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Abstract

Structured latent curve models (SLCMs) for continuous repeated measures data have been the subject of
considerable recent research activity. In this article, we develop a first-order SLCM for repeated measures
count data where the underlying change process is theorized to develop in distinct phases. Parameters of
the multiphase or piecewise growth model, including changepoints, are allowed to vary across individuals.
Exposure is allowed to vary across both individuals and time. We demonstrate our modeling approach on
empirical expressive language data (grammatical morpheme counts) drawn from multiple distinct corpora
available in the Child Language Data Exchange System (CHILDES), where the acquisition of grammatical
morphology is understood to occur in distinct phases in typically developing children. A multiphase
SLCM is fit to summarize individuals’ data as well as the average developmental pattern. Change in time-
varying dispersion (unexplained variability in morpheme counts) over the course of early childhood is
modeled concurrently to provide additional insights into acquisition. Unique characteristics of count data
create modeling, identification, estimation, and diagnostic challenges that are exacerbated by incorporating
growth models with nonlinear random effects. These are discussed at length. We provide annotated software
code for each of models used in the empirical example.

Keywords: multivariate count data; morpheme; nonlinear random effects; piecewise growth models; structured latent curve
models; expressive language

1. Introduction

With advances in real-time data collection technology, multivariate count data are collected with
increasing frequency in the measurement of a latent construct over time, where the underlying change
process is often nonlinear. For example, the development of grammar (i.e., morphology and syntax)
in General American English (GAE) is understood to follow a linear-linear multiphase process in
typically developing children, with an initial phase of rapid acquisition occurring between 2 and 4
years of age followed by a period of more gradual, sustained development and mastery (e.g., Marchman
& Bates, 1994; Zukowski & Bernstein Ratner, 2024). One popular measure of GAE morphosyntactic
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Table 1. Brown’s (1973) grammatical morphemes (BGMs) in order of acquisition

Morpheme Typical age of Brown’s (1973)

type (item) Morpheme Example acquisition (in months) developmental stage

1 Present progressive Baby crying. 27–30 II

2 In Juice in cup. 27–30 II

3 On Book on table. 27–30 II

4 Regular plural Daddy have tools. 27–30 II

5 Irregular past Dog ate bone. 31–34 III

6 Possessive Jake’s apple. 31–34 III

7 Uncontractible copula This is mine. 31–34 III

8 Articles A red apple. 35–40 IV

9 Regular past He jumped high. 35–40 IV

10 Regular third person Susie drinks. 35–40 IV

11 Irregular third person Kitty has a toy. 41–46 V

12 Uncontractible auxiliary She was running. 41–46 V

13 Contractible copula It’s cold outside. 41–46 V

14 Contractible auxiliary Mommy’s crying. 41–46 V

Note: Adapted from Table 38 in Brown (1973) as well as Marchman & Bates (1994), Miller & Chapman (1981), and Zukowski & Bernstein
Ratner (2024). For Stages II–V, Brown (1973) defined the criterion for acquisition of a morpheme type as when that morpheme type is used
in at least 90% of “obligatory contexts” in “three successive samples” of oral language. An in-depth discussion of obligatory contexts may
be found in Brown (1973), particularly pages 254–255.

development involves counting the number of times various grammatical morphemes (see Table 1)
are correctly used within an oral language sample. Brown (1973) posited that these 14 grammatical
morphemes are acquired at different stages of GAE expressive language development that track with
chronological age in typically developing children, where all 14 morphemes are usually attained by about
4 years of age.

Expressive language disorders may be identified when a child’s acquisition of these morphemes falls
below age expectations (e.g., Calder et al., 2022; Leonard & Schroeder, 2023). However, while collecting
counts of Brown’s (1973) grammatical morphemes (BGMs) has been expedited by technological
advances in voice recording, transcribing, and language analysis, substantial logistical challenges remain
in analyzing these data for clinical use on a large scale. Currently, a clinician must painstakingly review
each language sample from each child to evaluate the number of times each BGM was used correctly
(i.e., in an “obligatory context”; Brown, 1973).

One potentially more tractable alternative might be to use piecewise growth models (e.g., Cudeck &
Harring, 2010; Kohli & Harring, 2013) to analyze change in the frequency and unexplained variability
with which BGMs are used while accounting for exposure (i.e., the number of utterances defining the
length of an oral language sample, which often varies across individuals and measurement occasions)
and individual variability in age(s) of assessment, age of expressive language emergence, rate of
grammar acquisition between 2 and 4 years of age, and the age at which a child transitions from
acquisition to mastery. Speech and expressive language disorders might then be identified by evaluating
whether predicted individual trajectories meaningfully deviate from the population average trajectory
in typically developing children, potentially facilitating large scale diagnosis and treatment that can
keep pace with data collection efforts. This quantitative approach applied to a large sample drawn from
multiple corpora may also yield additional insights beyond what Brown (1973) was able to discover
through his classic investigation of only three children, as current clinical expectations for the timing
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and ordering of children’s acquisition of BGMs continue to be based on samples typically smaller than
100 children total (e.g., Paul & Alforde, 1993; Zukowski & Bernstein Ratner, 2024).

For example, of Brown’s (1973) 14 grammatical morphemes (Table 1), “in” is one of the first
morphemes acquired by typically developing native GAE-speakers. Although production of “in” is
known to be sensitive to input and language sampling context, issues with the production of “in” may
foreshadow issues with both expressive language development overall and more strictly grammatical
(as opposed to lexical) morphemes that are typically acquired later in childhood (e.g., Clark, 1973;
Morgenstern & Sekali, 2009). Interestingly, of Brown’s (1973) 14 grammatical morphemes, production
of “in” also appears to follow the most distinctly multiphasic trajectory over the course of early childhood
in the combined sample of children drawn from across multiple corpora. In the left-most panel of
Figure 1, one can see the frequency with which typically developing children produce the morpheme
“in” increases rapidly between 1.5 and 3 years of age but then levels off. Simultaneously, in the right-
most panel of Figure 1, unexplained variability in use of this morpheme drops dramatically between
1.5 and 3 years of age and then remains low. Collectively, these trajectories suggest acquisition of the
morpheme “in” might be evidenced, among typically developing children, by an increase in explained
use, which may prove to be a facile manifestation of correct use. Facilitating scalable clinical evaluation of
the correct use of “in” may expedite early identification of broader developmental issues or predict later
grammatical issues, potentially providing the opportunity for earlier intervention and better outcomes.

Processes in which change occurs in distinct phases, such as the acquisition of GAE grammar, can be
modeled using piecewise or spline functions (e.g., Cudeck & Klebe, 2002; Seber & Wild, 2003). Piecewise
growth models are quite flexible and can accommodate a variety of scenarios inadequately represented
by mathematical functions for single-stage change processes (Grimm et al., 2011; Sterba, 2014). Fitting
these models to repeated measures data that exhibit distinct phases allows one to evaluate when
transitions from phase-to-phase might occur while also permitting the growth trajectory within each
phase to be tailored to fit the localized data with growth parameters that directly relate to characteristics
of the underlying process.

With that said, the interpretation and utility of a multiphase model and freely estimated change-
point(s) depend on the empirical context. In the evaluation of use of the morpheme “in” over the
course of early childhood, quantifying the population average age of transition from an initial phase
of rapid development (phase 1) to a subsequent period of more gradual, sustained development and
mastery (phase 2) in typically developing children may help inform when children ought to be assessed
for expressive language disorders, such as late language emergence. More specifically, if (a) typically
developing children are expected to transition to slower, sustained development at a certain age and
(b) the leveling off of both frequency and unexplained variability in use of the morpheme “in” at this
age means acquisition of this morpheme is complete, then the population average age of transition
may be a reasonable time to consider evaluating a child’s acquisition of the morpheme “in.” Assessing
a child’s mastery of this morpheme too soon may result in a child being misidentified as potentially
having an expressive language disorder due to the rapid development that is still occurring, while
assessing too long after the population average age of transition may compromise the efficacy of targeted
interventions and potential future outcomes for the child. Comparing a child’s individual trajectory
and changepoint to the population average trajectory and changepoint among typically developing
children may help identify children who fall below age expectations. For example, transitioning to
slower, sustained development (phase 2) after the population average age may correspond to the child
settling into a potentially long-term lower-than-average level of production of the morpheme “in.” For
an individual morpheme, this may not mean much in terms of a child’s overall level of morphosyntactic
development, but if a similar pattern is noted for other BGMs, further clinical evaluation and monitoring
may be warranted.

Although several statistical frameworks exist to accommodate piecewise functions, we extend the
structured latent curve model (SLCM; Browne, 1993) developed by Harring et al. (2021) to account for
potentially non-monotonic, nonlinear trajectories comprised of two or more phases. These authors also
demonstrated how transition times (knots, changepoints) could be freely estimated model parameters
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Figure 1. Cross-sectionally estimated NB2 log expected BGM2 production rate and dispersion parameter by chronological age.

Note: BGM2 denotes Brown’s (1973) second grammatical morpheme, “in” (see Table 1). NB2 denotes the Negative Binomial distribution with mean μ, dispersion ϕ, and quadratic variance function μ+ϕμ2.

Sample characteristics are provided in Table 3.
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that are either held fixed or allowed to randomly vary across individuals. However, this SLCM approach
has its own (mathematical rather than logistical) challenges. Longitudinal BGM counts evaluated to
assess GAE morphosyntactic development, for instance, must be modeled as arising from a counting
process to avoid challenges interpreting parameter estimates, confidence intervals, and predictions that
imply negative morpheme counts, especially when counts are small, as they generally are in very young
children. Computational difficulties may arise when estimating a nonlinear change process with linear
and nonlinear random effects connected to observed counts via a nonlinear link function with multiple,
time-varying dispersion parameters that may vary widely in magnitude and even follow their own
trajectory.

The remainder of this article is divided into four major sections. First, we describe count data and
how such data are generally modeled. We then introduce a first-order multiphase SLCM for count
response data in which the growth parameters—including changepoints—are unknown and allowed to
vary across individuals and exposure is permitted to vary across both individuals and time/assessments.
Although typical acquisition of the morpheme “in” may follow a linear-linear trajectory in the empirical
example, the proposed model permits non-monotonic change over the entire measurement period
that may occur in more than two phases, where the functional form of change within a given phase
is tailored to adequately summarize the main characteristics of the developmental process (Harring
et al., 2021). We also demonstrate how to incorporate a trajectory describing concurrent change in time-
varying dispersion (unexplained variability in morpheme counts) over the course of early childhood to
provide additional insights into acquisition. Second, we discuss at length a number of analytic challenges
and considerations surrounding model assumptions, the empirical evaluation of those assumptions,
model identification, and model estimation. Third, we present the count data used in the empirical
example, morpheme counts drawn from young children across multiple distinct corpora in CHILDES
(MacWhinney, 2000), in greater detail. The results of an analysis of this data are presented, focusing
on the interpretation of model parameters and corresponding graphical representations of typical and
individual behavior. The proposed model is estimated using existing methods and software, and we
highlight particular decision points as we step through the analysis. Lastly, we provide concluding
remarks and discuss limitations and future directions, including how the basic SCLM can be extended
to second-order growth processes.

2. Modeling counting processes

The development of latent growth models (LGMs) for count responses—along with corresponding
estimation and fit assessment methods—has involved intertwining advancements in the statistical
literature of both observed and latent variable models. We briefly review these developments and
opportunities in modeling multiphasic latent growth measured by one or more count indicators assessed
repeatedly over time by building the complete model from the ground up—i.e., from the observed
data up to the hypothesized data-generating latent structure that is typically of primary interest, where
the observed and latent variables are connected by measurement models. First, we highlight key
characteristics of univariate count data and the processes by which they are generated. We then describe
measurement and structural models for count response data and consider potential paths forward for
extending count data LGMs to accommodate multiphasic latent trajectories.

