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Abstract. A number of theorems are established about positive definite functions
and representations of certain topological semigroups. In particular we establish theorems
which show that measurable positive definite functions and measurable represeritations
can each be decomposed into the sum of two parts one of which is continuous and the
other of which is **small”.

1. Introduction. In this paper we aim to prove some theorems about positive
definite functions, and about the closely related concept of representations, on locally
compact topological semigroups; we shall also answer problems raised in [8] and [9] by
improving previous theorems on these topics. Theorems about these concepts must, of
necessity, apply to the special case of a topological group, and therefore will normally be
a ‘“‘generalization” of a known result for locally compact groups. The theorems we shall
establish are true for groups, as a result of the existence of the group algebra, and so our
results will often only apply to semigroups in which there is an analogue of the group
algebra. Such semigroups are the so-called foundation semlgroups these semigroups form
a large family but do not include all commonly met semigroups; the family includes all
topological groups and all discrete semigroups, and is closed under products and
subsemigroups and (under some restrictions) quotients.

Throughout this paper, we shall be concerned with a semigroup § with a weight
function w, and with functions and representations that are w-bounded. The original
research which led to this paper was an attempt to prove the two main theorems of
Section 4, which concern the representations of positive definite functions and representa-
tions, respectively, as the sum of two of them, one being continuous and the other being
“small”, (4.6 and 4.9). In Section 3 we introduce a lemma of Stone-Weierstrass type that
is an essential tool for the results of Section 4, and is also used in Section 6. Firstly,
Theorem 4.2 provides a ‘“‘Bochner theorem” for w-bounded, positive definite functions.
We also establish Theorems 5.2 and 6.2 which establish necessary and sufficient conditions
for the semi-simplicity of the algebra M(S,w) and for the *-semi-simplicity of M(S, w) if
S has an involution, respectively.

2. Definitions and notations.

2.1. Throughout this paper, except in Section 3, § will denote a locally compact,
Hausdorff topological semigroup. We shall assume that there is a weight function w on §.
By this we mean that w:S§— R, with the properties that w is Borel measurable and that
both w and w™! are locally bounded (i.e. bounded on compact subsets of §) and that
w(xy)sw(x)w(y) for x,y e S. Further, if § has an involution * we shall assume that
w(x*)=w(x) for x € S. We denote by M(S,w) the set of complex, regular, signed
measures u (not necessarily bounded), of the form u = u; — u, +i(p3 — uq), where p; is
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a positive regular measure on S with w e L'(S, w;) for i = 1,2, 3, 4. Note that the elements
of M(S,w) are not measures in certain strict senses, in that w(B), for a Borel set B, need
not have meaning, but on the other hand u(B) does have meaning in the case when B is
relatively compact. We leave it to the reader to check that nothing in this paper is affected

4
by this sort of problem. We can define, for f € () L'(S, ),
i=1

[ = | fais= | saus+i( [ rdus = [ £dns).

If uwe M(S,w) we can define a bounded regular Borel measure w. u on § by the
equation

[raow = pwan e cuisy,

4
since fw is certainly in (1) L'(S, u;). The map w+—w. u is clearly a linear bijection of
i=1

M(S,w) onto M(S). So we can define ||u ], = |w. u|| for u € M(S, w), to make M(S,w)
into a Banach lattice (the norm of w. u is the total variation norm). Finally, we make
M(S,w) into a Banach algebra by defining a convolution product by the rule

(m*v)(f)= LJ;f(xy)d#(X)dv(y) (n,ve M(S,w), [eColS)). (1)

A simple adaptation of the proof of the Riesz representation theorem shows that
u * v is well-defined. By part (iii) of Theorem 4.6 of [8] we can conclude that (1) is still
valid for any w-bounded, Borel measurable function fon S. (We say that fis w-bounded if
there is k € R such that |f(x)| < kw(x) for all x in S.)

Recall (see, for example, [1] or [4]) that M,(S) (or L(S)) denotes the set of all
measures u in M(S) for which the mappings x — X * |u| and x — |u| * ¥ from § to M(S)
are weakly continuous. As in [8], we can define M,(S,w) (or L(S,w)) as the set of
measures u in M(S, w) for which w. p is in M,(§). Then M,(S,w) is a closed, two-sided
L-ideal of M(S,w). We call S a foundation semigroup if U{supp (u):u € M,(S)} is dense
in S.

