PROPERTIES OF THE COEFFICIENTS OF
ORTHONORMAL SEQUENCES

P. S. BULLEN

1. Introduction. In this paper we consider complete orthonormal sequences
defined on the interval [0, 1] and satisfying an inequality of the type

1 1/v
1) Jo(dn) = <f |¢n|”dx> <F, 2<v< o,
0
=Sup|¢nl <Fm V= o,
0<x<1

for all #» and some sequence {F,}. Such sequences were first considered by
Zygmund and Marcinkiewicz (8). They extended the well-known results of
Hausdorff-Young and Paley, originally proved for the case v = «, F, = M for
all 7 (12). We will consider cases of equality in the Hausdorff-Young theorems
and certain limiting cases of the Paley theorems. Application of these results
and the results in (8) will be made to functions harmonic in the unit a-sphere.

2. If p > 1 then p’ will denote the conjugate index, 1/p 4+ 1/p" = 1.

If ¢y, coy ..., are the Fourier coefficients of a function in L,, with respect
to {¢,} satisfying (1) define
(2) dn(Q) = CnFn(V')/@“V')(I*?/Q)’ n = 11 21 ceey

Il

(3) UT(C) = Ur(d)

© 1/r © r
ot ={E ern)
= max ‘dn(yl)l = max (ICnIF;l)r v = @,

where 7, s are related by

2:__1’_’ = 1.
r

() 2 4

The Fourier coefficients are replaced in this general situation by the sequence
{d,}. For instance, the following extension of Mercer’s theorem can be proved
along the lines of the original theorem (6, p. 155).

THEOREM 1. If f € L, then d,(v') = o(1).
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3. Cases of equality.

3.1. The cases of equality in the Hausdorff-Young theorems were first
discussed by Hardy and Littlewood (4) for the trigonometric case. Their results
were extended to the case v = », F, = M for all #, by Verblunsky (10) and
Calder6n and Zygmund (1). We will use the methods of the last authors to
prove the general Hausdorff~Young result and then to discuss equality.

3.2. THEOREM 2. (a) If f € L,, v’ < p < 2, with Fourier coefficients cy, cs, . . .
with respect to {¢,} then
(5) Ud) < Jp(f)
where
v 2=
Ly - 1L
p q

(b) If for a sequence {c,}, Upy(d) < =, 1 < p < 2, then there exists a function
f € L, such that c, is the Fourier coefficient of f with respect to ¢, m = 1,2, ...,

and
(6) J.(f) < U,(d),
where
v 2=
— = 1.
q + P

It is known that (a) implies (b) by a conjugacy argument and that it is
sufficient to prove (a) under the assumption that {¢,} has N terms, f is a
simple function with J,(f) = 1, (1).

Let {a,} be a sequence such that

N
U,d) = 3 caoFa "
n=1

Define {4,} and F(¢) by

oy = A;/qFrs.q_ﬂMfm An > 0, Ienl = 1,
f@&) = F*()n (@), F@) >0, =1
Putting 1/p = zin U,(d) it becomes
(7) @(Z) — XN: A;l—v’(l—z))l(Z—r’)F;;’/(?—-v’)(l—2z)€n{f1F2n¢ndt} ,
n=1 0

a function continuous and bounded in every strip, x; < x < x3, of finite width.
It is not difficult to show that

N 1
(8) Fo>1,> 4,= 1,f F()dt = 1.
n=1 0

Hence, by simple applications of Hélder’s inequality and Bessel’s inequality,
it can be shown that neither |®(1/»" + 7y)|, nor |®(1/2 + 7y)| exceeds 1. This,
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by the Phragmén-Lindeléf theorem, implies |®(z)] < 1 in the whole strip
1/2 < x < 1/¥', which proves the theorem.

3.3. We are now in a position to discuss cases of equality in Theorem 2,
excluding the trivial cases f = 0, p.p., and ¢, = 0 for all %.