2.1. Univariate count data
Count data may assume any nonnegative integer value and are typically highly skewed. Count data
can be empirically (unconditionally) equidispersed when the empirical mean and variance are equal,
empirically underdispersed when the empirical mean exceeds the empirical variance, or empirically
overdispersed when the empirical variance exceeds the empirical mean. Realizations of a count variable
may be directly observed or unobserved (latent) and may be measured with error in either case
(e.g., Cameron & Trivedi, 2013). For example, a pedometer counts steps indirectly as a function of
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movement (so that step count is latent) and the resulting counts are subject to measurement error
arising from the imperfect mapping between detected movement and steps taken. Alternatively, counts
of grammatical morphemes in a video-recorded and transcribed oral language sample are directly
measured with what is probably a very small amount of error. Count data are also at the ratio level
of measurement defined by ordered categories with equal intervals and true zero, where the latter
represents an absence of the measured count variable. This is in contrast to the more commonly analyzed
ordinal data, whose numeric values, including zero, have no inherent meaning but rather indicate the
relative position/ordering of the various levels of the ordinal variable. In a measurement context in
which a latent variable gives rise to the observed count variable, a count of zero may represent an absence
of the underlying latent variable in addition to an absence of the observed count variable, depending on
what the latent variable represents and the probability distribution it is assumed to follow. Consider
a latent variable representing symptom severity, for instance. In this scenario, a count of zero may
represent absence of the symptom. Alternatively, for a normally distributed latent variable representing
an individual’s level of expressive language development, a count of zero may correspond to levels of
development falling below a certain threshold along the latent continuum.

In this article, we restrict our attention to count data arising from a single counting process, although
count data from multiple response processes can be accommodated. A counting process is a stochastic
process describing the nonnegative integer number of events we expect to observe within a given
exposure, where the number of observed events cannot decrease with increasing exposure. The exposure
quantifies the length of time, space, or number of trials over which events are recorded and must be
either a positive real number or a (positive) natural number (e.g., Cameron & Trivedi, 1998, 2013; Hilbe,
2011). An exposure that may vary across observations (e.g., individuals, measurement occasions) yields
an exposure variable. Like counts themselves, an exposure variable (here: the number of utterances
sampled from a child at an assessment that defines the length of the oral language sample) may be
either directly observed or latent and may be measured with error in either case. When an exposure
variable cannot be measured directly, is multi-faceted, and/or is not well-defined, it can sometimes be
reconstructed (possibly with error) as a function of a set of measured variables. Measurement error in
counts and exposure are considered at length by Cameron and Trivedi (2013, Chapter 13).

Despite the variability and/or measurement error that are commonly present in exposure, probability
distributions for count data implicitly assume an exposure that is fixed and measured consistently across
observations. When a consistently measured, fixed exposure is used to collect each observation:

(a) All observed responses are on the same scale (a necessary condition for obtaining correct values
and interpretations for model parameters, including the event rate and expected count [the
mean]);

(b) The properties of the maximum likelihood estimators of model parameters are unaffected; and
(c) All variability in the observed count response variable is attributable to sampling variability

arising from individual differences in model parameters (e.g., Cameron & Trivedi, 2013; Hilbe,
2011).

In count models, explicitly and properly accounting for an exposure that varies across the
units/observations comprising a sample is critical to obtaining correct inferences by achieving (a)
and (b) and parsing variability in (c) from sampling variability in the observed responses due to varying
exposure (e.g., Cameron & Trivedi, 1998). Failing to properly account for a varying exposure will yield
biased parameter estimates, standard errors, and model fit statistics—leading to incorrect inferences—
as neither (a), (b), nor (c) will hold. Note, however, that including an exposure variable in a count model
will only yield correct inferences if the probability of observing an event per unit exposure is constant
(e.g., Cameron & Trivedi, 1998). The opportunity to explicitly incorporate an exposure variable into
the probability distribution governing the counting process presents itself through the regression of the
distribution mean parameter onto a set of covariates that includes the exposure.

https://doi.org/10.1017/psy.2025.8 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.8


Psychometrika 7

2.2. Probability distributions for a single counting process
Distributions modeling a single counting process lie within the exponential family (summarized in
Table 2). For each of these distributions, the mean parameter quantifies the expected response and
the variance is expressed as a function of the mean parameter, possibly in addition to a dispersion
or “nuisance” parameter. Depending on the distribution, the mean parameter may also represent
the expected event rate (e.g., the Poisson and Negative Binomial distributions). Note that different
variance functions yield different probability distributions, and different distributions (models) imply
different relationships between the mean and variance. For example, the Poisson distribution (de
Moivre, 1711, 1718; Poisson, 1837) implies a variance that equals the mean (model-implied [conditional]
equidispersion). Negative Binomial (NB) distributions (e.g., Cameron & Trivedi, 2013; Hilbe, 2011)
imply a variance that exceeds the mean (model-implied [conditional] overdispersion). Meanwhile, Katz
(e.g., Katz, 1963), Double Poisson (DP; e.g., Efron, 1986), Generalized Poisson (GP; e.g., Consul &
Famoye, 1992; Consul & Jain, 1973; Consul, 1989), and Conway–Maxwell–Poisson (CMP; e.g., Conway
& Maxwell, 1962; Guikema & Coffelt, 2008; Huang, 2017; Minka et al., 2003; Shmueli et al., 2005) distri-
butions can imply a variance that is less than the mean (model-implied [conditional] underdispersion) as
well as a variance that equals or exceeds the mean. With that said, distributions other than the Poisson
and Negative Binomial with quadratic variance function (denoted as NB2; see Table 2) suffer from
notable limitations that have restricted their use in the literature to date.

2.3. Regression models
Incorporating a regression model for the mean parameter of a counting process distribution permits
the expected response to be a function of exposure and other predictors. For counting processes in the
two-parameter exponential family (2PEF), a regression model for the dispersion parameter may also
be specified, where the total set of regression equations specified may or may not have predictors or
coefficients in common. Regression models for a count response arising from a single counting process
distribution for which an exact expression for the mean response is available, such as the Poisson and
NB distributions (see Table 2), can be formulated within a generalized linear model (GLM), generalized
nonlinear model (GNLM), generalized linear mixed model (GLMM), or generalized nonlinear mixed
model (GNLMM) framework, depending on whether the relations among predictors are linear or
nonlinear and whether the coefficients of the predictors are fixed, random, or some combination thereof
(e.g., Agresti, 2013; Cameron & Trivedi, 2013; Fitzmaurice et al., 2011; Hilbe, 2011; McCullagh & Nelder,
1989; Nelder & Wedderburn, 1972; Vonesh, 2012). With that said, few examples exist in the literature of
a nonlinear growth function of linear and nonlinear random effects connected to observed counts via
a nonlinear link function due to the computational difficulties that may arise in model estimation.

For a GLM, GNLM, GLMM, or GNLMM regressed on the mean parameter of a counting process
distribution: (1) the systematic component may include an offset—the natural log of an exposure vari-
able with corresponding regression coefficient fixed at one; (2) the random component is parameterized
in terms of the mean and dispersion of the counting process (see Table 2); and (3) a natural log link
function is used to connect the random and systematic components. Although other link functions
that ensure the mean is always positive may be used with count responses (e.g., Wedel et al., 2003), the
natural log link function is generally preferred as it is the canonical link function for the Poisson mean
parameter. Note that including an offset in the systematic component of the regression on the mean
response allows the mean to be expressed as the product of exposure and the hazard rate quantifying
the expected count per unit exposure, where either or both may be functions of observed and/or latent
variables (e.g., Cameron & Trivedi, 2013).

Note that one may observe equidispersion, overdispersion, or underdispersion under a fitted model
when the empirical (observed) variance equals, exceeds, or is less than the model-implied (conditional)
variance, respectively. (The discerning reader may observe the distinction between under-, equi-, and
overdispersion that is empirical, model-implied, or arising when a model is fit to data is rarely made
explicit in the literature.) The presence of under- or overdispersion is understood to yield incorrect
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Table 2. Probability distributions for a single counting process

Distribution Exponential family Parameters Mean: E(Y) Variance: V(Y)

Poisson 1PEF μ > 0 μ μ

Negative Binomial (NB) 2PEF μ,ϕ > 0 μ ω(μ,ϕ)

NB1 2PEF μ,ϕ > 0 μ μ+ϕμ

NB2 2PEF μ,ϕ > 0 μ μ+ϕμ2

NBp 2PEF μ,ϕ > 0 μ μ+ϕμp

Katz family 2PEF ν > 0, 0 ≤ ϕ < 1 ν(1−ϕ)−1 ν(1−ϕ)−2

Double Poisson (DP) 2PEF μ̃,ϕ > 0 ≈ μ̃ ≈ μ̃/ϕ

Generalized Poisson (GP) 2PEF ν,ϕ ν(1−ϕ)−1 ν(1−ϕ)−3

Conway–Maxwell–Poisson (CMP) 2PEF λ > 0, ϕ ≥ 0, μ = μ(λ,ϕ)

Mean-parameterized CMP (CMPμ) 2PEF μ > 0, ϕ ≥ 0, λ = λ(μ,ϕ)
μ =

∞

∑
y=0

yλy

(y!)ϕ Z(λ,ϕ)

∞

∑
y=0

(y−μ)2 λy

(y!)ϕ Z(λ,ϕ)

Note: All models are members of the exponential family and have support N0. 1PEF denotes the one-parameter exponential family. 2PEF denotes the
two-parameter exponential family. Y denotes the count response variable. E(Y) denotes the model-implied (conditional) mean. V(Y) denotes the
model-implied (conditional) variance, which is also called the variance function as the variance is a function of the mean. For all models, ϕ denotes
the dispersion or “nuisance” parameter, where the interpretation and parameter space of ϕ depends on the distribution. In the Poisson, NB, and CMPμ
distributions, μ is the mean parameter. In the DP distribution, the parameter μ̃ is “similar to the mean parameter” (Cameron & Trivedi, 2013). In the CMP
and CMPμ distributions, λ is the rate parameter. For the NB family of distributions, the variance is a function of the mean and dispersion parameters (i.e.,
V(Y) = ω(μ,ϕ)). NB1 denotes the Negative Binomial distribution with linear variance function μ+ϕμ, NB2 denotes the Negative Binomial distribution
with quadratic variance function μ+ϕμ2, and NBp denotes the Negative Binomial distribution with variance function μ+ϕμp .
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standard errors, incorrect model fit statistics, and, as a result, fallacious inferences with real, practical
implications (e.g., Cameron & Trivedi, 2013; Hilbe, 2011). Under- or overdispersion arising from model
misspecification may additionally yield incorrect inferences about the response process but can be
addressed through careful reconsideration of the systematic component of the regression model for
the mean response and subsequent selection of a more appropriate conditional probability distribution
(see Table 2).

Given the computational challenges involved in implementing other counting process distributions
enumerated in Table 2, Poisson and NB2 distributions remain popular choices across a variety of
scientific applications. Furthermore, given the frequency with which overdispersion is observed in
practice, NB2 models present an attractive choice for use in modeling change processes measured by the
repeated measurement of a single count variable over time. Using a conditional response distribution in
the 2PEF additionally permits investigation of the joint behavior of the mean response and unexplained
variability among responses (manifesting as overdispersion) over time by fitting a first-order LGM
to the mean responses and a separate trajectory (that need not be a GLM or GNLM) to the time-
varying dispersion parameters. As such, although the proposed first-order LGM may be specified using
any counting process distribution in the exponential family, we illustrate our approach using the NB2
distribution.

2.4. First-order multiphase SLCM for count data
Typically, first-order LGMs are those that model a single observed indicator repeatedly measured at a set
of time points or occasions for a sample of individuals. We begin this section by explicating the notation
used to define the response data, the measurement occasions, and individuals. For additional clarity,
we couch explication of the notation in the empirical example of modeling counts of Brown’s (1973)
second grammatical morpheme (BGM2) “in” (see Table 1) collected in the longitudinal assessment of
GAE morphosyntactic development over the course of early childhood (Figure 1).

