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SEMILINEAR ELLIPTIC NEUMANN PROBLEMS WITH
RAPID GROWTH IN THE NONLINEARITY

JASON R. LOOKER

The existence and regularity of solutions to semilinear elliptic Neumann problems
are investigated. Motivated by the Poisson-Boltzmann equation of biophysics and
semiconductor modeling, the nonlinearity is assumed to be a continuous, strictly
monotone increasing function that passes through the origin with asymptotically su-
perlinear and unbounded growth. Pseudomonotone operator theory is utilised to
establish the existence and uniqueness of a weak solution in the Sobolev space W1'2.
With an additional assumption on the nonlinearity, we show that this weak solution
belongs to W^nL°°.

1. INTRODUCTION

The existence of a solution to the nonlinear Poisson equation with a Neumann bound-
ary condition is sought in the Sobolev space W1>2 (also known as H1). The nonlinearity
is a continuous, strictly monotone increasing function that passes through the origin with
asymptotically superlinear and unbounded growth. Higher regularity of the solution will
be investigated under the additional requirement that the nonlinearity grows faster than
any polynomial.

The nonlinear Poisson equation

-Au + /(u) = g,

has been studied extensively by numerous researches; see [5, 20, 22, 24] for an overview.
Existence has been established when the nonlinearity is in some sense bounded, or is
unbounded but obeys a bounded growth condition; for example [9, 10, 11, 14, 18, 19].
These conditions can be relaxed at the expense of restricting the solution space. If the
nonlinearity has unbounded growth, then there exists a solution of the Dirichlet problem
in the Sobolev space Wo

l>2; see [2, 6, 7, 13, 16]. Strongly nonlinear elliptic boundary
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162 J.R. Looker [2]

value problems where no growth restrictions are imposed on the nonlinearity have also
been investigated in [12, 23]. For instance in [12], a solution is shown to exist in the
space Wi<q (1 < q < oo) such that /(u) and f(u)u are elements of the Lebesgue space Ll.
Unfortunately, the nonlinear differential operators considered in these papers are assumed
to obey a coercivity condition, which does not seem to be applicable to the Laplacian
when a solution is sought in W1'2, as opposed to W0

lt2. It appears that noncoercive
semilinear elliptic Neumann problems with unbounded growth in the nonlinearity, have
not been extensively studied in the literature.

An example of a nonlinear Poisson equation with rapid and unbounded growth in
the nonlinearity is the Poisson-Boltzmann equation that arises in biophysics [13]. In
particular it is ubiquitous in colloid science [15, 21]. There is also a close link between
this equation and the phenomenological theory of electron and hole transport in semi-
conductors [16, 21]. The Poisson-Boltzmann equation with a constant charge boundary
condition is given by

N

(1) -Au(x) = 4TT J^ ZjUf exp(-z>«(x)) in Q,
i=i

du
(2) 'dn = ~a o n 9 n >

where u: Q —• E represents the equilibrium electrostatic potential, z7 € Z \ {0} are the
valencies and n|° > 0 the bulk ionic concentrations of the jth ionic species (j = 1, . . . , N)
of the electrolyte, while a is the (constant) surface charge density. The operator d/dn
is the normal derivative on 3fi. All quantities have been rendered dimensionless for
convenience. The Zj and nf satisfy the bulk electroneutrality condition

so that if a = 0, the unique solution to Equation (1) is u = 0.
Motivated by the Poisson-Boltzmann system, the following nonlinear Poisson equa-

tion will be studied

(4) -Au(x) + f{u(x)) = g(x) in Q,

(5) ^ = h on an,
on

where g € H^Q) D L°°(fi) and h 6 L2(dQ) n L°°(dn). Equation (5) is assumed to hold
in the trace sense [4, 17], while the domain fl C Rd with d > 1 is bounded and of class
C0-1 (for example, piecewise Lipschitz) [17]. The assumptions on the nonlinear function
/ are:

(Al) / : R -> R with / continuous;
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(A2) / (0)=0;
(A3) / is strictly monotone increasing, that is,

for all s, t € R with s ^ t;

(A4) there exist Cf, Cj > 0 such that

lim + and lim ^ ^ C7;
l t-¥-oo t 't-H-oo t

(A5) for higher regularity we require

limP-oo,
|t|-»oo | t |"

for all n € N.