2.2. We assume that the reader is familiar with the notions of representations of
*-algebras and of *-semi-simplicity of Banach *-algebras. Most of the following definitions
are to be found in (2], [8] or [9]. If § is a topological semigroup with continuous involution
*, a x-representation V of § by bounded operators on a Hilbert space H is a
homomorphism x — V, of § into B(H) such that V,.=V} for all x € §. The representa-
tion V is cyclic if there is a cyclic vector £ € H; i.e. an element £ € H such that the span of
{V.£:x € §} is dense in H; it is w-bounded if there is a real number k such that
Vil <kw(x) for all x € §; and it is weakly continuous resp. Borel measurable, resp,
w-measurable if the function x —(V,£, 1) is continuous (resp. Borel measurable, resp,
p-measurable) for all £,9 € H. Observe that V is w-bounded if and only if the function
x—(V, £, ) is w-bounded for all £,m € H, and that the *-representation V is w-bounded
if and only if ||V, || = w(x) for all x e S. Finally, R(S, w) denotes the set of all w-bounded
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continuous *-representations of the topological semigroup § with involution, by bounded
operators on Hilbert space.

If M is a vector space of measures on S then a function f is said to be M-negligible if
] (Ix € S:f(x)#0}) =0 for all u € M. The representation V is said to be M-negligible if
{x:(V, £, m) # 0} is M-negligible for all £,m € H.

2.3. If §is a semigroup with involution, then a complex-valued function ¢ on § is
positive-definite if

n n
> 2 cexx})=0
i=1j=1

for all choices {x},x5,...,x,} from § and {c¢, ¢,,...,c,} from C. We denote by T, the set
of all w-bounded and continuous semicharacters of S (i.e. homomorphisms from § to C
which are not identically zero). If S has an involution then T} is the set of continuous
x-semicharacters (i.e. semicharacters which are *-homomorphisms). Clearly if y € T, then
lx () < w(x)(x € §). We shall denote T; by $.

We recall from [9, Theorem 2.10] that there is a one-one correspondence between
T, and M,(S,w) that is defined as follows.

For y e T',,, define a complex homomorphism 4 on M,(S, w) by

h(u) = f 20 dux) (u € My(S, w)).

Further, y is determined from A by the rule

h(u * x)

hGo) xes)

x(x) =
for any u e M,(S,w) with h(u)#0. A
This correspondence is a homeomorphism if M,(S,w) has the Gelfand topology and

I'.. the compact open topology; in particular I',, is locally compact.

3. A lemma of Stone-Weierstrass type. The Stone-Weierstrass theorem tells us
that if X is a compact Hausdorff space then certain conditions on a subalgebra A of C(X)
ensure that A is dense in C(X). It follows that if u € M(X) then such an A is
automatically dense in L?(X,|u]) for p = 1. Unfortunately, the theorem requires that A
contains the function 1, and this may not be true in the applications to be used below. For
that reason we require the following results.

Let X be a locally compact, Hausdorff topological space. Let C,(X) denote the set of
bounded and continuous complex-valued functions on X and CH(X) the set of real
functions in C,(X). We give these spaces the supremum norm.

LemMa 3.1. Let u € M(X) (the bounded regular Borel measures on X) (with u #0),
and let p=1. Let A be a self -conjugate subalgebra of Cy(X) such that

(i) for each x € X there is f € A with f(x)#0,
and

(ii) for x,y e X with x # y there is f € A with f(x) # f(y).
Then A is dense in LP(X, |u|).
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Proof. We can assume that u >0. Let f € CR(X). We shall show that for any £ >0
there is ¢ € A with

