ON THE NUMBER OF POSITIVE ENTRIES
IN THE POWERS OF A NON-NEGATIVE MATRIX

N. Pullman
(received February 6, 1964)
A real matrix A 1is said to be non-negative if and only if
none of its entries is negative. Suppose A isan r by r non-

negative matrix. We want to examine:

(A) The first power of A to maximize the number of
positive entries in A",

(B) For each 1 < i< r the first power of A to maximize
the number of pos1t1ve entries in the i-th row of AT.

We shall call the former first power the index of A and
the latter the i-th row index of A (index (i, A)).

More precisely, letting W(An) denote the number of
positive entries in A",

index A = min {n> 0: W(A") =max W(&™)}
m>0

and letting W(iAn) denote the number of positive entries in the
i-th row of AT,

index (i, A) = min {m> 0: W{HA") = max W(ia")} .
2>0

2
If A is primitive, i.e. for some N there are r positive
entries in A , then the largest of the index (i,A) is index A

2
and, as Wielandt stated in 1], index A <(r-1) +1 . Proofs

Canad. Math. Bull. vol. 7, no.4, October 1964

525

https://doi.org/10.4153/CMB-1964-049-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-049-x

were supplied by Rosenblatt [2] and J. C. Holladay and R. S.
Varga in [3]. This result is best possible in the sense that

- 2
for each r there is a matrix whose index is (r-1) + 1 (see
[1]). Mendelsohn and Dulmage [4] have found bounds for index

2
A for primitive matrices for which index A < (r-1) + 1.

The purpose of this paper is to obtain results of a similar
character for non-primitive matrices. For example we show
that if A is non-primitive and det(A) # 0 (more generally if
per{(A) # 0) then

2
max index (i,A) = index A <(r-2) + 1.
1§i_<_r

A natural simplification of the problem is to put into one
equivalence class all those matrices whose positive entries
occur at the same position. That is, (a, ) =2 (b. ) iff for all

1] 1)

i, j:a_, =0 when and only when b =0. Each equivalence
ij 1)

class can then be identified with a matrix over the Boolean

algebra of two elements {0, 1}. That is, the class of

A =(a_,) 1is identified with ', =(y, ) where vy _, =0 iff
ij A ij ij

a, =0. As Wedderburn observed [5], there is 2 1 to 1 cor-
1)

respondence between the r by r Boolean matrices I and

the set of those join-preserving operators f on the family of
subsets of {1, 2, ..., r} which fix §. The correspondence

is this:

fr(x) = U {j:yij=1} for each xC {1, 2, ..., r} .
ie x

In the sequel we shall reserve the word "operator!" for just

these. Instead of writing f we shall simply write fA, or
A

we shall say that f is the operator corresponding to A.

If 4 and B are r by r non-negative matrices, then
fA (fB) = fBA' Let W(x) denote the number of elements in

each subset x of V_={1, 2, ..., r}; Then W(fAn({i} ) is

the number of positive entries in the i-th row of A", and the
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M5

n
number of positive entries in A% is W(fA ({i})). We

i=1
therefore define

index (x,f) = min{n> 0: W(fn(x)) =z max(W(fm(x)))}
m>0

r r
index (f) =min{n>0: T W(({i})=max( = W(E ({i} M}
i=1 m>0 i=1
obtaining index ({i} ,fA) =index (i, A) and index (fA) = index (A).
Notice that A is primitive iff there is an N such that for each
non-empty subset x of Vr' fAN(x) = Vr. This condition is also
equivalent to requiring that for each element 1 of Vr there be
N.
an Ni such that f 1({ i}) = Vr. Such operators will, of course,
be called primitive.
The connection between the operators and the matrices
enabled Holladay and Varga to obtain their results [3]. We
shall exploit these connections more fully to obtain ours.
As a first step in this direction, let us say that xC V
= r

is repetitive (with respect to f) iff for some n>0: xC fn(x),
and for each such x let d(x) be the first such n. Then for
each n:

(1) fnd(x)(x)(_'_ f(n+i)d(x)(x)

because f preserves join and hence preserves inclusion. The

finiteness of 2 T ensures that equality hold in (1) for some n ;
let b(x) be the least such n. On the basis of these definitions
we have:

(2) index (x,f) < (b(x)+1)d(x) - 1

for all repetitive x. Next we find estimates for b and d on
the basis of the observation that:
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(3 if x,x, ..., x_, ... are finite non-empty sets

e M M +1
then for each M either W( () xi)zM' + W(Xi)
i=14

MI

for all M <M or for some M' < M: xM'+1g i(_)i xi .