Observe that |/(t)| grows without bound as t —¥ ±oo.
We wish to prove that the nonlinearity of the Poisson-Boltzmann equation,

N
f(t;z) = -47r^zjnf exp(-2it),

i=i

obeys assumptions (A1)-(A5); to exhibit this nonlinearity's dependence on the valency
Zj, we have adopted the notation f{t;z) where z = (zi,Z2,. • -,ZN). Commencing with
(Al), since / is smooth, it must also be continuous. Equation (3) gives /(0;z) = 0.
Differentiating / ,

N

f'(t;z) = 4w53ajnfexp(-z,-t) > 0,
>=i

for all t € R, which follows from nf > 0. Note that / does not have to be differentiable
for (A3) to be true. Assumption (A4) follows from (A5) with n = 1. To prove (A5), we
first observe that

/(*;*) = -/(-*;-*)•

Let t < 0. The monotonicity of / plus /(0) = 0 give

\f(t;z)\ = -f(t;z)
= H-t;-z)
= f(\t\\-z).

Now let t ^ 0. The monotonicity of / plus /(0) = 0 also ensure

\f{t;z)\ = f(\t\;z).
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Therefore

The function f(\t\; z) can be expressed as

f(\t\ • z) = -4TT J2 Zjn°°eM-*i I'D ~^J2 ^nf exp(-z, \t\).
Zj>0 »,<0

Since the first term decays to zero while the second term grows exponentially as \t\ -» oo,

This limit remains unaltered if z is replaced with — z. The desired result then follows
from Equation (6). In fact, the nonlinearity of the Poisson-Boltzmann equation obeys
assumption (A5) for all n € R+.

NOTATION. A generic point in Rd is represented by i. If F(fl) is a space of functions
with domain fi, then

) {u •• ft -+ R | u € F($) for each $ CC

and
F0(Q) = {u : Q -»• R | u € F(Q) and Tu = 0 on

where T is the trace operator. The d-dimensional Lebesgue measure is given the symbol
m( •). The (real) Lebesgue space L2(f2) and the (real) Sobolev space ff^fi) =
are equipped with their usual norms,

ll/lltJ(n) = ( i / 2 d m ) 1 '
/ r r \ V2

ll/ll™ =
where the gradient is to be interpreted as a weak derivative. The dual space of a generic
Banach space X will be denoted by X*. The value of the functional / € X* at u €
X is given the symbol (/, u). The symbols "-»" and "-»•" represent strong and weak
convergence, respectively.

2. BACKGROUND THEORY

Before commencing our search for the existence of a solution to Equations (4) and
(5), we wish to discuss exactly what we mean by a solution. A classical C2(Q) solution
is obviously desirable. However, what are the minimum requirements we can reasonably
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place on a solution to Equations (4) and (5)? After all, the fewer demands we place on

a solution the easier it will be to prove its existence. Therefore we begin by denning a

more general notion of a solution with the criteria that a classical solution must also be

a generalised (weak) solution.

First assume u is a classical solution of Equation (4). Then multiplying Equation

(4) by v € C°°(Q) and integrating by par t s gives

(7) / Du-Dvdm+ / f(u)vdm= / gvdm+ / hvdS.
Jn Jn Jn Jan

If it is no longer assumed that u is a classical solution of Equation (4), then does a
function u that satisfies Equation (7) exist in a broader class of functions? A function u
that satisfies Equation (7) for all smooth test functions v shall be called a weak solution
of Equations (4) and (5).

From Equation (7) it can be seen that we now only require u e C^O). However,
since a weak solution must only have integrable (in the sense of Lebesgue) first order
partial derivatives, it need not possess a classical first derivative at all points in fi. That
is, if the set of points in fi where Du does not exist has Lebesgue measure zero, then
Equation (7) may still make sense. This enables us to interpret the derivatives in Equation
(7) as weak derivatives. Then the minimum requirements on a weak solution are that it
must have first order weak partial derivatives that are square integrable. Therefore we
seek the existence of a weak solution u € H1 (fi) that solves Equation (7) for all smooth
test functions v.