L [fx)—gx)Pdulx)<e

The rest of the proof is then as in the proof of (31.4) of [7] (pp. 211-212, last paragraph).
Take 6 € (0,1), to be determined later. Choose K = X compact with w(X\K)<8. The
restriction of A to K is a subalgebra of C(K). By the Stone—Weierstrass theorem (for
example one can use the version given in [11, p. 166, Theorem A]) A is dense in C(K),
and so we can find g € A with
lgx) = f(x)I<8 (xeK)
Let M =max{|fll, ligll}, and let h be the continuous real-valued function on the interval
[-M —1, M + 1] defined by
t for —|Ifl-1=s=<|ifll+1,
=95 Iifll +1 for |fll+l<esM+1,
=ifi—-1 for —M-1<:<-—|f|-1L
By the Weierstrass approximation theorem, we can find a polynomial r such that
lr(t) —h()|<8forallte [-M—1,M +1]. Put g(x) =r(g(x)) for x € X; then q € A.
Now if x € K, then
lg(x) = fx)I=r(g(x)) — g(x)I + lg(x) ~ f(x)I <28,
since |g(x)|<|f(x)+8<|fll +1. Also,if x € X\K then
lg(x) = fON<lg@x) +1f () <h(@x)+ 8 + | f]l

2| f)+1+8.
Hence

9= du) = | lat =16 duc+ | g = £ duto)

K
< (26) u(K) + w(XANKY2 I fI +1+8)
<(28) full +8Q2NfNI +1+8).
If we choose & small enough, we get the required result.

CoroLLARY 3.2. If A is as in Lemma 3.1 and p € M(X) is such that u(f) =0, for all f
in A, then p=0.

Proof. Suppose that u #0. Apply Lemma 3.1 with p=1. If f € Co(X) = L'(X, |u|)
and £ >0 there is h € A with [¢[f(x) — h(x)|d |u| (x) <& Therefore [x [f(x)|d |u|(x)<e
and so u =0.

4. Decomposition of exponentially bounded representations and positive definite
functions. The first result of this section answers question (b) of [9]. Theorems 4.6 and
4.9 provide our decomposition theorems. Examples 4.7 and 4.8 provide counter-examples
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to show that the decompositions are not trivial and that the introduction of foundation
semigroups is necessary.

LeMma 4.1, Ler S be any commutative topological semigroup with involution * with a
weight function w such that T} is a locally compact semigroup in the compact-open
topology (for example, S could be a foundation semigroup with identity). If A € M(T}) and
if [r2 x(x)dA(x) =0, for all x € S, then A =0.

Proof. Let A denote the subspace of C,(I'}) generated by the set {£:x e S}, where
2(x)=x(x) for yeTl¥ Then A satisfies the conditions of Corollary 3.2, and
T f(x)dA(x) =0 for all f € A. Therefore A =0.

For the rest of this section S will be a commutative foundation semigroup with
identity e, involution *, and weight function w. For u € M,(S, w) define g4 e C,(T'}) by

A= f 2 dux) (zeT%)

We can immediately combine Lemma 4.1 with Theorem 2.12 of [9] to answer
question (b) of [9].

THeorem 4.2. (The Bochner theorem for €xponentially bounded, continuous, posi-
tive definite functions on foundation semigroups). Letr S and w be as above. A function
¢:85 > C is w-bounded, continuous and positive definite if and only if there is a unique
positive measure A, € M(T'L) such thar

o= [ 0 drin wes)

Let P(S,w) denote the set of all w-bounded and continuous positive-definite
functions on S. Using Theorem 4.2, for each A € M(T'%) we define A e P(S,w) by

Ax) = fr X0 e S).

We then have the following corollary to Theorem 4.2. For the purposes of this result, let
us define the vague ropology on M(I'}) as the weak topology induced by C.(T'¥) and the
constant functions on '} (This is a slightly different definition to that used by some
authors.)

COROLLARY 4.3. Ler S and w be as above, with w < 1. Then the map A — X of M..(I'*)
onto P(S,w) is a homeomorphism and isomorphism if M.(I'}) has the vague topology
(defined as above) and P(S,w) has the topology of uniform convergence on compact
subsets of §.

Proof. By Theorem 4.2, the map A — A is a bijection. Let (A,) be a net in M, (T'¥)
and let A e M_(T'¥). Suppose that A, — A in P(S,w). By Theorem 2.4 of [10], this is
equivalent to the two statements that

[ Ko@) duor= [ 3 daco) @)
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for all u € M,(§,w), and

A (€)= A(e). 3)

Now (3) says that A,(T'%)— A(T'%), that is (since the measures are positive) A, || = [|A]l.
So we can suppose that the net (A,) is bounded.
Also, by Fubini’s theorem, (2) says that

fr: (J;Z(X)d#(x)>d/\a(l)->JI_: (L}((x)dp.(x)) dA(x);

that is
[ ad-] awam.

for all u e M, (S, w).