(m-1)d(x) M
By letting x ={ (x) and noting that x, = () x, we
m M i
i=1
obtain:
(4a) W(fb(x)d(x)(x))z b(x) + W(x) for repetitive x
and

(4b) max (W(f (x))) - W(x) > b(x) .
n>0

If {i} is repetitive we shall say that i is repetitive,
and to simplify the notation from now on we shall write

£2(4), bli), d(i) for £({i}), b({i}) and d({i}) respectively.
Again using (3) with x_ =f£7(i) and the definition of d we
obtain for each repetitive 1i:

(5) d(i) < W(Q £(1) - W(E{) + 1
m>1

and hence d(i)<r.

One immediate consequence is that if i is repetitive
2
then index (i, f) <r -1. In matrix theoretic terms, if
n 2
agi) >0 for some n>0 then index (i,A)<r -1. For

example, if A is a stochastic matrix, then the first time n at
which it is possible to reach the largest number of states from

state i is atmost r -1 .

We can also use these observations to obtain a short proof
of Wielandt's result which is similar to that given in [3].
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THEOREM 1 (Wielandt). If f is primitive then

2
max, index (i,f) = index (f) < (r-1) +1.

Proof. The primitivity of f ensures that each subset x
is repetitive, that index (x,{) < b{x)d(x) and (assuming r > 1)
that W(f{j)) > 2 for some j¢ Vr. Applying the definition of d

we see that d(f(j)) < d(j). But 4d{(j) <r-1 by (5) and
b(f(j))f_ r - 2 by (4a); hence index (f(j),f)f (r - 1)(r - 2).
r-1
The primitivity of f and (3) imply that V_= () £ (i).
¢ i m=0
Therefore je f(i) for some 0<t<r-1 and hence
r-i){(r-2 r-2){r-1)+t
e lE-2) ) o (r-2)(-1)

the definition of index and the sentence before last. Thus

(i) ; but the left member is Vr by

V_=£(i) for all m> (r-2)(r-1}#(r-1). Consequently index

(i,f) < (r-i)2 + 1. As we remarked at the beginning, max
i<ikr

index (i, f) = index (f), so we have proven Wielandt' s result.

We also remark that for each xC Vr' if f is primitive then

index (x, f) < (r-i)2 + 1. It would seem from the proof that
equality might be achieved if d(j) =r-1 and W({{j)) =2 for
some j. This is indeed the case if W(f(i)) =1 for all i # j.
The corresponding matrix is exhibited by Wielandt in [1].

Many of the convenient features of primitive operators
are enjoyed by another class of operators. These are the ones
which do not reduce the size of subsets. We shall say that an
operator is non-singular if and only if for each xC Vr’

W(x) < W(f(x)). It then follows that W(fn(x)) is monotone
non-decreasing in n for fixed x and hence that for all non-

singular f:

(6) max {index (i,f)} = index (f)
1<i<r

and

(7) each xC Vr is repetitive.
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To prove (7), we let T = () fn(i).f(Tu{i} ) =T ; hence’
>0

W(T)> W(T~s{i}) because f is non-singular. But

TC T (U{i} ; hence T =T w{i} and therefore

ie () fn(x). Thus i is repetitive for each ie¢ Vr' Conse-~
n>0
quently each subset of Vr is repetitive. We also have:

(8) If f is non-singular then for each x: index (x, f) < b(x)d(x).

To see why this is so, we observe first that, from the definition
b(x)d b(x)+n)d
PRI (Bx)+n)dlx

use the monotonicity of W(fn(x)) to see that for all

of b, )(x) for all n. Secondly, we

m < b(x)d(x) < n:

b(x)d(x)

W (%)) < W(E () < W(E () -

Consequently, by the definition of index, index (x,f) < b(x)d(x).
In fact

(b(x)-1)d(x) < index (x, f) < b(x)d(x) .

We shall call a matrix essentially non-singular iff the
operator corresponding to it is non-singular. The following
lemma states some alternative characterizations of this

property.

LEMMA 1. I A isan r by r non-negative matrix,
and T and f are the Boolean matrix and operator corresponding
to A, then the following conditions are equivalent:

a) f is non-singular;

b) I’ contains a permutation matrix, i.e. for some
permutation q of V , vy, =141 for each 1i;
r i

q(i)

c) each r by m matrix formed by extracting
1 <m<r rows from A (respectively I') has at least m
non-zero columns;
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d) the permanent of A is not zero. (per (A) is the sum
r

over all permutations g of V_ of T a, ,..).
r =1 ig(i)

e) There is a matrix B &~ A whose determinant is not
zZero.