Let yiwi denote the number of “in” morphemes produced by child i out of xiwi utterances sampled
at chronological age twi months. As implied by the notation, the chronological ages (in months) at
which children were assessed varied across children both within and among corpora (see Table 3 and
Figure 2). This is because, in each corpus, oral language was sampled at certain, planned chronological
ages that differed across corpora, and children within a corpus were sometimes also assessed at slightly
different ages than planned and/or were missing planned assessments.1 As implied by the notation xiwi ,
the number of sampled utterances (exposure) varied also across children and assessments (Figure 3).
A spaghetti plot of the rates at which the morpheme “in” is produced within an oral language sample
in the overall sample of children is given in Figure 2 with a lowess smooth of the mean function
superimposed.

Let yi = {yiwi ∶ wi = 1, . . . ,Wi}, xi = {xiwi ∶ wi = 1, . . . ,Wi}, and ti = {tiwi ∶ wi = 1, . . . ,Wi} denote
the sets of observed responses (BGM2 counts), exposures (numbers of sampled utterances), and
measurement times (chronological ages of assessment in months), respectively, collected from the
repeated measurement of a single count item/indicator (i.e., the number of “in” morphemes produced)
over the course of Wi occasions for individual i, where the observed counts are nonnegative integers
and the exposures and measurement times are positive real numbers. The number of assessments per
child (Wi) ranged from one to seven, inclusive, with corresponding ages of assessment (tiwi ) ranging
from 18 to 71 months, inclusive (Table 3). Chronological age of assessment was binned into 3-month
assessment windows (intervals), yielding a total of W = 18 unique measurement occasions in the
overall sample of N = 1,084 children: [18,21), [21,24), [24,27), [27,30), [30,33), [33,36), [36,39), [39,42),
[42,45), [45,48), [48,51), [51,54), [54,57), [57,60), [60,63), [63,66), [66,69), and [69,72). In the analysis
dataset, these measurement windows were coded using the lower bound of each 3-month interval,

1Refer to the Supplementary Material available on the companion OSF website at:
https://osf.io/j6rp7/?view_only=c6a9f74add0d476dbeb1e7abd6a76cb2.
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Table 3. Sample characteristics

Child’s reported sex (%)

CHILDES Collection Corpus Activity DOI n Male Female NR Max(Wi) Chronological ages (months)

Clinical-Eng Ambrose-TD TP 10.21415/T56P63 18 44.44 55.56 0.00 4 [18, 36]

Clinical-Eng EllisWeismer-TD TP 10.21415/T5FP4H 76 51.32 46.05 2.63 1 [30, 66]

Clinical-Eng ENNI-TD N 10.21415/T51G7V 98 48.98 51.02 0.00 4 [48, 71]

Clinical-Eng Feldman-Narrative-TD N 10.21415/T5N894 9 0.00 0.00 100.00 3 [48, 65]

Clinical-Eng Feldman-ParentChild-TD TP 10.21415/T5GK55 47 31.91 61.70 6.38 3 [18, 43]

Clinical-Eng Gillam-TD N 10.21415/T5QS3N 32 40.62 59.38 0.00 1 [60, 71]

Clinical-Eng Nicholas-TD TP 10.21415/T50604 79 50.63 49.37 0.00 1 [18, 55]

Clinical-Eng Rescorla-TD TP 10.21415/T59D5W 26 92.31 3.85 3.85 3 [36, 61]

Clinical-Eng Rondal-TD TP 10.21415/T5RC93 16 75.00 25.00 0.00 1 [26, 26]

Eng-NA Bates TP 10.21415/T56W31 25 52.00 48.00 0.00 2 [20, 28]

Eng-NA Bliss TP 10.21415/T58W28 6 33.33 66.67 0.00 1 [27, 64]

Eng-NA Davis TP 10.21415/T5CW26 19 47.37 52.63 0.00 7 [18, 36]

Eng-NA Garvey G 10.21415/T56W2N 31 54.84 45.16 0.00 1 [34, 67]

Eng-NA Gelman N 10.21415/T5X69X 88 48.86 51.14 0.00 1 [18, 61]

Eng-NA Gleason TP, M 10.21415/T5101R 24 58.33 41.67 0.00 3 [25, 62]

Eng-NA HSLLD TP, M, N, B, NR 10.21415/T5H88H 82 48.78 51.22 0.00 5 [43, 71]

Eng-NA Morisset TP 10.21415/T53895 167 29.94 27.54 42.51 1 [30, 39]

Eng-NA NewEngland TP 10.21415/T52P6V 45 48.89 51.11 0.00 2 [19, 33]

Eng-NA NewmanRatner TP 10.21415/T5QW3P 110 47.27 52.73 0.00 2 [18, 24]

Eng-NA Valian TP 10.21415/T5ZS3T 21 38.10 61.90 0.00 2 [22, 33]

Eng-NA VanHouten TP, M 10.21415/T5Z014 28 60.71 39.29 0.00 2 [28, 43]

Eng-NA VanKleeck TP 10.21415/T54883 20 65.00 35.00 0.00 1 [37, 48]

Eng-NA Warren TP 10.21415/T51G6G 17 52.94 47.06 0.00 1 [18, 70]

Overall Sample: 1,084 46.86 45.20 7.93 7 [18, 71]

Note: CHILDES denotes the Child Language Data Exchange System (MacWhinney, 2000); DOI denotes Digital Object Identifier; n denotes the number of children sampled from the indicated corpus; NR
denotes Not Reported; and Wi denotes the number of measurements taken over time from individual (child) i. In the Activity column, TP denotes oral language data were collected through engagement in a
toy play activity, G denotes a group activity, M denotes a meal activity, B denotes a book activity, and N denotes a narrative activity. Samples drawn from listed corpora contained typically developing (TD)
monolinguistic native speakers of General American English (GAE) aged [18, 72) months (i.e., aged [1.5, 6) years) with at least 25 Mean Length of Utterance (MLU)-eligible sampled utterances.
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Figure 2. Rate at which the morpheme “in” is produced within an oral language sample by chronological age and corpus.

Note: Brown’s (1973) grammatical morphemes are summarized in Table 1. Sample characteristics are provided in Table 3.

centered at age 18 months, yielding

t = {tw ∶ w = 1, . . . ,W} = {0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51},

so that w indexes unique measurement occasion (unique chronological age of assessment) within the
overall sample of N individuals. As such, data collected within a given interval are treated as though
collected at the chronological age indicated by the lower bound of that interval in the analysis and
interpretation of model parameters. For example, BGM2 counts collected at ages [18, 21) months are
treated as though collected at age 18 months. Since not all children were assessed within each 3-month
interval, the ages of assessment for child i (ti) are a subset of the unique ages of assessment in the overall
sample (t), such that

ti = {tiwi ∶ wi = 1, . . . ,Wi ≤W = 18} ∈ t, where i = 1, . . . ,N.

If a child had more than one assessment within a 3-month interval, one of those assessments was
randomly selected for analysis so that each child contributed at most one assessment per interval (i.e.,
data are cross-sectional within each 3-month assessment window). Note that the use of age intervals
spanning a few months is a fairly common practice in the clinical assessment of expressive language
development because of dynamic and rapid growth in grammar acquisition during the earliest stages of
child language development (e.g., Carrow-Woolfolk, 2011; Leadholm & Miller, 1992; Miller & Chapman,
1981; Pavelko & Owens, 2017; Rice et al., 2010; Scarborough et al., 1991; Sparrow et al., 2016). Here,
3-month intervals were used in order to balance (a) choosing intervals small enough to maximize the
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Figure 3. Relationship between chronological age and number of sampled utterances.

Note: Sample characteristics are provided in Table 3.
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amount of longitudinal data taken from each child, the number of unique measurement occasions in
the overall sample, and granularity with respect to chronological age with (b) choosing intervals large
enough to contain enough children to permit the estimation of dispersion across children within each
age interval.

2.4.1. Measurement model
Due to the myriad of components unique to the modeling of count response data as well as the
complexity of the notation, we present an example of the proposed first-order multiphase LGM as a path
diagram in Figure 4. Following the typical structural equation modeling convention for path diagrams,
squares represent observed variable indicators, circles represent latent variables, single-headed arrows
denote directed relations among observed and latent variables, and double-headed arrows denote
variances of and covariances between variables. Other notation germane to the explication of the
measurement and structural components of the LGM in Figure 4 is detailed and explained shortly.

Suppose Yiwi measures individual i’s level of target construct θ (e.g., level of morphosyntactic
development) at time tiwi = tw, where corresponding observed response yiwi is generated from a counting
process distribution in the 2PEF with density

f2PEF (yiwi ∣ ηiwi,ϕw) = exp{a(ηiwi,ϕw)+b(yiwi,ϕw)+ c(ηiwi,ϕw)t(yiwi)} (1)

with time-specific dispersion parameter ϕw and natural/canonical parameter ηiwi = lnμiwi , where μiwi

represents individual i’s expected response at occasion wi. For the empirical example, we use the
NB2(μiwi,ϕw) density in Equation (2).

fNB2 (yiwi ∣ μiwi,ϕw) =
Γ(yiwi +ϕ−1

w )
Γ(yiwi +1)Γ(ϕ−1

w )
[ ϕ−1

w

ϕ−1
w +μiwi

]
ϕ−1

w

[ μiwi

ϕ−1
w +μiwi

]
yiwi

(2)

Individual i’s expected response at chronological age tiwi = tiw months is expressed as a function
(Equation (3)) of exposure xiwi , individual i’s levels of the target construct θiwi , item intercept ξ0, item
slope ξ1, and error εiwi .

ηiwi = lnμiwi = lnxiwi + ξ0+ ξ1θiwi + εiwi (3)

Figure 4. Path diagram for a first-order linear–linear latent growth model fit to repeated measurements of a single count response

variable that conditionally follows a distribution in the two-parameter exponential family at each measurement occasion.

Note: A solid, single-line, black arrow indicates a structural relationship with an identity link function. A solid, single-line, red arrow indicates

a structural relationship with a non-identity (e.g., natural log) link function. A dashed black arrow from A to B indicates A gives rise to B
directly and/or indirectly. A solid, double-line, black arrow from A to B indicates A generates B.
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Note the subscript wi in θiwi indicates Equation (3) applies to those chronological ages at which child i
is actually assessed, though the child’s latent construct exists continuously across all chronological ages
(including t), measured or not, so that θi = (θi1, . . . ,θiW)⊺. The item intercept quantifies the log expected
response (expected count) per unit exposure at the population average level of the target construct (i.e.,
when θiwi = 0), while the item slope captures the strength of the (positive) linear relation between θiwi and
log expected response, lnμiwij. Note that the expected count per unit exposure increases multiplicatively
by an order of exp(ξ0) as ξ0 increases, holding θiwi constant. Also note that item parameters ξ = {ξk ∶ k =
0,1} do not vary across individuals or measurement occasions to achieve measurement invariance.

The error, εiwi , in the linear predictor of the mean response in Equation (3) may be non-zero due to
the omission of important predictors of the mean response, misspecification of the structural model,
and/or measurement error in the offset, lnxiwi . This error propagates down to the observed data level
manifesting as overdispersion (unexplained variability) in the observed responses (e.g., Cameron &
Trivedi, 2013). The set of time-specific errors for individual i, εi, is normally distributed with zero mean
vector and covariance matrix Ωi.

εi = (εi1, . . . ,εiWi)
⊺ iid∼ N (0,Ωi)

The set of time-specific latent constructs for individual i follows a different multivariate normal
distribution with mean vector θ and covariance matrix Θ.

θi = (θi1, . . . ,θiW)⊺ iid∼ N (θ,Θ)

2.4.2. Structural model
Change in an individual’s level of the target construct over time follows a theoretically defensible growth
model, f, expressed as a function of measurement times, t, and individual latent growth factors, βi.