Now {d:u e M,(S,w))} is a closed, separating and self-conjugate subalgebra of
Co(T%) that vanishes identically at no point of I'}f, and so is uniformly dense in Cy(S, w),
by the Stone~Weierstrass theorem. Hence conditions (2) and (3) imply that

[ G| faa,
r: T

for all f € Co(I'%), and so A, — A in the vague topology. The converse is also clear from
the above argument. 5
Finally it is clear that (u * A) = fiA for u, A in M(T%).

We can now give the first of two results which enable us to construct
*-representations.

ProposITION 4.4. Let S and w be as above. Let A be a positive measure in M(T'Y). For
each x € S and f e LTk, A) define UX(f) = £f, where £(x) = x(x) for y e TY. Then U*
defines a w-bounded, continuous, cyclic *-representation of S on L*(T%, ).

Proof. The case A =0 is trivial, and so assume that A >0. All that is non-trivial is to
show that U* is continuous and cyclic. We fix x, € S, and take £ > 0. Choose a non-zero g
in LTk, A). Let G be a relatively compact neighbourhood of x, in S, and choose K such
that w(x) < K for x € G. Now find a compact subset F of '}, such that

2dA =
J. ot am<gs
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Then H = {x e 8y (x) — x(xo) <— forall y e F} is a neighbourhood of x4 in §. If

28l
x e GNHthen

1Ux(g) = Uz (&)l = fF lx(x) = x(xo)l* Ig ()P dA(x) + fr _Wlx(X) = x(xo)? I8P dA(x)

- 2 4K? 2
CELEL
> 2—8.

Therefore U* is (strongly) continuous.
Now, by Lemma 3.1 the linear span of {£:x e S} is dense in L*(T*, A), so that the
function 1 is a cyclic vector for U

PropPOSITION 4.5. Let S and w be as above. Let A be a positive measure in M(T'Y). For
each p € M,(S,w) and each f e L*(T%, ) define V,(f) = if. Then the mapping u >V, is
a cyclic =-representation of the Banach *-algebra M,(S,w) by bounded operators on
LA(TE, A).

Proof. The involution on M,(S,w) is given by the formula

Lf(X)du*(x)=Lf(X*)du(x) (f € Coo($), m € Mo(S,w)).

For this involution (u*)" = j, for each u in M,(S,w). It is easy to check that u+~>V, is a
bounded *-representation of M,(S, w). As in the previous proof, we show that 1 is a cyclic
vector for the representation. Let A denote the liner span in Co(T'%) of {d:n € M,(S,w)}
Then A separates the points of I'%, is self-conjugate and vanishes identically at no point of
I'Y Hence A is dense in L*T¥%, A) (for example, by Lemma 3.1). The result now follows.

We now state our decomposition theorem for w-bounded positive definite functions.

THEOREM 4.6. Let S and w be as above. Let ¢ be u-measurable for all u € M, (S, w)
and a w-bounded positive definite function on S. Then there are unique w-bounded positive
definite functions ¢, and ¢, on S such that ¢ = ¢, + @,, where ¢, is continuous and ¢,
vanishes w almost everywhere, for all u in M, (S, w).

Proof. For each s € § define ¢,:§ —C by ¢(t) = ¢(s*t) (t € S). Let H, denote the
linear subspace of C’ (the space of all complex functions on S) generated by {¢,:s € S}.
We make H, a pre-Hilbert space by defining

(@5 )= p(s*t) (5,1 €S8).

Theorem 4.1.14 of [3] shows that the mapping V:S— B(H,), given by V,(¢,) = ¢, for
s,t € 8, is a w-bounded, cyclic, *-representation of S by bounded operators on H,. Indeed
[Vi]l < w(s), for all s € S. It is also clear that V is weakly M,(S, w)-measurable.