We can deduce (7) with no restrictions except J,(f) = 1 and again &(z)
is continuous and bounded, 3 < x < 1/, and regular, 1 < x < 1/¥’, and (8)
holds (with N = « of course.)

THEOREM 3. (a) A necessary condition for equality in (5) 1s that
N

9) f&) = 2 cudu®), m<na<...<mny

=1
For such functions we have equality if and only if
(1) ]anlF;kl = >\,
independenf of k,
(ii) f is constant in a set of measure
N —~1
(Z F,f,,) and f=0inZE.
=1

(b) A necessary condition for equality in (6) is that only a finite number of
¢, differ from zero, and satisfy (i). The function is then of form (9) and we have
equality if and only if it satisfies (ii).

A conjugacy argument shows that (a) implies (b). Let us assume then that
®(1/p) =1, that is, that we have equality in (5). Then the Phragmén—Lin-
deldf theorem implies that ®(z) = 1 for 3 < x < 1/¥'. In particular ®(1/»") =
1. Further, (8) implies that

1
F;’e,,{ f F"”'nandt}, <1
0

Hence for all # for which 4, # 0,

1
(10) F;le,,{f F””'n&ndt} = 1.
0

But FY*' € L, and so by Theorem 1 the left-hand side of (10) is 0(1). There-
fore there is at most a finite number of non-zero A4,, which proves (9).
From (10) we also get that

1
J 7 19ul (sign ) sign Gt = By > 0,
0

which implies two important facts about the set £ where f is non-zero.

(a) sign f = sign (Cpy Gnz)s pp.inEk=1,...,N.
(b) F(x) = {Filléw()|}" pp.inE,k=1,2,...,N.
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Hence,

len] = J;Ifi || dt = F,,kLm P g

which proves (i). Also

lf(x)] = Fl/p(x) k;l [Cui] Frpe

Let » be anv number, »' < r < 2, then the initial remark of the proof
implies

© 11/3
{n; 'y = T2,

which, using the above results, gives

N —1/s ) 1/7
( F3k> = ( J F”"dt) .
k=1 E

Applying this equality for » = »', 2, and p, where p is any value between 2
and «, to the Hélder inequality

5 (p—v')/(2—v") ) , (2—p)/(2—v")
f F’dt L fF *dt J Y ”dt)
E E E

we see that it reduces to equality. Hence F, and so f, is constant p.p. in E.
This proves the necessity, the sufficiency is immediate.

4. Star theorems. Given a sequence {c,} such that ¢, = 0(1) the sequence
{c*,} denotes {|c,|} arranged in descending order.
The proof (8) of the extension of Paley’s theorems requires F, to satisfy

(11) Fi< Fa< Fs< ...
or, at least, that for some ¢ > 1l and all 7, j, 7 < j,

any’ max F, <K min F,.
at+1<at +1 ad+1<ad +1

Whether this is essential is not known. If F, = M for all » the order of the
sequence ¢, is immaterial and the Paley theorems can be improved to the
Paley star theorems (8). However, because of (11) (or (11)"), no such simple
argument is possible in general. We conjecture the following star theorem,
It would follow immediately from the unstarred result if (11)’ could be dropped.
Let, d = d, and define

I

o 1/r
{Z ]dn(r)]'n('_m/(z_"')} w>21<V<r<v< »

=1

(12) V.d) =71,

I

max {|d,(o)|n},r =v = .
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THEOREM 4. (a) Let d, = o(1) be such that, 2 < g < v, V,(d*) < .
Then there exists an f € L, such that

o = @ -

n nt n

1s the Fourier coefficient of f with respect to ¢,, n = 1,2, ..., and
(13) Jo(f) < Ay Vo(d®).

(b) If f € L,, v < p < 2, has Fourier coefficients ci, ca . . . , with respect to
{&n} then

(14) Vy(d*) < A, To(f).

These theorems were first mentioned in a paper by Littlewood (7), and the
following comments are of some interest.

