 7.2) that there are compact nowhere dense sets K C R2 which do not satisfy 
condition (a) of the Stability Theorem 1.1, but Trent and Wang [20, Theorem, p. 63] have 
proved the following theorem. 

THEOREM 7.1 (TRENT AND WANG). IfK is any compact nowhere dense subset of 
R2, then the set of functions u satisfying d2u = 0 near K must be uniformly dense in 
C(K). 

8. Problem of degeneracy for uniform approximation on arbitrary compact sets. 
It is natural to ask whether the above theorem of Trent and Wang can be extended to 
arbitrary compact sets, and we might call this the "problem of Trent and Wang". 

https://doi.org/10.4153/CJM-1993-042-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-042-5


754 P. M. GAUTHIER AND N. N. TARKHANOV 

PROBLEM 8.1 (TRENT AND WANG). If K is any compact subset ofR2, and u G C(K) 
satisfies du = 0 in K°, can we approximate u uniformly on K by functions ue which satisfy 
due = Onear K? 

This problem is still unsolved, the most recent contribution being by Verdera [23]; 
however, Theorem 8.2 below (with 5 = 0) shows that the problem of Trent and Wang has 
a negative answer for elliptic equations (and also some elliptic systems) in dimensions 
n>3. 

By analogy with Theorem 4.2 it is natural to generalize the problem of Trent and 
Wang as follows. 

PROBLEM 8.2 (n = 2). For any integer s with 0 < s < p and any compact set 
K C X, is S(K) dense in the subspace of CS(E\K) formed by weak solutions ofPu = 0 in 
K°? 

Although the theorems of Trent and Wang as well as the work of Verdera point to an 
affirmative answer to the problem of Trent and Wang, we shall see from the following 
discussion that for n > 2, the answer to the generalized problem of Trent and Wang is 
always negative. Of course, if s < p — n, it follows from Corollary 6.1 that an example 
of such a compact set K would have to be found among compact sets with non-empty 
interior. 

Indeed, a step towards a negative answer to Problem 8.2 was made in [16]. Therein, 
an arbitrary homogeneous elliptic differential operator P with constant coefficients in R" 
was considered. It was shown that, if p — n < s < p, then, for each column h ^ 0 
of homogeneous polynomials of degree p — s — 1 satisfying P*(Z^)/z(£) — 0, there is 
a compact set K C Rn with non-empty interior and a subset S C dK of positive (n-
dimensional) Lebesgue measure such that the potential 0(/i(D)xs) does not belong to 
the closure of S(K) in CS(E\K). Of course, it is easily verified that 0(/i(D)xs) lies in 
Cs

loc(E)nS(K°). 

Theorem 6.2 provides us with an analogous example for an arbitrary differential op­
erator P and where AT is a nowhere dense compact set. Thus, the analog, for general n, of 
Problem 8.2 remains open only for 0 < s < p — n. 

In view of a possible analog of Theorem 2.1 for uniform approximation, it is natural 
to seek an example of a non-approximable solution among potentials. For this reason, 
we shall consider precisely such solutions. 

Let AT be a compact subset of X, and S be a set of positive ^-dimensional measure on 
dK. For some fixed differential operator CD of type X x C 1 —» F and order 8, we consider 
the potential u = 0(©xs)-

Since mes S > 0, we have u G CÇc
l~8(E). Moreover the boundedness theorem for 

pseudo-differential operators in Sobolev spaces implies that u G W^oc
 ,q(E) for each q < 

oo. In particular, if 6 < p — s — 1, then the potential u belongs to the space Cjoc(£). 
Henceforth, we assume 6 is within this range. From the fact that Pu — (D\s it is easy to 
see that u G S(£°). It follows from Theorem 6.1 that for 6 < —d the potential 0(£>xs) 
belongs to the closure of S(K) in CS(E\K). 
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THEOREM 8.1. Let K and S be as above and suppose, for each differential operator 
*D of type X x C1 —» F and order 6 < p — s — 1, the potential ^>((Dxs) belongs to 
the closure of S(K) in CS(E\K). Then, for any section v G W^~s,q (F')> q' > 1, we have 
Dav = 0 a.e. on S for \a\ < 5. 