Let H denote the completion of H, Then V can be extended uniquely to a
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w-bounded weakly M, (S, w)-measurable cyclic *-representation of § by bounded opera-
tors on H, with ¢ as the cyclic vector. For simplicity, we also denote this extension by V.
By Theorem 5.2 of [8], the formula

(.6, m) = f (Ve mydu(x) (£ e H. e M(S,w)), @)

defines a bounded representation T of M, (S, w) by bounded operators on H. Furthermore
V(T,)=Ta,forxeS, ueM,(S,w). For fixed u € M,(§,w) and £,m € H we claim that
the function

x>V T.¢n
from S to C is continuous. For let (x,) be a net which converges to x in . Then

|<vx,, Tygs 77) - <Vpr§s 77)| = |<T.\‘u*pm\‘*u§v n)l
s|Xaxp—X*p . €l Inl—0

by Proposition 4.7 of [8]. Let M, denote the closure of the linear span of {T,é:u €
M,(S,w), £ € H} in H. Then the function x —(V,{, n) is continuous for every { e M, and
every n € H. Now this implies that V(M) M, for all x € §, and so M, is an invariant
subspace for V. Let M, be the orthogonal complement of M, in H. Since V is a
x-representation, M, is also an invariant subspace for V. Now if u e M ,(S,w), £ e H,
neM, then T,£eM, so that (T, £, n)=0. In particular, (7,n,7)=0 for all pe
M,(S,w), n € M,. So by (4) and Lemma 4.8 of [8], (V,n, n) =0, u almost-everywhere for
every u € M,(5,w). Choose £ € H such that o(x) =(V,£, &) (x € §). (In other words ¢ is
the image of ¢ = ¢, under the embedding of H, in H.) Write £ = £, + & with £, € M, and
& e M,. Then

<V\‘§s §>=<vx§ls§l>+<vx§29 §2) (X € S),

so that o(x) = @;(x) + @x(x), where ¢(x) = (V £, &) and @a(x) = (V, €2, €2), forx e 8. Tt is
now clear that ¢, and ¢, satisfy the desired conditions. The uniqueness of ¢, and ¢,
follows from Lemma 4.8 of [8].

ExampLE 4.7. In this example, w will be the function 1. Consider the non-foundation
topological semigroup S = ([0, 1], min). By Proposition 4.4.18 of {3], since every positive
definite function on § is non-negative and increasing, and since M,(S,w)={0}, the
decomposition theorem above does not have meaning for §, in that many representations
¢ = ¢, t+ ¢, will have ¢, small in any meaningful sense.

ExampLE 4.8. Again we take w to be the function 1. Let S be the foundation
topological semigroup S = ([0, =), +). The function ¢ defined on S by

0 ifx>0,

‘p(x)={1 if x =0,

is an M,(S,w) measurable w-bounded positive definite function on S. Clearly ¢ is not
continuous, and so the decomposition ¢ = ¢, + ¢, of Theorem 4.6 has ¢, # 0. The general
form of the decomposition of an arbitrary positive definite function ¢ on this semigroup is
described in [3, Proposition 4.2, p. 113].
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It might appear to the reader that this example is rather degenerate in that the
support of ¢, is only one point. We are not aware of any examples which are significantly
different from this one. However, one can use the simple trick of taking the product of
any locally compact abelian group G with this semigroup, and then ¢, will be the function
given by
0 if y>0,
plx) ify=0,

for (x,v) e G X §, where p is a (continuous) positive definite function on G. We have
been unable to decide whether there is a positive definite function on a foundation
semigroup which is discontinuous at a dense set of points.

We now obtain a result parallel to Theorem 4.6 for representations.

eale ) = {

THEOREM 4.9. Let S and w be as above. Let V be a cyclic, w-bounded and M,(5,w)
measurable *-representation of S by bounded operators on the Hilbert space H. Then we
can write V as the direct sum V' @ V" of two such representations V' and V", where V' is
weakly continuous and is equivalent to some U* for A e M(T'¥) (as in Proposition 4.4) and
V" is M,(S,w)-negligible. Moreover, if V is such that for every non-zero £ in H the set
{x e S:(V,€, &) #0} is not M,(S,w)-negligible then V" =0, and so V is weakly continuous.

Proof. Let ¢ be a cyclic vector for V. Then the function ¢:5— C defined by
o(x)=(V,§, &) is a w-bounded, M, (S, w)-measurable and positive definite function on §.
Write ¢ = ¢, + ¢, as in Theorem 4.6. As in the proof of Theorem 4.6, we can write
H=M®M, and find § € M,, & € M, so that M, and M, are complementary invariant
subspaces and (V,£, £) = (V,§,, &) + (Vi &y, £2), Where (V. £y, §1) = @1(x), (Viéy, £2) = @a(x)
for x € S. By Theorem 4.2, there is a positive measure A € M(I'}) such that (V, ¢, &) =
Jre x(x)dA(x) for x e S. Let V' and V" denote the restrictions of V to M, and M,
respectively. Now we can write (V.&,, £,y =(U}1,1) for x e §.