(i) The hypothesis of (a) implies the existence of an f € L, with the re-
quired Fourier coefficients.

(ii) The hypothesis of (b) implies, by Theorem 2, that d, = o(1), and hence
that starring is possible.

(iii) By a conjugacy argument (a) implies (b).
(iv) In§ 5 thecasesg = v = o, p = »’ = 1 are shown to hold in a modified
form.

(v) In § 6 Theorem 4 is used to prove a known result.

(vi) A similar argument to that in Zygmund (12) shows that Theorem 4
implies Theorem 2 although in a slightly less precise form.

(vii) If d, takes only the values 0, 1, —1, (a) is true. Because, let ¥ < «
be the number of non-zero terms, then by Theorem 2

N
Ji(f) < {U,(@)}" = N<LK,, 2_:1 n PO = KL VAR,

(viii) Similarly (b) is true if f is a function such that d, takes only the values
0,1, —1.
(ix) Finally we have the following weaker result.

THEOREM 5. (a) Let d, = o(1) be such that foran ¢ > 0,2 < q¢ < », V,(n<d*,)
< o, Then Theorem 4 (a) holds with (13) replaced by

J(I(f) < 4'4q,v,qu(7’led*n),
(b) With the hypothesis of Theorem 4(b) we have
Vo(n—ed*,) < A,.,.J,(f), for all ¢ > 0.

As the usual conjugacy argument shows that (a) implies (b) it is sufficient
to prove (a). By Theorem 2:

Jq(f) < Uz)(d) = Up(d*) < Aq,p,evq(n‘d*).
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5. Some limiting cases of Paley’s theorem. It is known that the Paley
results are not valid for the extreme values of p and ¢, that is, p = ', ¢ = ».
Zygmund, (11), has extended the results to these cases for uniformly bounded
{¢,} by slightly modifying the hypotheses and conclusions.

Let us, for convenience, number the orthonormal sequence ¢s, ¢3, . .., and
also let v = . By f € L, , we shall mean that [f|” (log*|f|)? € L. We place
no restriction on the sequence { 7, } and so the star theorems follow immediately
from the unstarred results. The proofs follow Zygmund’s closely enough for
them to be omitted here.

THEOREM 6. Let {d,} be any sequence satisfying
d) <nwllogn)!, a<0, n=23,...,

where {d,'} is some ordering of {|d,|}. Then ¢, = d, F,~' is the coefficient with
respect to ¢, of a function such that for N > 0, small enough,

folexp{klfl”“} dx < 4,

THEOREM 7. If f € Ly, > 0, and if {c,} are the Fourier coefficients of f
with respect to {¢,} and if d, = d, (1) then

© 1
(a) 3% wlogm % < A [ I7ldog" A1) dv + B = €,
(b) Zw: exp(—kd*, V%) < o, for every k > 0,
n=2
(c) if in addition < 1, Y, #n7'd%,"* < K.CY%
n=2

TueoreM 8. If {d,} be any sequence such that
Z |d,|(log 1/]d,])* < @,a >0,
n=2

then ¢, = d,F,~! is the Fourier coefficient with respect to ¢, of a function f such
that exp (k|f|V®) € L, for every & > 0.

THEOREM 9. If {d,} is such that d, = o(l) and
> wTld < o,
n=2
r > 1, then ¢, = d, F,~' is the Fourier coefficient of a function f such that exp
(RlIfI™) € L, for all & > 0.
5.2. The following theorem generalizes results due to Verblunsky, (10).

TrEOREM 10.

1 1 v 2—
(a) Ifﬂ—;—§,§+ 5 = 1,and p < r < g then
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o ()" < a0,

eS) 1/r
(11) <E lcnlr n(—v pr)/(2—v") F;—r—(%rv )/ (2—y )> < Ap,va(f)-

n=1

(b) Ifu= + =1,p <7 < gthen

o) 1/r
(i) Jq(f)<Aq.v<Z lcnl’n"'”‘”’”‘”>F:—’—<2-“”’W'”’>> .
n=1

[f*(x) is a non-increasing rearrangement of [f(x)|, (8).]