θi = f (t,βi)+δi (4)

The set of disturbances, δi = {δiw ∶ w = 1, . . . ,W}, in Equation (4) represents the set of time-specific
regression errors induced by misspecifying the true (data-generating) trajectory of θi over t. This could
occur by omitting predictors of an individual’s level of the target construct and/or misspecifying the
functional form of f. The disturbances are assumed to jointly follow a multivariate normal distribution
with zero mean vector and covariance matrix Σ.

δi = (δi1, . . . ,δiW)⊺ iid∼ N (0,Σ)
In Equation (5), we assume that f is a piecewise growth model having the general form,

f (t,βi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f1 (t,βi), t ≤ γ1i

f2 (t,βi), γ1i < t ≤ γ2i

⋮ ⋮
fD (t,βi), t > γ(D−1)i

. (5)

The trajectory in each of the D > 1 phases may have a distinct functional form that need not be
a polynomial. Moreover, the trajectory need not be monotonic within a phase nor over the entire
measurement period. The changepoints (a.k.a., join points or knots, denoted by γi = {γid ∶ d = 1, . . . ,D−
1}) indicate the times of transition from phase to phase. These transition times may be unknown
(i.e., parameters to be estimated from the data) and may vary across individuals (i.e., have random
effects). The transition from one phase to the next may be discontinuous (e.g., a jump up or a drop
down), continuous but abrupt (zero-order continuity), or continuous and gradual/smooth (first-order
continuity or greater, where higher orders of continuity correspond to greater degrees of smoothness).

Individual growth factors βi = (ψ
⊺
i ,φ

⊺
i )
⊺ include p parameters, ψi, that enter the function in Equation

(5) linearly and q parameters, φi, that enter the function in a nonlinear manner. Here, we define a growth
parameter as being linear if the first partial derivative of f taken with respect to the growth parameter
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does not include the parameter. Alternatively, a growth parameter is considered to be nonlinear if the
first partial derivative of f taken with respect to the growth parameter includes the parameter. Nonlinear
growth factors include—but need not be limited to—unknown, individual-specific changepoints.

Individual linear and nonlinear growth factors may each be expressed as a linear combination of
population growth parameters governing the population average trajectory—linear and nonlinear fixed
effects ψ and φ—and individual i’s linear and nonlinear random effects, ui and gi, respectively. Random
effects bi = (u⊺i ,g⊺i )⊺ are assumed to jointly follow a multivariate normal distribution with zero mean
vector and symmetric covariance matrix T.

βi = (
ψi
φi
) = (ψ

φ)+(
ui
gi
), where (ui

gi
) iid∼ N ([00], [

Tuu Tug
Tgu Tgg

]) (6)

Note that elements of T may be constrained at zero for theoretical but also potentially computational
(pragmatic) reasons.

Following S. A. Blozis & Harring (2016) and S. A. Blozis & Harring (2017), the growth function
for individual i in Equation (5) can be reformulated as a SLCM defined by a first-order Taylor series
expansion taken with respect to the parameters of the mean growth function and linearly weighted by
a set of individual-specific weights (i.e., random effects, bi).

f (t,βi) ≈ f (t,β)+Λ(t,β)bi (7)

The columns (i.e., basis functions) of Λ(t,β) are the the first-order partial derivatives of the mean
(i.e., target) function, f (t,β).

Λ =Λ(t,β) = ∂f (t,β)
∂β

= (∂f (t,β)
∂ψ1

⋯∂f (t,β)
∂ψp

∂f (t,β)
∂φ1

⋯∂f (t,β)
∂φq

) (8)

As a SLCM, f (t,β) is assumed to be invariant to a constant scaling factor (see Shapiro & Browne,
1987, Condition 2). Consequentially, there is a set of parameters, denoted here by α, such that

f (t,β) =Λα. (9)

Because Λ is the set of first-order partial derivatives of f (t,β) taken with respect to β (see Equation
(8)), elements of parameter vector α can be obtained by solving the linear equations in Equation (9). It
turns out that solving these linear equations results in setting all parameters in α that enter nonlinearly
to 0 (i.e., φ = 0). This permits the recovery of the target function (Preacher & Hancock, 2015). Then in
the individual-level model in Equation (7), Λα can be substituted for the mean function, f (t,β). Thus,
the individual-level model can be re-expressed as

f (t,βi) =Λα+Λbi =Ληi,

where ηi = α+bi.
Note that when a single count indicator is measured at each occasion, the item intercept is con-

strained at zero (ξ0 = 0) and item slope at one (ξ1 = 1) to achieve model identification while preserving
meaningful interpretation of the growth parameters.

ηiwi = lnμiwi = lnxiwi + ξ0+ ξ1 [f (tiwi,βi)+δiwi]+ εiwi

= lnxiwi + f (tiwi,βi)+ εiwi, where tiwi = tw (10)

Additionally, regression disturbance δiwi is absorbed into measurement error εiwi , impacting the
interpretation of εiwi and any resulting overdispersion.

δi+εi = εi = (εi1, . . . ,εiWi)
′ iid∼ N (0,Ξi)
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2.4.3. Dispersion trajectory
If a conditional distribution in the 2PEF, such as the NB2 distribution, is utilized for the count response
measured repeatedly over time, the magnitude of conditional (model-implied) dispersion may notably
vary over time and possibly even follow it’s own trajectory. Let ϕ = {ϕw ∶ w = 1, . . . ,W} denote the
complete set of freely estimated dispersion parameters corresponding to the W unique measurement
times t = {tw ∶ w = 1, . . . ,W} in the overall sample of N individuals. Where appropriate, one may fit a
trajectory with coefficients ω to time-varying dispersion parameters ϕ to describe change in dispersion
over time.

ϕ = g (t,ω) (11)

The trajectory fit to the time-specific dispersion parameters need not be a GLM nor utilize polyno-
mial growth, but whatever function is ultimately used, it must capture the essential characteristics of the
freely estimated dispersion parameters across time. For example, in modeling counts of Brown’s (1973)
second grammatical morpheme (BGM2) “in” (see Table 1) collected in the longitudinal assessment of
GAE morphosyntactic development over the course of early childhood (Figure 1), change in model-
implied overdispersion over time might be described by a linear function fit to the natural log of the
NB2 dispersion parameters

lnϕw = ω1+ω2 tw, (12)

where w = 1, . . . ,18 and tw = 0, . . . ,51. Alternatively, a more precipitous decline over the first several
months of early childhood might be achieved through an exponential decay function with a nonzero
asymptote (see Equation (13)) to describe change in dispersion over time, where ω1+ω3 quantifies the
dispersion parameter at age 18 months when tw = 0, ω2 is the decay factor such that the NB2 dispersion
parameter decreases by 100(1−ω2)% with every 1 month increase in chronological age after age 18
months, and ω3 is the nonzero asymptote quantifying the NB2 dispersion parameter as children age
beyond early childhood,

ϕw = ω1 (ωtw
2 )+ω3, where w = 1, . . . ,18 and tw = 0, . . . ,51. (13)

Note that the dispersion parameters are time-specific (as indicated by the subscript w) but do not
vary across individuals (as indicated by the omission of i from the subscript). As such, any trajectory fit
to the dispersion parameters exists only at the population level and is specified by imposing constraints
on the time-varying dispersion parameters, reducing the number of freely estimated dispersion-specific
parameters from W to the length of ω. As such, fitting a trajectory to the dispersion parameters may
convey notable parsimony in addition to the ability to describe a change process of substantive interest,
where gains in parsimony for a given function g increase as the number of unique measurement
occasions (W) in the overall sample of N individuals increases.

3. Analytic considerations

When fitting a statistical model to a set of data, one must ensure the model is identifiable and that
assumptions about the data generating process implied by the model are both theoretically defensible
and reasonably satisfied based on empirical evidence generated through model fit assessment. First,
we enumerate the assumptions implied by the proposed first-order multiphase SLCM. Second, we
summarize salient approaches to evaluating the fit of latent variable models for count responses. Third
and lastly, we discuss necessary conditions to ensure the model is overidentified (has more observations
than free parameters) to obtain a unique set of parameter estimates and permit meaningful evaluation
of model fit.
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3.1. Model assumptions
As with any fully parametric LGM in which parametric probability distributions are assumed for
both the latent variables (random effects) and observed variables (indicators/items), the following
assumptions are implied when fitting the proposed first-order multiphase SLCM to longitudinal count
data. First, it is assumed that the model is correctly specified (e.g., Agresti, 2013; Cameron & Trivedi,
1998, 2013; Hilbe, 2011; McCullagh & Nelder, 1989; McNeish & Kelley, 2019; Vonesh, 2012; Woods &
Thissen, 2006), including correct specification of:

1. The joint distribution of the random effects;
2. The fixed and random effects included in the linear predictor of the mean response and the

relations among them;
3. The conditional distribution assumed for the response; and
4. The link function connecting the mean response to its linear predictor.

Additionally, several assumptions are made about the target population and sample of individuals
from whom the count responses are collected. First, the sample from which model parameters are
to be estimated is assumed to be both homogeneous (i.e., all sampled individuals come from the
same population; OECD, 2004) and representative (i.e., the sample is selected probabilistically and the
composition of the sample is “typical” of the population with respect to certain, specified characteristics
of interest upon which inferences will be based; OECD, 2002). Second, sampled individuals are assumed
to be independent and sampled measurements (count responses) are assumed to be conditionally
independent within an individual (e.g., McCulloch, 2003; Vonesh, 2012; Woods & Thissen, 2006).

Several measurement-specific assumptions are also made. First, measurement invariance is assumed
across individuals and occasions. Second, the IRT/IFA assumption of monotonicity applies here, which
posits that the probability of endorsing a given response category or higher increases as the level of the
latent construct measured by the item increases. For a count response, the assumption of monotonicity
implies that the expected response (expected count) increases as the level of the latent construct
increases. Third, as measurement error is not the focus of this research, it is assumed that count
responses and exposures are directly measured with, at most, minimal error that is uncorrelated with
predictors of the mean response (e.g., Cameron & Trivedi, 2013).

Lastly, combining the model-, sample-, and measurement-specific assumptions enumerated above,
we assume errors are uncorrelated (mutually independent) among individuals at a given measurement
time as well as across occasions within each individual after conditioning on the growth trajectory, so
that εiwi

iid∼ N(0,σ2
w) in Equation (10) at time tiwi = tw (such as is shown in Figure 4) and

Ξ =
⎛
⎜⎜⎜
⎝

σ2
1

σ2
2
⋱

σ2
W

⎞
⎟⎟⎟
⎠
.

3.2. Model fit assessment
The goal of model fit assessment is to identify model assumptions that appear to be notably violated
based on available empirical data (that are, hopefully, homogeneous and representative of the target
population). Identifying sources of model-data misfit can, in conjunction with theoretical considera-
tions, inform re-specification of the model such that more valid—and therefore more useful—inferences
about the data-generation process may be drawn.
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3.2.1. Global fit
For latent variable models fit to count response data, likelihood-based measures of relative overall
model-data fit—such as the Likelihood Ratio Test (LRT) for comparing nested models and the Akaike
Information Criterion (AIC; Akaike, 1974) and Bayesian Information Criterion (BIC; Schwarz, 1978)
for comparing non-nested models—have been the most commonly utilized tools, to date, for detecting
various sources of misspecification, such as misspecification of the structural model (e.g., Magnus &
Thissen, 2017; Man & Harring, 2019; Wedel et al., 1993), misspecification of the measurement model
(e.g., Forthmann et al., 2020; Hung, 2012; Magnus & Thissen, 2017), and violations of measurement
invariance (e.g., Baghaei & Doebler, 2019; Jansen, 1995). Likelihood-based measures of relative overall
model-data fit have also been used in the GLM/GLMM literature to detect misspecification of: (a) the
number of random effects and their joint distribution (e.g., Dean & Nielsen, 2007; Vonesh, 2012); and
(b) the conditional response distribution, link function, and systematic component (e.g., Cameron &
Trivedi, 1998, 2013; Hilbe, 2011; Vonesh, 2012).