By Proposition 4.4, U” is a cyclic representation with cyclic vector 1 and V' has cyclic

vector §,, and so by Proposition 2.4 of [2], V' is equivalent to U* That V" is
M,(S, w)-negligible is now clear, and then the final part of the statement of the theorem is
also clear since & must be zero.

5. The semisimplicity of the algebra M(S,w). In this section we give a complete
answer to question (a) of [9] by proving the following result.

THeOREM 5.1, Let S be a commutative foundation topological semigroup with identity.
Let w be a weight function on §. Consider the following conditions.

(i) The commutative Banach algebra M(S, w) is semisimple.

(it) The commutative Banach algebra M, (S, w) is semisimple.

(iii) T, separates the points of S.

(iv) 8 separates the points of S.

(v) The commutative Banach algebra M(S) is semisimple.

The first three conditions are equivalent and so are the last two, and the first three
imply the last two.

Before proceeding to a proof of Theorem 5.1 we should make some remarks. The
question posed in [9] was meant to ask whether conditions (i), (ii) and (iii) of Theorem
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5.1 are equivalent, which is what is answered. It is simple to see that (iii) and (iv) are not
equivalent. For example, let S be the additive semigroup of non-negative real numbers in
its usual topology and let the weight function be w(r) = e™". Then clearly $ separates the
points of S, but I',, is empty.

Proof. Using Theorem 4.2 of [9] we see that all we need to show is that (iii)
implies (i).

First suppose that S has a zero element 0. Then w(0) = w(x. 0) < w(x)w(0) so that
w(x)=1 for each x € S. So in this case the constant function 1 is an element of T,.
However, it is shown in Theorem 4.2 of [9] that (iii) does imply (i) whenever there is
x €I, which is non-zero throughout S. So (iii) does imply (i) in this case.

Now suppose that S does not have a zero-element. If I',, separates the points of S,
and if z € S is such that y(z) =0 for all y e I',, then y(zx) = 0= y(z) for all x € §, so that
z is a zero element for S. Hence, for any y € S we can find y e I',, with x(y)#0.

Let y e[, and put I = {x € S:x(x) = 0}. Then we can write

M(S,w)=M({,w)DM(S\I,w)

as a direct sum of an ideal and a subalgebra of M(§, w), and so if u € M(S,w) we have
p = pul; + plsy. Clearly, the w-bounded and continuous semicharacters of S\/ separate
the points of the semigroup S\/, and y is non-zero throughout S\I. Hence by what we
have quoted above from Theorem 4.2 of [9], we see that M(S\/, w) is semisimple.

Now let u € M(S,w). If uls\, # 0, then we can find a complex homomorphism h, on
M(S\I1, w) with hy(u) # 0. Define a complex homomorphism & on M(S, w) by

h(v) =ho(vls\) (v e M(S,w)).

Clearly h(u) #0.

Now, given p € M(S,w) with u # 0, choose x € supp(n), and y e T, with y(x) # 0.
Then wls.,#0, where /I is as above. Hence we can find a complex homomorphism # of
M(S,w) with h(u)#0 and so M (S, w) is semisimple.

6. The x-semisimplicity of the algebra M(S,w). In this section we show that a
conjecture made by the second author in [8] is true for the case w <1. We first recall that
if V and V' are representations of a semigroup by bounded operators on the Hilbert
spaces H and H' respectively, then the tensor product V®V' of Vand V' on H® H', the
tensor product of H and H', is defined by the identity

VeV, =V,®V,, foreach xeS.
Therefore
(VOV')(£®E), n®n") = (Vi XV, ')
forxeS,é,neH €é,neH.
Lemma 6.1, Let S be a topological semigroup with involution * (not necessarily

commutative). Let w be a weight function on § with w(x*)=w(x)<1 for x € §. If R(S,w)
separates the points of S, then the Banach *-algebra M(S,w) is *-semisimple.