There are two main difficulties in establishing the existence of a solution in Hl(Q)
to Equation (7): Firstly, the rapid nonlinearity of / means that it is not immediately
apparent that Equation (7) makes any sense for u,v € i/l(fi). Secondly, the classical
existence theorems of nonlinear functional analysis require that we work with coercive
operators, and it is not obvious that the left hand side of Equation (7) induces a coercive
operator in Hl(Q). To overcome these difficulties, the following strategy will be employed:

1. define a related coercive operator by introducing a small perturbation to
Equation (7);

2. truncate the nonlinear function / to obtain a bounded operator;

3. recast this new perturbed and truncated equation in terms of an operator
equation;

4. establish the existence of a solution to this operator equation;

5. take limits, in some sense, and prove that the limit function satisfies Equa-
tion 7.

Since the nonlinear function / is assumed to be monotone, nonlinear monotone
operator theory will be employed to establish the existence of a solution to Equation 7.
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DEFINITION 1: Let A : X —> X* be an operator on the real reflexive Banach space
X. Then A is pseudomonotone if and only if Uj -*u'm X and

implies

limsup (AUJ,UJ - u) ^ 0,

(Au, u — v) ^ lim inf (AUJ, Uj — v),

for all v € X.

LEMMA 1 . Let A: X —> A"' be a coercive operator on the real Banach space X,

that is,
(Au, u)

hm \ , , ' = +oo.
|||| ||||

Tien for each b € X*, if there exists a solution to

the solution set is bounded.

P R O O F : See Zeidler [24]. D

The following classical theorem will be central in our proof of the existence of a weak
solution to Equations (4) and (5).

THEOREM 1 . (Brezis, 1968) Let A:X -»• X* be a pseudomonotone, bounded and
coercive operator on the real, separable and reflexive Banach space X. Then for each
beX*,

Au = b, ue X,

has a solution.

P R O O F : See Zeidler [24]. D

3. PRELIMINARY RESULTS

The solution strategy described in Section 2 is commenced by seeking a solution to
the following perturbed (or, regularised) problem:

(8) e / uvdm+ / DuDvdm+ I f{u)vdm = {b,v),
Jn Jn Jn

for any fixed bounded linear functional b and e > 0. Then for V = Hl(Sl) the bilinear

form
£e{u, v) = e I uv dm + I Du • Dv dm,

Jn Jn
is well defined for u,v £V and
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is a bounded linear functional on V. Thus it induces a map Le: V -¥ V* by the rule

(9) {Ltu,v) = tt{u,v).

The map Le has a number of very useful properties, in particular it is coercive.

LEMMA 2 . Let Le: V -+ V be defined by Equation (9), then:

(i) Lc is a bounded linear operator with \\LC\\ < 2M£, where Mc = max{l,e};

(ii) Le is a coercive operator, that is,

||u||v-»oo ||u||v

for e > 0;

(iii) Le is a monotone operator, that is,

(Leu - Lev, u - v) ^ 0,

for all u, v € V;

(iv) Le is a symmetric operator, that is,

(Leu,v) = (Lev,u),

for all u, v € V;

(v) Lc is strongly continuous, that iSjUj-^u in V implies that L€Uj -» Leu in

V.

P R O O F : The proof of this lemma is straightforward, so only the key properties will

be established. In what follows, u, v e V.

(ii) The coercivity of Le follows from

= rne\\n\\l,
where me = min{l,e}. Hence

and so Le is coercive for e > 0.

(v) Let Uj -* u in V, then

= sup (Lc(u-Uj),v)
IMI

= sup (Lev,u-Uj).
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Therefore lim \\Lsu — LcUj\\v. = 0, since Lev € V*. The linearity and symmetry of Le

were crucial here. Q

Following Webb [23], we observe that the term involving f(u) does not induce a
mapping from V to V* because no growth restriction is made. To correct this we employ
the truncation

(fit), if \f(t)\<n
/»(*) = < f{t) +, .