3.2.2. Item fit
For latent variable models fit to count response data, targeted evaluation of whether the measurement
model is correctly specified has largely centered around graphical and numerical comparisons of the
empirical and model-implied marginal item response distributions (e.g., Baghaei & Doebler, 2019;
Forthmann et al., 2020; Magnus & Thissen, 2017; Verhelst & Kamphuis, 2009). Visual inspection of
overlaid plots (e.g., histograms, density plots) and/or side-by-side numeric summaries of the empirical
and model-implied marginal response frequencies for an item (e.g., Forthmann et al., 2020; Magnus &
Thissen, 2017; Verhelst & Kamphuis, 2009) can yield information not just about whether the assumed
measurement model appears to be correct but also how it may be wrong (e.g., help detect under- or
overdispersion and excess zeros). As such, these analyses can provide insights into absolute item fit,
albeit at the marginal item response level. Numeric measures of alignment between two distributions
described in the statistical literature—such as the Kullback–Leibler divergence (KLD; Kullback &
Leibler, 1951) and Jensen–Shannon divergence (JSD) or distance—though not used with latent variable
models for count responses to date, might provide measures of relative fit at the marginal item response
level by quantifying recovery of each empirical marginal item response distribution for use in model
comparison.

However, evaluating the extent to which a fitted model recovers each empirical marginal item
response distribution does not provide clarity regarding the source(s) of misspecification, such as
the random and fixed effects included in the linear predictor, the structural model to which the
latent variables are tied, the conditional item response distribution, or the link function. Fortunately,
more informative targeted diagnostics have been developed within the GLM/GLMM literature for
detecting misspecification of the link function (e.g., Cheng & Wu, 1994); conditional under-, equi-, or
overdispersion (e.g., Breslow, 1990; Cameron & Trivedi, 1998, 2013; Hilbe, 2011; Lambert & Roeder,
1995), such as the Pearson statistic; misspecification of the variance function assumed for the NB
distribution (Hilbe, 2011); and misspecification of the conditional moments (e.g., Cameron & Trivedi,
1998). Meanwhile, the evaluation of monotonicity has centered around visual inspection of estimated
item slopes and corresponding standard errors as well as graphical representations of item characteristic
curves (ICCs). Lastly, although not utilized in our empirical example nor in the broader literature on
LVMs for count responses to date, various numerical and graphical methods in the GLMM literature
might be adapted to identify individuals whose response patterns suggest the calibration sample is not
homogeneous and representative (i.e., to evaluate person fit).

3.3. Model identification
The mean structure of the proposed first-order multiphase SLCM fit to count responses is comprised
of all freely estimated population growth parameters in β. For conditional response (counting process)
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distributions in the one-parameter exponential family (e.g., the Poisson distribution), the covariance
structure is comprised of all freely estimated, unique growth factor variances and covariances (freely
estimated unique elements of T). For conditional response distributions in the 2PEF (e.g., the NB2
distribution), the covariance structure additionally includes occasion-specific dispersion parameters
ϕ = {ϕw ∶ w = 1, . . . ,W} or, if a growth trajectory is imposed on ϕ, the parameters of said trajectory
(i.e., ω). Note that the elements of factor loading matrix Λ are not freely estimated but rather are
functions of measurement times t and freely estimated population growth parameters in β. Likewise,
expected counts μ = {μiwi ∶wi = 1, . . . ,Wi; i = 1, . . . ,N}, linear predictors of the mean response η = {ηiwi ∶
wi = 1, . . . ,Wi; i = 1, . . . ,N}, and error variances σ2 = {σ2

w ∶ w = 1, . . . ,W} are part of the hypothesized
model but are not freely estimated model parameters.

Since the proposed first-order SLCM for count responses is a CFA model with a mean structure
(e.g., Browne, 1993; Kline, 2016), the number of observations is W(W + 3)/2, where, as previously
noted, W is the number of observed (count) variables or, equivalently for this model, the number of
unique measurement occasions in the overall sample of N individuals (e.g., Kline (2016, Rule 15.5)).
Additionally, since “the identification status of a mean structure must be considered separately from
that of the covariance structure” (Kline, 2016), the mean and covariance structures must each be
overidentified in order for the model as a whole to be overidentified. To ensure the mean structure of the
proposed model is overidentified, the total number of unique measurement occasions W in the sample
of N individuals must exceed the number of freely estimated population growth parameters in β (e.g.,
Kline, 2016). Likewise, to ensure the covariance structure is overidentified, W(W +1)/2 must exceed
the number of freely estimated unique elements of T and—for conditional response distributions in the
2PEF—the number of occasion-specific dispersion parameters (W) or dispersion-specific regression
coefficients.

3.4. Model estimation
The estimation of latent variable models (and GLMMs) for count responses can be challenging because
each variable in the systematic component for the mean response has a nonlinear relationship with the
conditional mean due to the use of a non-identity link function (e.g., Olsen & Schafer, 2001; Vonesh,
2012). As a result, there is generally no closed form solution to either the marginal log-likelihood or
marginal moments, so that contemporary model estimation approaches aim to either:

1. Approximate the marginal moments of an approximate quasi-likelihood function or approximate
the marginal quasi-likelihood function corresponding to specified first- and possibly also second-
order conditional moments through linearization (via Taylor series expansion);

2. Maximize the marginal log-likelihood via numerical integration or simulation; or
3. Approximate the posterior distribution for the model parameters given the observed data via

fully Bayesian approaches, where—like the log-likelihood—the posterior distribution typically
does not have a closed form solution.

These different estimation strategies have different analytic objectives and require different assumptions.
A thorough treatment of these various approaches to model estimation may be found in, for example,
Vonesh (2012), Bolker et al. (2009), and Hoff (2009).

Of these different approaches, the most popular by far for latent variable models for count responses
has been marginal maximum likelihood (MML) estimation implemented via numerical integration
(e.g., Beisemann, 2022; Beisemann et al., 2024; Forthmann & Doebler, 2021; Forthmann et al., 2020;
Hung, 2012; Jansen, 1994, 1995; Jansen & van Duijn, 1992; H. Liu, 2007; Magnus & Thissen, 2017; Rabe-
Hesketh et al., 2004; Shiyko et al., 2012; Wang, 2010). Fully parametric MML via numerical integration
can yield consistent and asymptotically unbiased parameter estimates, even when data are missing at
random (MAR; Rubin, 1976) or otherwise unbalanced (e.g., Asparouhov & Muthén, 2012; De Boeck
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& Wilson, 2004; Gunes & Chen, 2014; H. Liu, 2007; Rabe-Hesketh et al., 2004; Vonesh, 2012) or when
counts are small or underdispersed ( and therefore manifestly more discrete; Vonesh, 2012). In addition,
MML permits the computation of likelihood-based information criteria (e.g., the LRT, AIC, and BIC),
which remain the most powerful diagnostic tools available for use with multivariate count data, greatly
facilitating the detection of model-data misfit (e.g., Magnus & Thissen, 2017; Vonesh, 2012). Lastly,
although MML estimation via numerical integration can be computationally intensive, it need not be
prohibitively so. Smith & Blozis (2014), for example, demonstrate that very few quadrature nodes may
be needed, especially when adaptive Gauss–Hermite (AGH) quadrature is used.

4. Empirical application: Modeling morpheme counts

Speech-language pathologists often analyze the number of individual BGMs produced in an oral
language sample to identify specific grammatical targets for clinical intervention (e.g., Bland-Stewart &
Fitzgerald, 2001; Paul & Alforde, 1993; Tommerdahl & Kilpatrick, 2014). To this end, we demonstrate
the feasibility and utility of fitting the proposed first-order multiphase SLCM to germane empirical
data by applying the model to counts of Brown’s (1973) second grammatical morpheme (BGM2)
“in” (e.g., “Juice in cup”; Table 1) collected in the longitudinal assessment of GAE morphosyntactic
development in young children who are typically developing with respect to expressive language. We
estimate the population average trajectory to describe expected development with respect to use of the
morpheme “in”. We estimate individual trajectories to demonstrate how comparing individual curves to
the population average curve can help inform inferences about individual development. By examining
unexplained variability in use of the morpheme “in” over the course of early childhood among typically
developing young children, we additionally demonstrate how the unexplained variability with which this
morpheme is used appears to track inversely with chronological age and the frequency with which it is
used, potentially signalling acquisition, which Brown (1973) defined as occurring when a child knows
when and how to use a particular morpheme type.

4.1. Data
Expressive language data were taken from oral language sampled from 1,084 typically developing
monolinguistic native speakers of GAE aged 1.5 to 5 years, inclusive (i.e., aged [18,71]months), drawn
from across 23 corpora in the Child Language Data Exchange System (CHILDES; MacWhinney, 2000),
accessible at https://childes.talkbank.org/. Sample characteristics are provided in Table 3.

The number of children sampled from each corpus varied notably across corpora. The percentages of
male and female children also varied across corpora but were comparable in the overall sample (46.86%
male, 45.20% female, and 7.93% not reported). Oral language was sampled through engagement in
either a toy play, narrative, group, book, or meal activity, where the range of activities varied across and
sometimes also within corpora. The number of sampled utterances (exposure) varied across corpora,
children within corpora, and assessments within child. Sampled assessments were required to contain a
minimum of 25 utterances of sufficient quality (i.e., at least 25 “mean length of utterance (MLU)-eligible”
utterances) to ensure a child had sufficient opportunity to demonstrate his/her level of morphosyntactic
development. No notable relationship was discerned between a child’s chronological age in months
(strongly related to level of morphosyntactic development in typically developing young children) and
the number of sampled utterances in either the overall sample or within corpora (Figure 4), facilitating
stable model estimation, the selection of an appropriate model (through stable parameter estimates,
accurate standard errors, and the resulting apparent significance of individual parameter estimates),
and the interpretation of estimated growth parameters as intended.

4.2. Analysis
Expressive language data were retrieved from North American English corpora in CHILDES (see
Table 3) at TalkBank.org and extracted using Computerized Language ANalysis (CLAN) software
(MacWhinney, 2000). To inform the selection of an appropriate conditional response distribution (and
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thus measurement model), several analyses were conducted, where candidate distributions included
the Poisson and NB2.2 First, the empirical mean and variance of the number of “in” morphemes
produced were computed within each 3-month age interval and plotted over time (i.e., over the course
of early childhood) to check for empirical under-, equi-, or overdispersion. Second, Poisson and NB2
models were fit to the cross-sectional data within each 3-month age bracket in R (R Core Team, 2023)
using the glm function in the stats package and glm.nb function in the MASS package (Venables
& Ripley, 2002), respectively, with the number of sampled utterances (the exposure) included in the
linear predictor of the mean response (Equation (14)). The relative fit of the Poisson and NB2 models
was evaluated by visually comparing corresponding KLD, Pearson, AIC, and BIC statistics within each
3-month age interval. Note that likelihood-based information criteria are being used to compare the
overall fit of the Poisson and NB2 models instead of the LRT as the Poisson distribution is not a special
case (i.e., a constrained version) of the NB2 distribution. Rather, it is a limiting distribution as the strictly
positive NB2 dispersion parameter tends to zero (e.g., Casella & Berger, 2002).

η̂iwi = l̂nμiwi
= lnxiwi + ξ̂0w, where tiwi = tw (14)

After selecting a measurement model, scatterplots and cubic smoothing splines of the cross-
sectionally estimated model-implied mean log expected BGM2 counts and, if applicable, dispersion
parameters were plotted over time to inform the selection of the functional form of the population
average trajectory and, if applicable, the dispersion trajectory, respectively. A multiphase SLCM was
subsequently fit to the longitudinal data in Mplus© Version 8.53 using MML estimation with parameter
estimates and corresponding standard errors robust to both nonnormality of the count responses
and dependence among observations by specifying TYPE=COMPLEX and ESTIMATOR=MLR in the
ANALYSIS command in conjunction with use of the CLUSTER option in the VARIABLE command
(Muthén & Muthén, 2017). Robust standard errors were computed using a sandwich estimator and—
by default—the observed information matrix evaluated at the maximum likelihood estimates of model
parameters (i.e., the Hessian matrix; Muthén & Muthén, 2017). MML estimation was implemented
via the Expectation-Maximization (EM) algorithm (e.g., Bock & Aitkin, 1981) with adaptive Gauss-
Hermite quadrature (e.g., Cai, 2010; Rabe-Hesketh et al., 2004; Schilling & Bock, 2005; Vonesh, 2012;
Wang, 2010) with the default of 15 integration points per dimension of integration.