Extreme values of r give known theorems. For instance if, in (a), r = p then
(i) reduces to the integral analogue of Theorem 4 (b), and (ii) becomes the
unstarred form of Theorem 4 (b). If » = ¢ then (i) and (ii) of (a) reduce to
parts (a) and (b) of Theorem 2 respectively.

The proof of (a) is by an application of Holder’s inequality using these
extreme forms.

(b) follows by a similar argument or by a conjugacy argument from (a).

5.3. Further extensions of Paley’s theorems are obtainable by integrating
with respect to ¢, or by multiplying through by a function K(g) and in-
tegrating, (9). For example, integration of the unstarred form of (13) gives

2 1
( f‘lf” — Ifl dx) &
o log |f|
ca LB PN (g B0t i
S et FY1a=r, 20— log (| |Fw/(2—y')n1/(2—y')) :
n n n
5.4. The Paley theorems were originally proved for the trigonometric

system by Hardy and Littlewood (4), where they arose out of the following
problem. If f € L, and

f~ 2 cudn

for what value of ¥ and X does
Z '”'_X|Cnly

converge? Using the above results we can solve this problem in the case of an
orthonormal sequence satisfying

JV(¢7L) < Knay « > 0'
TaeorEM 11. If f € L,, r > 1, and (V'/p) + (2 — v'/q), then the series

©

> el

n=1
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1s convergent if
@ r>2,Y>2,X>0,

m)r>zY<zX>1—§,
(iih)

r=p<2,Y>q¢X>alg-2),
v) r=p<2p< Y<q,X><1+aY>—§<1+2a>.

W) r=p<20< Y<p,X>(1+aY)—--§(1+2a).

and, in general, it is not necessarily convergent in any other case.

The proof follows that of Hardy and Littlewood exactly.

6. Applications.

6.1. Let f(P) be an integrable function defined on the surface, S, of the unit
a-sphere, @« > 1. Any such function can be expanded in terms of the ortho-
normal sequence of ultraspherical polynomials { V7, (P)} having the property

(15) [VE(P)| < Ko n®/P7,
If f(P) ~ 2 ¢, V., (P), then we define

(16) f(r,P) = > o, VP@P)y", 0<r<1;

f(r, P) is the function harmonic in the unit a-sphere with f(P) as boundary
function. Series (16) can be summed to the Poisson integral taken over the
surface, E, of the a-sphere of radius r. Using this representation du Plessis,
(3), has proved a radial extension of the Fejér—Riesz theorem. It is known,
(4), that when a = 2 the Fejér-Riesz theorem can be deduced from the
Paley theorems. We will show that this is so in general.

For reference we note that for orthonormal sequences satisfying (13)

d (Q) — IC ln((aﬂ)—l)(l-—(?/q))
n n

U.(e) = <2°°:1 lcnlfn((alz)—l)(Z—r))lh 1<r< o,
= max (|c,| %), 7y = o

V.(d) = (zc: lcn‘rnmm)(r—z))l“ 1<r< w,
= max (|c,| n*%), 7y = o
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THEOREM 12. If f(r, P) is subharmonic in the unit a-sphere and
a7 ff(r, P)Y’dP £ C, p>1,r<1,
E
then
1
fo (1 = 7)*7|f(r, P)Pdr < K,.aC.

It is known that it is sufficient to prove this for f harmonic and p arbitrary
but near to 1. Then it is an immediate consequence of the following lemma.

LemMA, Let f(r, P) be given by (16), and define
(18) F(r) = nz: PAR A
If 1 < p < 2and (17) holds then
fo "1 = ) dr < K, oC.
This lemma, an extension of one in (4), is stronger than Theorem 12 when

1 < p <2, butis false if p > 2.
By Theorem 2 with » = ¢ = « we have

o 8= " < K, | 11, P aP,

and hence, from (17),
lea] < KaC n/P71,
which gives

F(e_l) < KaC.