[ n _ _ otherwise.
Then for fixed n

an{u,v)= / fn(u)vdm,
Jn

is defined for all u, v e V, and

\an{u,v)\ ^ / n\v\ dm
Jn

^n||u||L2(n),

by Holder's inequality. Thus
Vi-KXn(u,v),

defines an element of V* and induces the map Sn • V —> V* by the rule

(10) <Sf,tl,t/)=<7n(tl,t7).

LEMMA 3 . Let Sn : V -> V be defined by Equation (10), then Sn is a pseu-
domonotone operator.

PROOF: Let Uj —»• u in V such that limsup^ (SnUj,Uj - u) ^ 0, for n fixed. First
observe that for all v €V,

(SnUj, Uj - V) < CO,

since Q is bounded. Therefore (SnUj, Uj —v) is a bounded sequence of real numbers.
Consequently there exists a subsequence {ujk} C {UJ} such that [3]

limk{Snujk,ujt - v) = \\m.inij(SnUj, Uj-v).

Then for any subsequence {uJt |} C {ujh} and all v € V,

(11) lim inft {Snuhi, uiki -v) = lim inf, (SnUj ,Uj-v).

The weak convergence uik -*• u in V implies there is another subsequence {ujk }

C {ujk} such that Ujki —t u in L2(fi), by the Rellich-Kondrachov compactness theo-

rem [5, 17]. Moreover, we can assume that Ujk -> u pointwise almost everywhere in Q.

The continuity of /„ implies that /n(u>fc)) -»• / n(") pointwise almost everywhere in fi.
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Furthermore, for any v e V, \fn{vjk)v\ ^ n\v\. Since n is fixed and v € L}(Sl), n\v\ is
integrable, therefore Lebesgue's Dominated Convergence Theorem gives

/ /»(u)w = lim, I fn{ujk)v.
Jn Jn

Assumptions (A2) and (A3) yield the sign condition f(t)t > 0 for alH € K, which also
applies to /„, so by Fatou's Lemma,

/ /n(u)u^liminf, / fn{Ujk)v,jk.
Jn Jn

Combining these,

(Snu, u-v)= / /n(u)(u - v)
Jn

^ liminf, / fn{ujk){uik -v)
Jn

= lim inf( (Snujki, uiki - v),

for all v G V. Setting Ujki = Ujki in Equation (11) and using the above result, we obtain

(Snu, u - v) ^ lim infj (SnUj, Uj - v),

for all v € V. D

The following lemma is due to Webb [23].

LEMMA 4 . Under assumptions (Al) to (A3), if {un} is a sequence in V with

un -*• u in V and / /n(un)un ^ C for some C > 0 and for all n, then f{u)u G Ll(Q)

PROOF: See Webb [23].

4. THE EXISTENCE THEOREM

THEOREM 2 . Let ft be a bounded domain of class Co>1 and iet / obey assumptions
(Al) to (A4). Then for any g € L2(Sl) and h € L2(9fi), tiere exists a unique u e Hl(Cl)
such that f(u) e Ll(Q) and f(u)u € L1{Q) and

(12) [ Du-Dvdm+ [ f(u)v dm = [ gvdm+ f hTv dS,
Jn Jn Jn Jen

for alive #J(fi) n L°°(Q) and for v = u.

PROOF: Let V = H1^!), then V is a real Hilbert space and is therefore a separable
and reflexive Banach space. Let Lc,Sn:V -» V* be defined by Equations (9) and (10),
respectively. It follows that Le + Sn is pseudomonotone because the sum of a strongly
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continuous and a pseudomonotone operator is again pseudomonotone [24]. It can easily
be shown that Lc + Sn is bounded for fixed n. We calculate

((Le + Sn)u,u) = (Leu,u) + (Snu,u)

= (Leu,u) + [ fn(u)u
Jn

2 (Leu,u),

by the sign condition fn(t)t > 0 for all t G R, which follows from (A2) and (A3). Thus