Because the number of sampled utterances (the exposure) varied across children and assessments
within child, each measurement model fit to BGM2 counts throughout this analysis included an
offset in the linear predictor of the mean response (the expected BGM2 count) constructed as the
natural log of the number of utterances sampled from a child at an assessment with regression
coefficient fixed at one. An alpha level of 0.05 was used for all hypothesis tests. All tables and figures
were produced in R version 4.3.1 (R Core Team, 2023). Likewise, all data processing/management

2Inflated and hurdle count models (such as Zero-Inflated Poisson and Negative Binomial Hurdle models) were not
considered in this analysis as they suppose that at a certain level of morphosyntactic development a child will produce at
least one “in” morpheme regardless of how many utterances are sampled. This assumption is not particularly tenable when one
considers the impact of oral language sampling context on how many of which morphemes are produced and that the total
number of morphemes a child can produce within a fixed number of utterances must be shared across morpheme types. In
contrast, in this study, zero counts are considered to arise when a child’s level of morphosyntactic development lies below
some latent threshold and/or an insufficient number of utterances has been sampled, where both may depend on the language
sampling context. Dispersion parameters, on the other hand, were of clinical (substantive) interest as they permit one to
investigate concurrent changes in the frequency and unexplained variability with which typically developing children produce
the morpheme “in” over the course of early childhood, where collective change in explained use may reflect correct use and
acquisition.

3The proposed first-order multiphase SLCM for count response data involves a nonlinear growth function comprised
of linear and nonlinear random effects connected to observed counts via a nonlinear link function, with an exposure that
varies across both individuals and measurement occasions in the linear predictor of the mean response, and factor loadings
constructed as nonlinear functions of population growth parameters and chronological age at time of assessment. Mplus©

Version 8.5 was used to fit this model to the empirical data due to its ability to handle all of these model features simultaneously.
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and descriptive and exploratory analyses were conducted in version 4.3.1 (R Core Team, 2023).
Mplus© model results were harvested and read into R using the MplusAutomation package (Hal-
lquist & Wiley, 2018) and analyzed using the MASS package (Venables & Ripley, 2002). All datasets,
computer code, and Supplementary Material are provided on the OSF website for this project at:
https://osf.io/j6rp7/?view_only=c6a9f74add0d476dbeb1e7abd6a76cb2.

4.3. Results
Results are reported in the order in which they were obtained, as we build the complete model from the
ground up—that is, from the observed data (e.g., chronological ages, BGM2 counts, sampled utterance
counts) up to the hypothesized data-generating latent structure, where the observed and latent variables
are connected by measurement models—and then proceed to make inferences based on the final,
full model. First, we select appropriate measurement and structural models, where the latter includes
trajectories for both the mean (expected count) and dispersion. Second, we demonstrate identification
of the complete model. Third, we discuss individual and population-level inferences about expressive
language development based on the fitted model.

4.3.1. Measurement model
Recall that measurement invariance is assumed across individuals and occasions. One key aspect of
ensuring measurement invariance over the chronological ages of assessment is specifying the same
measurement model in each 3-month age interval. As such, when selecting an appropriate measurement
model, we must consider both theoretical (e.g., clinical) justification and empirical fit across the entire
span of early childhood (i.e., between 1.5 and 5 years of age, inclusive).

First, visual inspection of the empirical mean and variance over time revealed empirical overdisper-
sion within each 3-month age interval (Figure 5a). Second, the KLD for the NB2 model was notably
lower than that of the Poisson model, suggesting the NB2 model consistently better described the
shape of the conditional response distribution (i.e., provided a better fit to the data; Figure 5b). Third,
the Pearson statistic for the Poisson model was notably higher in each 3-month age interval than the
corresponding degrees of freedom (see, e.g., Cameron & Trivedi, 2013), suggesting the presence of
substantial overdispersion under the Poisson model (Figure 5c). In contrast, the Pearson statistic for
the NB2 model and the corresponding degrees of freedom were closely aligned over the course of
early childhood, suggesting the NB2 model capably captured both the mean and variability in observed
BGM2 counts across the chronological ages of assessment (Figure 5c). Note that the degrees of freedom
for the Poisson and NB2 models in a given 3-month age interval differ only by one (for the NB2
dispersion parameter)—a difference that cannot be readily discerned in Figure 5c given the y-axis
scale. As such, to make Figure 5c easier to visually decipher, only the degrees of freedom (i.e., the
“criterion”) for the NB2 model are plotted as the degrees of freedom for the Poisson model are practically
overlapping for a given age bracket.

Fourth and lastly, Akaike and Bayesian information criteria were compared between the Poisson
and NB2 models in each 3-month age interval. Figure 5d shows the AIC values obtained under the
Poisson and NB2 models in each 3-month age interval. Since almost identical results were obtained
using the BIC as only a single additional parameter is estimated under the NB2 model, this plot has
been omitted. As can be seen in Figure 5d, the NB2 model yields a lower AIC value (better overall
fit) in each 3-month age interval except for the last one, in which the Poisson and NB2 models appear
to provide comparable overall fit to the data. Note that the differences between these two models do
not seem quite as drastic when using these measures of relative overall fit as compared to the more
targeted investigations reported earlier evaluating the ways in which the Poisson and NB2 distributions
meaningfully differ (i.e., in terms of the model-implied variance and shape).

Collectively, these findings suggested the NB2 model provided a better fit to the BGM2 counts in
each 3-month age interval than the Poisson model. The NB2 model also had the additional appeal
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(b) Kullback−Leibler Divergence by Chronological Age and Model
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(d) Akaike Information Criterion by Chronological Age and Model

Figure 5. Model-data fit evaluations conducted to inform measurement model selection.

Note: Sample characteristics are provided in Table 3.
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of permitting the investigation of concurrent changes in the frequency (quantified by the mean)
and unexplained variability (quantified by the dispersion parameter) with which typically developing
children produce the morpheme “in” over the course of early childhood, where collective change
in explained use may reflect correct use and acquisition. As such, BGM2 counts were assumed to
conditionally follow a NB2 distribution within each 3-month interval (Equation (15)).

Yiwi ∼NB2(μiwi,ϕw), where tiwi = tw (15)

4.3.2. Mean trajectory
Visual inspection of individual empirical trajectories of the rate at which the morpheme “in” is produced
within an oral language sample and the cubic smoothing spline fit to the overall sample suggested
frequency of use may follow a linear–linear trajectory over the course of early childhood with the
transition from phase 1 to phase 2 occurring somewhere between 27 and 36 months of age, confirming
Brown’s (1973) observations based on only three children (Figure 2). Similarly, subsequent visual
inspection of the scatterplots and cubic smoothing splines of the cross-sectionally estimated NB2 mean
log expected BGM2 production rate over time ({ξ̂0w}W=18

w=1 in Equation (14)) also suggested a linear–
linear trajectory over the course of early childhood, with a continuous, smooth/gradual transition from
phase to phase at the population level occurring somewhere between 27 and 39 months of age (Figure 1).
This apparent linear–linear development process aligns with the linear–linear process by which GAE
grammar is understood to develop in typically developing young children, with an initial phase of
rapid development (phase 1) followed by a period of slower, sustained development (phase 2), with a
continuous, smooth/gradual transition from phase-to-phase and where the age of transition from phase
1 to 2 may vary widely. Moreover, the apparent transition age range of [27,39]months encompasses the
typical age of acquisition of 27 to 30 months posited by Brown (1973) (see Table 1).

Note that a quadratic trajectory was not considered in this case due to challenges with interpreting
quadratic functions, including the unrealistic implication that typically developing children decline in
level of morphosyntactic development (and thus also the rate at which the morpheme “in” is produced
within an oral language sample) after a certain chronological age. Other potentially salient functions for
the mean trajectory include negative exponential (e.g., Sterba, 2014), Jenss–Bayley (e.g., J. Liu, 2022),
and Gompertz functions. However, one of the limitations of these alternative functions is the lack
of freely estimated changepoints. As previously discussed, quantifying the population average age of
transition from an initial phase of rapid development to a subsequent period of more gradual, sustained
development and mastery in typically developing children may help inform when children ought to be
assessed for expressive language disorders, such as late language emergence; and comparing a child’s
individual trajectory and changepoint to the population average trajectory and changepoint among
typically developing children may help identify children who fall below age expectations and warrant
further clinical evaluation, intervention, and monitoring.

A linear–linear LGM was therefore considered for the log expected counts in which all growth
parameters were allowed to vary across individuals due to the high degree of variability in expressive
language development clinically expected among typically developing children. The model for individ-
ual i to be fit to the data is comprised of linear predictor

ηiwi = lnμiwi = lnxiwi + f (tiwi,βi)+ εiwi, (16)

where

εiwi
iid∼ N(0,σ2

w) and tiwi = tw,

with linear–linear growth function

f (tw,βi) =
⎧⎪⎪⎨⎪⎪⎩

ψ1i+ψ2itw, tw ≤ γi

ψ3i+ψ4itw, tw > γi
. (17)
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It is presumed, at least initially, that an individual’s growth parameters are the sum of fixed and
random effects

βi = β+bi = (
ψ
γ)+(

ui
gi
), where bi = (

ui
gi
) iid∼ N ([00], [

Tuu Tug
Tgu Tgg

]) . (18)

The linear–linear trajectory in Equation (17) contains a total of five freely estimated individual
growth parameters: four that enter the function linearly, ψ1i,ψ2i,ψ3i, and ψ4i, and one, the changepoint
γi, that enters the function in a nonlinear fashion.

Exponentiated phase 1 intercept exp(ψ1i) captures the rate at which child i is expected to produce the
morpheme “in” within an oral language sample at age 18 months. Shifted changepoint 18+γi quantifies
the chronological age (in months) at which child i is expected to transition developmentally from phase
1 (rapid development) to phase 2 (slower, sustained development). Exponentiated phase 2 intercept
exp(ψ3i) captures the rate at which child i is expected to produce the morpheme “in” within an oral
language sample at anticipated transition age 18+γi months. Lastly, the rate at which child i is expected
to produce the morpheme “in” within an oral language sample increases multiplicatively by an order of
exp(ψ2i) with every 1 month increase in chronological age between 18 and 18+ γi months, inclusive,
and by an order of exp(ψ4i) with every 1 month increase in chronological age after age 18+γi months.

The population growth parameters β = (ψ1,ψ2,ψ3,ψ4,γ)⊺ = (ψ,γ)⊺ are interpreted similarly to
the corresponding individual growth parameters and describe the population average trajectory for
typically developing monolinguistic native speakers of GAE aged 1.5 to 5 years, inclusive. For example,
exponentiated phase 1 intercept exp(ψ1) captures the rate at which typically developing children
are expected to produce the morpheme “in” within an oral language sample at age 18 months, on
average, while shifted changepoint 18+γ quantifies the chronological age (in months) at which typically
developing children are expected to transition developmentally from phase 1 to phase 2 on average.
Random effects bi are assumed to jointly follow a multivariate normal distribution with zero mean
vector and unstructured, symmetric covariance matrix, T (Equation (18)).