PROOF. Since 0(©xs) belongs to the closure of S(K) in (7(£JAT), any continuous 
linear functional g on CS(E\K) vanishing on S(K) is zero on <&((Dxs)-

In particular this is true for each functional g = P'v where v G WÇ~s,q (F'), for some 

q' > 1. Since C\0C(E) C Wf*(£), we have W^iE') C (Cs
loc(E))''. This means that 

P'v G W^5'̂  (E') is a continuous linear functional on C\oc(E) supported on K. We can 

apply Proposition 0.2 of [17] to see that P'v G (CS(E\K)) . On the other hand it is clear 

that P'v vanishes on S(K). Thus, 

(P'v,<t>(<DXs)) = <v,/>0(©xs)) = (v,<Dxs) = {V'v,xs) = fs&v = °-

EXAMPLE 8.1. Suppose 5 > —d. Then for some 1 < q' < n, namely for q' — 
n/(p — s — ê),we have 6 — —{njq' — p + s). It seems likely that by modifying Hedberg's 
Example 4.1 we can construct a compact set K C X and a set S C dK of positive n-
dimensional measure such that for some section v G W^Ts,q (F') it is not the case that 
Dav = 0 a.e. on S for all |a| < S. In view of Thoerem 8.1, this would mean that there 
exists a differential operator (D of type X x C1 —• F and order 6 such that the potential 
0(2>xs) d o e s n o t belong to the closure of S(K) in CS(E\K). We recall that 

so that such a result would be an adequate extension of Theorem 4.2 to the case q = oo. 
In particular, for J > 0 we could take S = 0. In general it is always possible to take 
5 = p — s — 1, at least for « > 1. Thus we would obtain a complete negative answer to 
the analog of Problem 8.2 for n > 1. 

For è < —d, the potentials Q>((Dxs) can be approximated in CS(E\K) by elements of 
S(K), whereas for S > —d, there are such potentials which cannot be so approximated. 
As far as the case 6 = —d is concerned, the solution of the question apparently depends 
on the choice of the particular differential operator P. 

However, for n > 2 we are able to obtain a complete negative answer to the analog 
of Problem 8.2 directly from Theorem 4.2. 

THEOREM 8.2. Ifn > 2, the for any integer s with 0 < s < p, there is a compact set 
K C X such that S(K) is not dense in C{E\K) H S(K°). 

PROOF. For s > p — n such a compact set K has already been constructed in Theo­
rem 6.2, so we may assume that/? > n and s < p — n. 

Let K be the compact subset of X constructed in Example 4.1 for r = p — s. We apply 
Theorem 4.2 with 6 = —(n — p + s) + 1 and any fixed q > n. Since n > 1, it is easy to 
see that all the conditions for the theorem are satisfied. 
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According to Theorem 4.2 there exist sections ma £ M^K(F), \a\ < 8, such that the 
potential given by (5), which is in W^5~{'q(E)nS(K°), does not belong to the closure of 
S(K) in WS«(Ë\K). 

Now we observe that by the Sobolev Embedding Theorem, 

W^\E) C C£«-2(£), for q>n. 

Since/? — 8 — 2 > s, at least for n > 2, it follows that the potential given by (5) belongs 

toqoc(£)ns(*°). 
However this potential cannot be approximated in CS(E\K) by elements of S(K) be­

cause otherwise it would be approximated also in WS,C1(E\K) by elements of S(K). This 
completes the proof of the theorem. 

We now formulate a problem which appears to be simple. 

CONJECTURE 8.1. Let n — 1 and 0 < s < p. Then for any compact set K C X the 
space S(K) is dense in the suhspace of CS(E\K) formed by weak solutions of Pu = 0 in 
the interior of K. 
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