((Le+Sn)u,u)
j = +OO,

||u||v-+oo ||u||v

by the coercivity of Le, and so Le + Sn is coercive for all u € V and e > 0. Hence for
each b G V* there exists a ue

n € V that satisfies

(13) {L. + Sn)< = b,

by Theorem 1.
By Lemma 1 there exists a C{ > 0 such that ||u^||v < C\. Therefore, as V is a

reflexive Banach space, there exists a subsequence {u^} C {u*} such that ue
n. -»• ue in

V. Furthermore, Le is bounded and thus \\Ltu*n\\v < C\ for some C\ > 0. Equation (13)
yields

n

Thus by Lemma 4, f(u£)ue € Z-1^) and fnj(u
e
n.) -*• f(ue) in L^fl). The strong con-

tinuity of Le implies Leu
e
n. —* Leu

e in V*. It follows that for fixed e > 0 and for any
v G V n L°°(n), after letting j -+ oo,

(14) {LEu*,v)

Observe that the convergence of the integral follows from Holder's inequality. Equa-
tion (14) also holds for v = ue, because ue € V and by Lemma 4, f(uc)ue G L1^).

This concludes our search for a solution to the perturbed problem, Equation (8).
We are now required to take the limit e -+ 0.

We claim that ||ue||y ^ R, where R > 0 is independent of e. To prove this we

begin by obtaining a lower bound for / f(ue)ue. Indeed, (Al) to (A4) imply there exist
Jn

Cj, CJ > 0 such that f{t) ^ Cjt if t > 0 and f(t) ^ Cjt if t < 0. Therefore f(t)t 2 Cft
2

for all teR, where Cf = min{Cf,Cj}, and

L
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This lower bound in conjunction with Equation (14) gives

(b, uc) = e||tii£3(n) + \\Du%,m + f / («>«
Jn

sHIfluilWi)+/"/(«>'
Jn

where Cf = min{l, Cj}. Finally, this calculation implies that

Wv^lHiHKiiv.

Hence ||u£||v < R, where R = \\b\\v/Cf > 0 and is independent of e.

Let e = en where {en} monotonically decreases to zero as n -> cx>, un = ue" and
Ln = Len. The bound on un in V implies that there exists a subsequence {un>} C {un}
such that un> —»• u in V as j —* co. Furthermore, for all v 6 V n L°°(fi),

(15) / enw"v ->• 0, as n -> oo,
Jn

by Holder's inequality. This is also true if v = u". Using the bound on u" in V, the bound
on Le obtained in Lemma 2 (which is independent of e for 0 ̂  e ^ 1) and Equation (14)

we obtain / / («" '>" ' < C. So by Lemma 4 we have f(u)u € L 1 ^ ) and f{un') -> /(u)

in L^^) ' an(i ^ before for any o s V n L°°(fi) and for v = u,

(16) /" /(un')u -+ f f(u)v, as j ^ oo.
Jn Jn

Define the bounded linear map L: V —> V* via,

Dv • Dw,
t

for v, w € V. Then un> —*• u in V and Equation (15) imply that

(17) (Lnju
n',v) = f enju

n'v + (Lv,un') -> f DuDv, as j -> oo,
Jn Jn

since Lv € V*; this also holds for u = u. Finally, defining e = en> in Equation (14), using
Equations (15) to (17) and sending j -> oo yields, for each 6 € V ,

(18) f DuDv+ f f(u)v = (b, v),
Jn Jn

for all v e V n Z,°°(Q) and for t; = u.

(Lv,w)= f .
Jn
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To prove that the solution to Equation (18) is unique, let Ui and u2 satisfy Equa-
tion (18) and observe that the strict monotonicity of / implies

f \D(m - u2)\
2 + f (/(Ul) - /(t*2))(tn - u2) > 0,

Jn Jn

for ui 7̂  u2. Since U\ and u2 both satisfy Equation (18), they must satisfy

f D(Ul -u2)-Dv+ f (f(Ul) - f(u2)) v = 0,
Jn Jn

for all v € V n L°°(Q). Setting v = U\ — u2 we obtain a contradiction unless uj = u2.