A continuous though abrupt transition from phase 1 to phase 2 was created by imposing zero-
order continuity (Cudeck & Klebe, 2002) at the changepoint, although examination of Figures 1 and 2
suggested a smooth/gradual transition from phase to phase. Zero-order continuity is the highest order
of continuity that can be imposed at the knot when a first-order polynomial is used to describe growth
in each adjacent phase. This restriction permits the elimination of one linear growth parameter from the
set of freely estimated model parameters for child i. Phase 2 intercept ψ3i was selected for elimination
in this case as its interpretation is less clinically useful than that of the other linear growth parameters.

ψ1i+ψ2iγi = ψ3i+ψ4iγi

ψ1i+ψ2iγi−ψ4iγi = ψ3i

The resulting trajectory is provided in Equation (19). Note that ψ3i can readily be computed using
estimates of the other individual growth parameters.

f (tw,βi) =
⎧⎪⎪⎨⎪⎪⎩

ψ1i+ψ2itw, tw ≤ γi

ψ1i+ψ2iγi+ψ4i (tw−γi), tw > γi
(19)

The linear–linear trajectory for child i now contains only four freely estimated individual growth
parameters: βi = (ψ1i,ψ2i,ψ4i,γi)⊺. The random effects covariance matrix T is likewise reduced to

T =
⎛
⎜⎜⎜
⎝

τ11
τ21 τ22
τ31 τ32 τ33
τ41 τ42 τ43 τ44

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

Var(u1i)
Cov(u2i,u1i) Var(u2i)
Cov(u3i,u1i) Cov(u3i,u2i) Var(u3i)
Cov(gi,u1i) Cov(gi,u2i) Cov(gi,u3i) Var(gi)

⎞
⎟⎟⎟
⎠
. (20)

The nonlinear growth model in Equation (19) can be reformulated as an SLCM by taking by taking a
first-order Taylor series expansion around the population growth parameters and setting the population
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average changepoint to zero (γ = 0):

f (t,βi) =Λα+Λbi, (21)

where the wth row of factor loading matrix, Λ, is

[Λ]w⋅ = [
∂f (tw,β)

∂β
] = [∂f (tw,β)

∂ψ
,

∂f (tw,β)
∂γ

]

= [∂f (tw,β)
∂ψ1

,
∂f (tw,β)
∂ψ2

,
∂f (tw,β)
∂ψ4

,
∂f (tw,β)

∂γ
]

= [1, min(tw,γ), max(tw−γ,0), (ψ2−ψ4)(
max(tw−γ,0)

tw−γ
)] (22)

Here, the minimum and maximum functions (Seber & Wild, 2003) (min(u,v) = 1
2 [u + v −√

(u−v)2] and max(u,v) = 1
2 [u+ v+

√
(v−u)2], where u and v are real numbers) are utilized and

directly coded into the factor loading matrix.

4.3.3. Dispersion trajectory
Having specified a structural model (in this case, an SLCM) describing change in the log expected rate
of “in” morpheme production over the course of early childhood, we now turn our attention to the time-
varying NB2 dispersion parameters. Recall that the NB2 dispersion parameter in a given 3-month age
interval quantifies the level of variability in BGM2 counts unexplained by the mean (and predictors
thereof) across the individuals assessed within that age window. The dispersion parameters are not
individual-level parameters but population-level parameters that may vary over time and perhaps even
follow a recognizable functional form across chronological age. As such, the trajectory specified for the
dispersion parameters does not have parameters that vary across or within individuals (and thus no
random effects and variance components). Instead, there is only the population-level trajectory to be
specified by imposing constraints on the time-varying dispersion parameters.

Recall also that visual inspection of the scatterplots and cubic smoothing splines of the cross-
sectionally estimated NB2 dispersion parameter (ϕ̂w) over time suggested the dispersion parameters
follow a linear–linear trajectory with a continuous, smooth transition from phase to phase at the
population level that mirrors (from below) the population average trajectory in expected BGM2 counts
over the course of early childhood (Figure 1). Initially, a linear function was fit to the natural log of the
NB2 dispersion parameters (Equation (12)). This function is highly parsimonious while also capturing
many key features of the change in dispersion over time—the steep decline prior to 40 months of age, the
leveling off thereafter, and the smooth transition from the former phase to the latter. However, fitting the
regression model in Equation (12) to the time-varying dispersion parameters yielded a decline prior to
age 40 months that was too gradual and, critically, an asymptote of zero, which is not compatible with the
parameter space of the strictly positive NB2 dispersion parameter. Thus, alternatives were considered.
An exponential decay function with a nonzero asymptote (Equation (13)) was ultimately selected due to
its parsimony (only 3 parameters), interpretability (as previously discussed), and capability of capturing
all salient features of the change in dispersion over time: a precipitous decline prior to 40 months of age,
the leveling off thereafter to a nonzero asymptote, and the smooth transition from the former phase to
the latter.

4.3.4. Model identification
The mean structure of the resulting first-order linear–linear SLCM consists of the four freely estimated
growth factor means (β = (ψ1,ψ2,ψ4,γ)⊺ in Equation (18)), while the covariance structure contains
a total of 13 free parameters—10 growth factor variances and covariances (unique elements of T in
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Equation (20)) and 3 parameters for the exponential decay trajectory with nonzero asymptote fit to
the time-varying NB2 dispersion parameters (ω = (ω1,ω2,ω3)⊺ in Equation (13)). With W = 18 unique
measurement occasions in the overall sample of N = 1,084 children, the mean structure is overidentified
(W = 18 > 4) and the covariance structure is overidentified (W(W + 1)/2 = 18(19)/2 = 171 > 13). As
such, the model as a whole is overidentified, permitting us to obtain a unique set of parameter estimates
and to meaningfully evaluate model fit (e.g., Kline, 2016).

The final overall model was fit to the data with the trajectory for the NB2 dispersion parameters
in Equation (13) fit by imposing model constraints on the freely estimated time-varying dispersion
parameters. Note that using model constraints to fit the exponential decay trajectory to the time-
varying dispersion parameters changes their estimated values while also notably reducing the number
of freely estimated parameters in the covariance structure. Note also that although the fitted first-order
linear–linear NB2 SLCM is overidentified in the overall sample, for this and other LGMs, empirical
identification may be compromised depending on the number of assessments and ages of assessment
per child. As in most real-world observational studies conducted using young children, there is a fair
amount of missing data in the overall sample. In this case, much of this “missingness” is an artifact of
(a) the misalignment among corpora in planned ages of assessment and (b) children within a corpus
sometimes being assessed at slightly different ages than were planned.1 Population parameter estimates,
standard errors, and p-values are provided in Table 4.

The population average trajectory for the log expected rate of “in” morpheme production and the
exponential decay trajectory fit to the dispersion parameters are provided in Figure 6.

4.3.5. Model-implied development at the population level
Looking at the left-most panel of Figure 6, one can see the frequency with which typically developing
monolinguistic native speakers of GAE produce the morpheme “in” increases rapidly between 1.5
and 2.5 years of age but then levels off. More specifically, on average, typically developing children
are expected to produce approximately 3 “in” morphemes within an oral language sample of 1,000
utterances at age 18 months (since exp(ψ̂1) = exp(−5.799) = 0.003), transition from rapid development
(phase 1) to slower, sustained development (phase 2) at age 18+ γ̂= 18+9.958= 27.958≈ 28 months, and
produce about 33 “in” morphemes within an oral language sample of 1,000 utterances at the expected
age of transition from phase 1 to phase 2 of 28 months (since exp(ψ̂3) = exp(−3.402) = 0.033) (see
Table 4). On average, for every additional one month increase in chronological age between ages 18 and
28 months, inclusive (i.e., during developmental phase 1), the rate at which “in” is produced in an oral
language sample is expected to increase multiplicatively by an order of exp(ψ̂2) = exp(0.246) = 1.279.
In contrast, the rate at which “in” is produced is not expected to change with increasing chronological
after age 28 months (i.e., in developmental phase 2, since ψ̂4 = 0.006 with p = 0.469).

With that said, the log expected rate at which the morpheme “in” is produced within an oral language
sample does not significantly vary across children at age 18 months (τ̂11 = 0.983, p = 0.211). Likewise,
the chronological age at which children transition from phase 1 to phase 2 does not significantly vary
(τ̂44 = 0.558, p = 0.730), and the rate of change in the log frequency with which the morpheme “in” is
produced does not significantly vary across children in either phase 1 (τ̂22 = 0.004, p = 0.470) or phase
2 (τ̂33 = 0.000, p = 0.441). Moreover, none of the four freely estimated growth factors (phase 1 intercept
and slope, phase 2 slope, and changepoint) significantly covary (i.e., all off-diagonal elements of T are
essentially zero).

Simultaneously, looking at the right-most panel of Figure 6, unexplained variability in use of the
morpheme “in” drops dramatically between 1.5 and 2.5 years of age and then remains low. More
specifically, the estimated coefficients of the exponential decay function fit to the time-varying NB2
dispersion parameters imply the dispersion parameter is expected to be ω̂1+ ω̂3 = 3.541+0.205 = 3.746
at age 18 months (tw = 0), decrease by 100(1− ω̂2)% = 100(1−0.837)% = 16.300% with every 1 month
increase in chronological age, and approach nonzero asymptote ω̂3 = 0.204 as children reach the end of
early childhood at 5 to 6 years of age.
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Figure 6. NB2 log expected BGM2 production rate and dispersion by chronological age.

Note: BGM2 denotes Brown’s (1973) second grammatical morpheme, "in” (see Table 1). NB2 denotes the Negative Binomial distribution with mean μ, dispersion ϕ, and quadratic variance function μ+ϕμ2.

FO-LL-SLCM denotes the first-order linear–linear structured latent curve model fit to the data, yielding the population parameter estimates in Table 4. Sample characteristics are provided in Table 3.
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Table 4. Population parameter estimates for NB2 first-order linear-linear SLCM fit to longitudinal

BGM2 counts

Parameter Estimate Standard error p-value

Population average phase 1 intercept (ψ1) −5.799 0.595 <0.001

Population average phase 1 slope (ψ2) 0.246 0.057 <0.001

Population average phase 2 intercept (ψ3) −3.402 0.246 <0.001

Population average phase 2 slope (ψ4) 0.006 0.008 0.469

Population average changepoint (γ) 9.958 0.922 <0.001

Expected BGM2 production rate at age 18

months (exp(ψ1))
0.003 0.002 0.093

Multiplicative increase in BGM2 production rate

per month in phase 1 (exp(ψ2))
1.279 0.073 <0.001

Expected BGM2 production rate at population

average transition age (exp(ψ3))
0.033 0.008 <0.001

Multiplicative increase in BGM2 production rate

per month in phase 2 (exp(ψ4))
1.006 0.008 <0.001

Variability in phase 1 intercept (τ11) 0.983 0.786 0.211

Variability in phase 1 slope (τ22) 0.004 0.006 0.470

Variability in phase 2 slope (τ33) 0.000 0.000 0.441

Variability in changepoint (τ44) 0.558 1.614 0.730

Covariance between phase 1 intercept and phase

1 slope (τ21)

−0.060 0.071 0.402

Covariance between phase 1 intercept and phase

2 slope (τ31)

0.002 0.004 0.606

Covariance between phase 1 intercept and

changepoint (τ41)

−0.465 0.653 0.477

Covariance between phase 1 slope and phase 2

slope (τ32)

0.000 0.000 0.971

Covariance between phase 1 slope and

changepoint (τ42)

0.012 0.044 0.776

Covariance between phase 2 slope and

changepoint (τ43)

−0.003 0.007 0.644

Dispersion trajectory unadjusted intercept (ω1) 3.541 0.000 <0.001

Dispersion trajectory decay factor (ω2) 0.837 0.029 <0.001

Dispersion trajectory nonzero asymptote (ω3) 0.205 0.067 0.002

Note: BGM2 denotes Brown’s (1973) second grammatical morpheme, “in” (see Table 1). Sample characteristics
are provided in Table 3.