Proof. For each V e R(S, w), let Hy denote the Hilbert space associated with V. For
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every V, V' e R(S,w), we have ||V, @V [ < |[V,| |V« for x € S by Theorem D.15 of [7].
Since w =<1 it follows that V@V’ e R(S,w). Let A denote the linear span of the set of
functions of the form x—(V, £, &) with V e R(S,w) and £ € Hy. Then A is a self-
conjugate subalgebra of C,(S). Since R(S,w) separates the points of S, the algebra A
separates the points of S. We claim that for every x € S there is f € A with f(x) # 0. For
suppose that z e § is such that V, =0 for every w-bounded *-representation V of S. Then
Vi: =V, =V,=0and so xz = zx = z for every x € S. This implies that z is a zero element
for S. However, as in the proof of Theorem 5.1, w =1, and so the identity semicharacter
x =1 defines an element of R(S,w)—a contradiction. Hence there is V with V, #0, and
so f € A with f(z)#0.

Let v be a non-zero element of M(S,w). Then u=w. v is in M(S), and clearly
lw|=w.|v|. We claim that A is dense in L'(S,|v|). Now, by Corollary 3.2, A is dense in
L'(S,|ul). The Banach space dual of L'(S,|v|) is L*(S,|v|) (equivalence classes of
bounded functions) in the usual way. Let ¢ € L™(S,|v|) and suppose that

L () (x) d [v] () = 0

for all f € A. Let f; € A be fixed. Then

fs () ()f(x) d V] (x) =O.
for all f € A; that is

J [0 2] ) ) =0,

w(x)
for all f € A. However, ¢fg/w is a function bounded on S. Therefore

e(x)fo(x)

w(x) =0 (u a.e.),

and so [p|{({xeS:e(x)#0}N{x e S:f(x)#0})=0 for all f,e A. But the open sets
{x e S:fo(x)# 0}, as f, varies over R(S,w), cover §, by what we have shown above.
Therefore |uj{x € S:o(x)#0}=0, and so ¢ =0, u a.e. However |u| and |v| have the
same null sets and so clearly A is dense in L'(S,|v|]) since the only continuous linear
functional on L'(S, |v|) that vanishes on A is zero.

To show that M(S,w) is semisimple, let v € M(S,w) be such that every bounded
x-representation T of M(S,w) has T, =0. Then, by Theorem 5.2 of [8],

L (Vi&, m) dv(x) =0

for all w-bounded Borel measurable *-representations V of S. Therefore

ff(x)dv(x)=0
s
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for all f € A, and so, since A is dense in L'(S,|v|), for all f e L'(S,|v]). In particular,
choose f of modulus 1 such that |v|=f. v. Then f € L'(S,|v]), and so

jldlvl(x)=0,

so that v =0. Therefore M(S, w) is semisimple.
Combining this result with Theorem 5.4 of [8] we obtain the following result.

THEOREM 6.2. Let S be a foundation topological semigroup with involution * (not
necessarily commutative). Let w be a weight function on S with w(x) =w(x*)<1 forx e §.
Suppose that S contains no zero element. The following conditions are equivalent.

(i) The Banach *-algebra M(S,w) is *-semisimple.

(i) The Banach *-algebra M,(S,w) is *-semisimple.

(ii1) R(S,w) separates the points of S.

REeEMARK. In contrast to the situation for commutative semigroups, the hypothesis
that w is bounded seems to be essential to our method of proof. Let A be as in the proof
of Lemma 6.1. In general A is not an algebra; all we know is that if fis in the linear span
of all functions of the form (V.. ¢, &) with V e R(S,1), £e Hy, and ge A then
f.g € R(S,w), which only tells us that A is an algebra if w <1. From this fact it is
possible to prove that if R(S) separates the points of S and there is f € R(S, w) such that
f(x)>0 for all x € § then M(§,w) is semisimple without any conditions on w, but the
argument does not seem to lead to a proof that (iii) implies (i) in Theorem 6.2. In the
commutative case we were able to avoid this problem by using the trick in the proof of
Theorem 4.2 of [9] which makes it possible to construct elements of § from elements of
I',. We have not found any similar trick for the non-commutative case. However it
appears to the authors that semigroups and algebras with weights satisfying w(x) <1 are
probably of more interest that those for which w(x)= 1.
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