It remains to show that the functional defined by

(19) (b,v)= [ gvdm+ [ hTvdS,
Jn Jan

is an element of V* for g e L2(Q) and h € L2(dSl). To this end, for v 6 V with ||u||v ^ 1,

{b,v)^\\g\\L2{il)+C\\w\\v,

by Holder's inequality and the Trace Theorem [1, 17], where w 6 V with Tw = ft.
Therefore b € V*. Finally, Casas and Fernandez in [4, Lemma 2] and Kufner in [17,
Theorem 6.9.2], give that Tv € L2(dQ) n L°°(dfi) whenever v e V D L°°(fi). It can now
easily be shown that b G (V n L°°(fi))*. D

5. T H E REGULARITY THEOREM

In this section we show that the weak solution of Equation (4) exhibits higher regu-
larity than a function in H1^). For simplicity the test functions shall be chosen in the
space HQ(Q)HL°°(Q). AS a result, the regularity of the solution will be investigated only
in the interior of fi, that is, away from dQ.

THEOREM 3 . Let fl be a bounded domain of class C0'1 and let f obey assumptions
(Al) to (A3) and (A5) with g e L2(Q). Suppose furthermore that there exists u e H*(fi)
such that f(u) e Ll(ty and f(u)u € Ll(Q) and

(20) / Du-Dvdm+ / f(u)vdm= / gv dm,
Jn Jn Jn

for alive Hl(ty n L°°(fi) and for v = u. Then u e tf,20c(fi) D L°°(ft) and satisBes

-Au + f(u)=g,

almost everywhere in fl. Furthermore, for each open subset U CC fi we have the estimate

(21) \\u\\HHU) ^ c(\\g\\LHtl) + \\u\\LHn) + | |/(«

the constant C depending only on U and fi.
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P R O O F : Assumption (A5) implies that for each n there exists Rn> 0 such that

(22) \f(t)\>\t\n, for * € R with \t\ > R*.

Introduce the set

By assumption u € Ll(£l), now assume that u € Ln(Q) for some fixed n e N. We wish
to show that u e Ln+1(Q). To this end,

In
<oo,

by Equation (22) and the hypotheses of the theorem. Therefore u G Ln+1(Q). It then
follows from the principle of mathematical induction that u G Ln(Sl) for all n e N. Since
fi is bounded, we also have u e L°°(fl).

The monotonicity of / plus the boundedness of fi also ensure /(u) G L°°(fi). The
proof of the theorem now follows directly from standard linear elliptic regularity theory [5,
8, 20]. D

6. DISCUSSION

Having proven Theorem 2, we are left pondering the question: in what sense does our
weak solution satisfy Equations (4) and (5)? In particular, defining a normal derivative
operator in Hl{Sl) is extremely problematic, so in what sense does our weak solution
satisfy the Neumann boundary condition? These questions have been answered by Casas
and Fernandez [4] who prove that, if g G Hl(Q) n L°°{Q) and h G L2{dQ.) n L°°(dQ),
then u G Hl(il) satisfies Equation (12) if and only if u satisfies Equations (4) and (5) in
the sense of distributions. Note that Theorem 2 is sufficient to prove that a numerical
solution to Equations (4) and (5) may be sought via the finite element method. This is
significant because the boundary conditions are purely Neumann.

Equation (18) was obtained with no mention of boundary conditions. In partic-
ular our results are also valid for Dirichlet boundary conditions. In fact, the problem
is dramatically simplified if a solution is sought in #o(fi) since it can be shown, via
the Poincare-Friedrichs inequality, that in this space the Laplacian induces a coercive
operator. Hence there is no longer a need for regularisation, and the only assumptions
on the nonlinearity that are required for existence are continuity and the sign condition
f(t)t ^ 0 for all t G R. Also, a variational technique may be more appropriate when a
solution is sought in HQ(Q,).
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Even greater regularity of the solution to Equation (4) can be obtained from Theo-
rem 3. This follows from the imbedding of Wkj> in C, the space of continuous functions.
Therefore since u e #,20C(ft), and if d = 1,2,3, then u € C(fi) [1, 17].

Finally, Theorems 2 and 3 also remain valid for uniformly elliptic second order
equations of the form,

where a, 0 are d-dimensional multiindicies with aap 6 Cx(f2) and aQp = apa, and in
addition to (A1)-(A5), / is assumed to be measurable in its first argument [23].
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