Collectively, these population level trajectories suggest acquisition of the morpheme “in” might be
evidenced, among typically developing monolinguistic native speakers of GAE aged 1.5 to 5 years,
inclusive, by an increase in explained use, which may prove to be a facile manifestation of correct
use. Moreover, the statistical insignificance of the growth factor variances and covariances suggests
the process by which children learn to use the morpheme “in” may be highly consistent among
typically developing young children. This consistency among typically developing children may facilitate
the identification of atypically developing children when comparing individual fitted curves to the
population average curve quantifying age expectations in typical expressive language development.
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4.3.6. Model-implied individual development
Example individual fitted trajectories are provided in Figure 7. Although generally the functional form
of the fitted individual trajectories need not be the same as that of the population average trajectory
(S. A. Blozis & Harring, 2015), in this particular case both are linear–linear (Figures 6 and 7). An
individual’s fitted trajectory describes that individual’s model-implied production of the morpheme
“in” over the course of early childhood. These individual fitted trajectories can be compared to the
population average trajectory to help support clinical inferences about individual development and to
potentially help identify children who may benefit from interventions targeting use of the morpheme
“in” in GAE. For example, failure to observe any use of the morpheme “in” in an oral language sample of
100 utterances after age 28 months should motivate a closer examination of the child for high suspicion
of language delay.

For example, the model-implied trajectories for children 8 and 14 in Figure 7 imply these children are
developmentally on track (i.e., developing according to age expectations throughout early childhood).
Alternatively, the model-implied trajectories for children 12 and 436 in Figure 7 imply these children are
developing slightly above age expectations throughout early childhood—although not to a degree that is
clinically meaningful as all sampled children were considered to be typically developing with respect to
expressive language at the time(s) of assessment. This above average production of the morpheme “in”
appears to be largely driven by these two children entering early childhood with a higher-than-average
production rate despite subsequent slower than average increases in production during the initial phase
of rapid development (phase 1). Indeed, of the 453 (41.79%) children in the overall sample whose
fitted trajectories imply they are producing “in” more frequently than average when they enter early
childhood, the vast majority (93.38%) subsequently experience slower than average growth in phase 1
(though generally not slow enough to fall to or below age expectations). In contrast, the model-implied
trajectories for children 4 and 437 in Figure 7 imply these children are developing slightly below age
expectations throughout early childhood (although, again, not to a degree that is clinically meaningful
as all sampled children were typically developing). This below average production of the morpheme
“in” appears to be largely driven by these two children entering early childhood producing fewer “in”
morphemes than average despite subsequent faster than average increases in production during phase 1.
Indeed, of the 630 (58.12%) children in the overall sample whose fitted trajectories imply they are
producing fewer “in” morphemes than average as they enter early childhood, the vast majority (99.21%)
experience faster than average growth in phase 1, though generally not fast enough to catch up to age
expectations.

Collectively, these findings would seem to suggest that for typically developing children, the fre-
quency with which a child produces “in” within an oral language sample at age 18 months may predict
the frequency with which this morpheme is used for the duration of early childhood (and possibly
beyond). Combined with the potential for issues with the production of “in” to foreshadow broader
issues with a child’s overall level of expressive language development as well as issues using more strictly
grammatical (as opposed to lexical) morphemes that are typically acquired later in childhood (e.g.,
Clark, 1973; Morgenstern & Sekali, 2009), use of the morpheme “in” in early childhood may be a fairly
efficient, accessible, and early proxy for the child’s overall level of expressive language development. (In
clinical science, proxies are quite useful as they are easier to measure but predict clinical outcomes of
interest.) This may permit clinicians to more effectively target early interventions for children at risk
for language delay—a significant early warning symptom of a wide variety of developmental disorders
(e.g., Roberts et al., 2023).

5. Discussion

In the social and behavioral sciences, latent growth modeling, or one of its many variants, for continuous
repeated measures data remains a predominant modern approach to better understand developmen-
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Figure 7. Example individual fitted trajectories.
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tal processes thought to undergird many human behaviors, traits and attributes. Research studies
employing LGMs often share common research objectives. Particularly, to gain an understanding of
typical behavior of the underlying phenomena as represented by the parameters of a model, to assess the
degree to which these parameters and hence the phenomena vary across individuals, and to investigate
the extent that this variation can be explained by individual characteristics. Despite its popularity
coupled with an abundance of available categorical data, applications of latent growth modeling utilizing
discrete data are disappointingly rare.

The primary purposes of this article were to introduce a first-order multiphase SLCM for count
response data and to apply the model to grammatical morpheme counts, a clinical measure of expressive
language development. The growth parameters of the model—including changepoints—were unknown
and allowed to vary across individuals, and exposure was permitted to vary across both individuals
and time/assessments. Although typical acquisition of the morpheme “in” appeared to follow a linear–
linear trajectory in the empirical example, the proposed model provides much more modeling flexibility,
permitting non-monotonic change over the entire measurement period that may occur in more than
two phases, where change within a given phase may be non-polynomial (Harring et al., 2021). We also
demonstrated how to incorporate a trajectory describing concurrent change in time-varying dispersion
(unexplained variability in morpheme counts) over the course of early childhood to provide additional
insights into acquisition. We presented the motivating clinical context for the proposed model, the
empirical data, analytic challenges and considerations, and analysis results. We demonstrated how to
estimate the proposed model using existing methods and software, highlighting particular decision
points as we stepped through the analysis.

Other methodological articles have also recognized the challenges with analyzing multivariate
count data and have sought to help bridge the gaps between theoretical model development and their
applications to real-world data. For example, in a recent article, Seddig (2024) showed how to fit
first-order LGMs to longitudinal count response data and over-dispersed, zero-inflated response data
using Mplus©. Seddig (2024) focused attention on model specification using the software, parameter
interpretation, and model selection using global fit statistics and model comparison procedures.

We extended the basic models presented by Seddig (2024) in numerous ways. For example, Seddig
(2024) limited discussion to polynomial growth functions with examples restricted to linear and
quadratic trajectories with growth parameters interpreted with respect to post-baseline measurement
occasion rather than time (e.g., age) itself. Varying exposure was not discussed nor was the possibility of
specifying a trajectory for time-varying/time-specific dispersion parameters. We note that the growth
trajectory presented for the inflation factor in zero-inflated count models is not analogous to a dispersion
parameter trajectory because the dispersion parameter impacts the variance but not the mean of
the count distribution and is defined across individuals at a given measurement occasion so that
the trajectory is defined only at the population level (as constraints on the time-varying dispersion
parameters).

We extend the growth models to include nonlinear functions such as the bilinear model. The linear–
linear function discussed in this article need not be monotonic nor defined by a polynomial within a
given phase, with freely estimated linear and nonlinear growth parameters (including changepoints)
that may vary across individuals, an exposure variable in the linear predictor of the mean response,
and factor loadings constructed as functions of time and freely estimated growth parameters (as per
Harring et al., 2021), permitting unequally spaced and potentially individual measurement occasions
and yielding growth parameters that are interpreted with respect to time itself rather than measurement
occasion. As previously noted, few examples exist in the literature of a nonlinear growth function of
linear and nonlinear random effects connected to observed counts via a nonlinear link function due
to the computational difficulties that may arise in model estimation. In this article, we offer one such
example by fitting the proposed first-order SLCM to longitudinal morpheme counts.

Of course, even the first-order LGM model we presented can be embellished and advanced in
several ways including (1) incorporating both observed and latent time-invariant covariates to explain
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Figure 8. Path diagram for three-tier formation of a second-order linear–linear latent growth model fit to repeated measurements of

multiple count response variables that each conditionally follow a 2PEF distribution at each measurement occasion.

Note: Much of the notation used in Figure 8 is the same as the notation used in Figure 4. A solid, single-line, red arrow indicates a structural

relationship with a non-identity (e.g., natural log) link function. A dashed black arrow from A to B indicates A gives rise to B directly and/or

indirectly. A solid, double-line, black arrow from A to B indicates A generates B.

differences in characteristics of growth (i.e., the parameters defining the linear–linear growth model),
(2) adding individual attributes to account for systematic associations inherent in the modeling of
growth and/or the dispersion parameter, and (3) relating growth characteristics to some distal outcome
measure that might be predictive of grammatical morpheme development. One interesting extension
would permit a nonlinear mixed effects model (Davidian & Giltinan, 2003; Vonesh, 2012) to be fitted
as the growth modeling framework. This type of GLMM could be fitted within the functionality of SAS
NLMIXED or in modules in R (see, e.g., Grimm & Stegmann, 2019, for a fairly comprehensive listing).

Multiple measures (or items) are sometimes present at each measurement occasion because they are
believed to be indicators of the same latent construct (i.e., counts of multiple morphemes thought to
measure expressive language). In this scenario the researcher is likely to be interested in change in the
latent construct underlying those measures rather than the measures themselves. In such cases, one
may analyze second-order LGMs (Hancock et al., 2001; Sayer & Cumsille, 2001). For example, Figure 8
shows a path diagram of a second-order linear–linear LGM, which might be more feasibly estimated
in two-tier formation using a Schmid–Leiman transformation (Figure 9; e.g., Cai, 2010; Rijmen, 2010;
Schmid & Leiman, 1957).

The central differences between the second-order models depicted in Figures 8 and 9 and the first-
order model in Figure 4 is that now inferences can be made about a child’s level of GAE morphosyntactic
development overall rather than use of a specific morpheme. While the latter may be useful for identify-
ing specific grammatical targets for clinical intervention, the former may be more helpful for identifying
children who are developing atypically with respect to expressive language to help expedite treatment
delivery for improved long-term outcomes. For example, to this end, Yang et al. (2022) fit linear–linear
trajectories to score data from various measures of lexical diversity from typically developing (TD) and
developmentally language delayed (DLD) children aged 2–6 years. Lastly, fitting a second-order model
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Figure 9. Path diagram for two-tier formation of a second-order linear–linear latent growth model fit to repeated measurements of

multiple count response variables that each conditionally follow a 2PEF distribution at each measurement occasion.

Note: Much of the notation used in Figure 9 is the same as the notation used in Figure 4. A solid, single-line, red arrow indicates a structural

relationship with a non-identity (e.g., natural log) link function. A dashed black arrow from A to B indicates A gives rise to B directly and/or

indirectly. A solid, double-line, black arrow from A to B indicates A generates B.

allows us to parse regression error in the latent construct arising from misspecification of the population
growth curve or other aspects of the structural model (δi in Equation (4)) from error in the linear
predictor (εi in Equation (3)) arising from the omission of and/or measurement error in predictors of
the mean response. As such, variability in these two different levels/sources of error can be separated
and freely estimated, which may be useful for substantive reasons but also permits interpretation of the
dispersion parameters as quantifying specifically the latter source of error rather than any/all sources of
regression error.

Over realistic spans of time, many human behaviors, traits, and attributes develop or change
nonlinearly. At the heart of the SLCM is a nonlinear growth function whose parameters can be tied
to, and often derived to characterize, interesting features of the development under investigation. We
demonstrated how a theoretically driven linear–linear piecewise growth model could effectively sum-
marize GAE morphosyntactic development captured by multivariate count data. An in-depth analysis
was conducted with an emphasis on parameter interpretation, model-assessment, and refinement. Our
primary purpose was not to make substantive claims regarding the findings on how the grammatical
morpheme “in” changed over time, but rather, to suggest a road map to help researchers successfully
navigate a fairly involved set of analytic activities with several junctures requiring thoughtful decision-
making. Future directions include employing the proposed first-order SLCM to examine additional
BGMs that are more closely associated with expressive language delay and chronic language disorder
in early childhood, such as those marking tense (e.g., past tense markers), agreement (e.g., third person
singular marker), and aspect (e.g., Leonard et al., 2004; Rice, 2003). Additionally, the second-order
extension of the proposed model (discussed earlier) could be fit to counts of all 14 BGMs in the
assessment of a child’s overall level of expressive language development to yield additional insights
beyond what Brown (1973) was able to discover with only three children, including further quantitative
evaluation of the extent to which a child’s use of “in” may be a proxy for overall level of expressive
language development in early childhood.
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