Proof. a) implies b): The union of any m of the f£(i)
(1-<i<r) has at least m elements because f preserves join
and f is non-singular. A theorem due to P. Hall (see e.g. [6])
implies that if the union of any m of r sets has at least m
elements (1 <m < r) then there exist r distinct points, one
in each of the r sets, no two of which are in the same set.
Consequently there exist r distinct points ji such that

jie f(i) (1 <i<r). Now let q(i) :ji (1<i<r).
b) is evidently equivalent to both d) and e).

b) implies a): Let g(x)={q(i):i€¢ x}. Then
W(g(x)) = W(x) because q is a permutation; but g(x)g f(x)
for all x and hence W({(x)) > W(x) for all subsets x of Vr.

a) iff c): The i-th row of I’ corresponds to the image
of {i} under £, i.e., Yij =1 iff je f(i), whose non-

singularity means that the join

((y. ,o--0y. Doy, gooeenY. V=Y, , VY, 4o--25Y. _UY: )
1 3 - -
111 111- 12 121' 111 121 111' 12r

of any m rows of I' has at least m non-zero entries. Thus
any m by r submatrix of T has at least m non-zero columns.
This completes the proof of lemma 1. Alternative proofs of

d) iff c) and b) iUf c) can be obtained from Ore's results

on term rank in [7] and [8]. '

In order to state and obtain the results in the sequel we
must turn our attention for a moment to the set V . If the
matrix A is stochastic (i.e., each row sum is 1)ror if A is
=¢-equivalent to such a matrix (i.e., no row of A is 0),
then using the classical results (e.g. Doob [9]) on stochastic
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matrices we may decompose‘ V  into two disjoint subsets T
‘ r

and E, (E#.90). E in turn is the disjoint union of v subsets
E}\ each of which is the disjoint union of tl\ subsets Ck'
< < J
These sets have the following properties, letting f be the
operator corresponding to A: if ie T then for some m > 0,
(1) AE ¢ 0; £(E ) =E, foreach 1<k<v and, in fact,

f(C ) (the second subscr1pt is read modulo t )

k 1

Moreover the restriction of fk to Ck is primitive. In
’ J

probabilistic terminology: Vr is the set of states, E the

ergodic states, T the transient states, Ek is called an

ergodic class and ij is called a cyclically moving class.

Borrowing this terminology we shall say that A is ergodic iff
T =9.

LEMMA 2. I A 1is ergodic and non-primitive then

X 2
max index (i, A) < (r-2) + 1
1§i§r

Proof. In the terminology of the last paragraph, let Ek

be the ergodic class to which i belongs and T W(E ) .

k
Let C' be a cyclically moving class of minimal size c¢',
and C'" be one of maximal size c¢', both in Ek. If c' =c",
choose C'" =C'. For some 0 <t s< tk

s . t
f (1)§C' and £ (C') = C%",

2
t [(c'-1)" + 1]+s+t
Using Theorem {1 we obtain: f{ (i) =Cv,

t
because f restricted to C' 1is primitive. Consequently

(9) index (i,f)itk[(c'oi)z-l— 1]+ s+ t

2
<t [(c'-1) +3]-2.
- k
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But c'tk_<_ rk; thus
r

(9a) index (i, f) 5:—? [(ec -1)2 +3]-2.

(10) If c' =c'", then we may choose C' sothat s=t=0

2
and hence index (i, f) < tk[(c' -1) +1].

Case 1: ¢! =rk. In this case C' =C" and ¢, =1 so,
_— k
2
by (10), index (i, f) < (rk~1) + 1. The non-primitivity of f
ensures that rk < r when tk =1, and so the lemma follows

in this case.

Case 2: c¢' = rk - 1. In this case c¢' =c'; but then
tkc =rk and hence rk- 1 divides rk. Theréfore
1:k =2 = tk and so lemma 2 follows from (10) in case 2, since

we may assume r > 2.

T

2
Case 3: c' < T T 2. In this case -C—}S[(c'—i) +3]-2

is maximized relative to 1 <c' < rk - 2 at rk - 2. Therefore
8

l'k'

2
by (92), index (i,f) < (rk -2) + 5 - 2. Lemma 2 then

follows from this inequality when r > 4. If rk=3 or 4 the

k
lemma is obtained by considering the possible values of
c', c", s and t and by applying (10).

As we noted above, each transient state leads eventually
to an ergodic state i.e., for each i€ T there is some n for

which gl(i) NE # §. In the sequel we shall need to know how
soon this occurs. To answer this we have:

LEMMA 3. If f is non-singular and T # § then

a) g, defined by: g(x) =f(x) T for all xC T, is also
non-singular and for each i€ T : d(i) < W(T); and
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b) for each 9 # xC T: fW(T)(x) NE#0.