Therefore, using Lemma 36 of (4) and the unstarred form of (14), we have
1 1
f (1 = 9N FP(r)dr < K,..C + f (- P R (r)dr
0 e—
< Kpol + K 3, w3 (1 = ¢ Wmye2pr (=Wt
n=1

o © Y4
<K,eoC+K D, n‘“(z lcmlm(“m—le(m’”))
n=1 m=1

< Kol + K Vo(d) < KpoC.

It is known that Theorem 12 is false if » = 1 but the following result can
be proved.
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TaEOREM 13. Let f(r, P) be subharmonic in the unit a-sphere. If, p > 1,

(19) S 150 Pr1tog” i, P ap < ¢ < 1,
then
J; 1(1 — )P f(r, PY|Pdr < AC + B.

This follows from the lemma,

LEMMA. Let f(r, P) be given by (16) and F(r) by (18) then if (19) holds

1 1/p
<f (1 — p)r@ -1 F”(r)dr) < AC + B.
0

The proof of this lemma is similar to the above proof using Theorem 7 (c)
in place of the unstarred form of (14). The case p = 1 of this theorem has been
proved by du Plessis, (3), who considers diametral as well as radial theorems.

6.2. Iff(P) ~ > e, ViUP)
then

fs(P) ~ 20 n e, ViO(P)
is called the gth integral of f. If « = 2, then Hardy and Littlewood, (5), proved
that if f € L, then fg € L, where g8 = 1/p — 1/q. This result has been ex-
tended by du Plessis, (2), to general a. Zygmund (12) has shown that,
in the case a = 2, the result follows from the Paley star theorems provided

p < 2 < g. We will show that this is the case in general, assuming the truth
of Theorem 4.

TuroreM 14. If f€ L,, p > 1, 0 < B8 < (e — 1)/p, then fs € L, where q
is given by 8 = (e — 1) (1/p — 1/q). Further

(fslfal” dP>l/q <Ky 4a <fs P dP)llp.

We may assume that the right-hand integral has value 1. From Theorem 2,

([ 11 ar) " < Kouth@ < Ko@)

% 1o 1—(o/a’ ,
< Kp,a max(dnn /p ) (p/a )VZSP/G )(d*),
since p’ > ¢/, and provided ¢’ > p.
Since d*,n?~? decreases monotonically we have
*

dn' = 0(1)

with bound not exceeding V,?(d*).
Hence if ¢’ > p,

https://doi.org/10.4153/CJM-1961-026-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1961-026-7

COEFFICIENTS OF ORTHONORMAL SEQUENCES 315

1/q
(fs |fﬁlq dP) < Kp,q,a VZ(’p(l—ﬂ+q')/Q’)(d*) <K aa

by Theorem 4. The completion to all p, ¢, p < 2 < g, follows as in Zygmund,
(12).

It is known that Theorem 14 is false if » = 1 but a modified theorem can
be proved, again subject to ¢ > 2, although the result is probably true without
this restriction.

TueoreEM 15. (i) If f € L1 vy, ¢ > 1, then fg € L, where (8 is given by 8 =
(¢ — 1)/q'. Moreover

1/q
<f If,sl“dP> <4 f || (og*f)"* dP + B.
N S
(i) If f € Ly, thenfs € L, whereq is given by 8 = (a — 1)/q’, and moreover

(fslfal“ dP)W <4 fsm (log*|f]) dP + B,

This is a generalization of a result due to Zygmund (11) although his proof
is different. We deduce it from Theorem 7 (c) and the unstarred Theorem 4.
Let d, = d,(1), then these two results imply that

(f1par) " < Koo 55 1000) ™ <.t [ i100g7 10 0 +

n=1

which is (i). In a similar manner (ii) follows, but is also a consequence of (i)
since f € Ly implies f € L,y for all ¢ > 1.
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