Proof. a)is most readily seen by looking at T', the

=z 0
Boolean matrix corresponding to f. I = where A
$ A
corresponds to g. g's non-singularity follows from lemma

4c. Consequently A contains a W(T) by W(T) permutation

matrix. This establishes part a). Now suppose 0 # xC T .
W(T)

According to (3), either W( () f (x))> W(T)+ 1

W(T)-1 k=0

(x1€ O £(x). If the latter is true then, by
k=0

f.W('l’)‘ﬂl

or fw(T)

W(T)-1 K
(x)C O f (x) for all n and hence
k=0

induction on n:

W(T)-1
@) }(x) MNE+# @9. If the former is true then
k=0
W(T) :
T_? @) fk(x). This establishes part b.
k=0

THEOREM 2. If A is essentially non-singular and non-
primitive then

2
max index (i, A) =index A < (r-2) +1 .
i
Proof. In view of (6) we need only prove that index
2
(i,f) < (r-2) + 1 for arbitrary i in Vr. If A is ergodic

the result follows from lemma 2. We now assume that T # 9.
If ie E then, since the restriction ij of £f to E is an
ergodic operator on the subsets of a set of fewer than r ele-

2
ments, index (i,f|E) < (r-2)" + 1 by lemma 2 or by theorem 1,
depending on whether f[E is non-primitive or not. The
desired inequality then follows from the fact that f(E) = E.
Now suppose i€ T. By lemma 3, d(i) < W(T). Then,
by (4b) and (8), index (i, f) < d(i)b(i) < W(T)(r-1). So we may
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assume that W(T) > r-2. If W(T)=r-2 we may assume that
d(i) =r-2 and b(i) =r-1; then, as we shall now show, g (in
the notation of lemma 3) is primitive. According to (4b)

max W(fn(i)) =r when b(i) =r-1, so W(fN(i)) =r for some N.
n>0

Let je T. Accordingto ic applied to g, there is a permuta-
tion q of T for which q(j) ¢ g(j); but d(i) =r-2 therefore

T={q"(i):1<n<r-2} andhence T ={q"(j):1<n<r-2}.

+N
Therefore i =qn(j)£ gn(j) for some n and hence Vr = j)-
Consequently g is primitive.

2
-3)7+1
According to theorem 1, TCf(r 3) (i). Letting y be

the right member we have d(y) < c-'l-(i) and hence d(y) < r-2.
Now y # T by lemma 3b. But TCy; therefore W(y)> r-1
and hence b(y) <1, by (4b). Consequently index (y,f) < r-2

by (8). Now max_ Wit (y)) =max_ W(f'(i)) and hence

(r-2)+(r-3)2+1

W(f (1)) =ma:-:n W(fn(i)). Therefore index

(i,f) < rz - 8r + 8.

I W(T)=r-1 then W(f(i)) =1+ W(g"(i))- for each
n> r-1 by lemma 3b and the fact that {(E)C E. Therefore

(11) index (i,f) = max {index (i, g), r-1} .

2
If g is primitive then index (i, g) < (r-2) + 1 by theorem {,

2
and hence index (i,f) <(r-2) + 1. Suppose g is non-primitive.
Theorem 2 holds vacuously for 4 by 1 matrices. Assume it
is true for R by R matrices (1 <R<r-1). g is non-singular

2
by lemma 3a; consequently index (i, g) < (r-3) + 1, and hence

index (i, f) < (J:-Z)2 + 1 by (11).

W(T) < r-1 because E is not empty. This completes
the proof of theorem 2.

In [1] Wielandt provided, for each r, a primitive

r by r matrix whose index is (r:--i)2 +1. Itis
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0 0 4:0 ... 0 O
0o 0 0 1t .. 0 0
(w.) =
J 00 00 ... 0 1
1 14 0 0 .. 0 0
where W SV, SWLE 1 (1 <i<r-1) are the only non-zero

W_..
ij

That theorem 2 is best possible may be seen by observing
w o
0 1
primitive (r-1) by (r-1) matrix whose index is (r-2) + 1
as furnished by Wielandt.

2
that index A =(r-2) + 1 when A = l, where W is a

Finally we exhibit an r by r matrix A for which
max, inde: (i, A) < index A and for which index A > (1‘-1.)2 + 1.
i

Let
0 0 4 00 ... 0 0
0 0 £ 0 0 . 0 0

A 00 014 0 ... 0 0

A =

o 00 0 0 ... 0 4 O
0 0 0 0 ... 0 0 14
1 4 00 ... 0 0 0

for each n> 3. That is, the only non-zero entries in (b ) = A
- ij n

=h = < i< n-1). ‘
1 2 i it 1 (2_1_11 1) One can then

show that index (i, A) <n-1, and that W(A;n) < n+2 with

b_=b =b
are 13 n n

equality iff m is a positive multiple of n-4. We now let A
be the 41 by 41 matrix

12 0 0
0
0 14
0 0 15
536
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and obtain: max, index (i, A) = 14, and index (A) =lcm (11, 13, 14)
i

so that A 1is a matrix of the required type.
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