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Abstract

We give a new type of geometric construction that allows for the construction of families of quintic
irrationalities, and is quite rich in algebraic properties. This construction may be considered as our first
attempt at characterizing points constructible with compass and twice-notched ruler, a problem that seems
to have been known in some form for more than two millennia.
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1. Introduction

Geometric constructions have been a source of fascination since antiquity. Euclid gave
interesting and nontrivial constructions using only the familiar tools of a straightedge
and compass. The ancient Greeks must have been sure that certain constructions were
impossible, such as trisecting a given angle or duplicating a cube; however, a complete
characterization of constructible points in a coordinate plane had to wait until more
modern times, after analytic geometry and algebra, in particular field theory, had been
invented and well established.

On the other hand, the ancient Greeks were not afraid of extending the assortment
of tools they used so as to create more types of constructions. For example, one way
uses intersections of conics, which allowed for trisection of angles. Another method
uses a marked ruler instead of a straightedge. A characterization of the constructible
points is known in some instances but not in others, depending on the tools used. See
below for more details.

Here is some motivation for the work presented here. Suppose that we can use
a twice-notched ruler (or marked ruler for short), that is, a straightedge with two
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marks one unit apart, and a compass. See [1, 4] for a description of this type of
construction. If we start with the points (0, 0) and (1, 0), then it is an open problem
to give an algebraic characterization of the points that can be constructed by these
tools. For example, it is not known if there is a way to construct the real 5

√
2

or to quinsect a given angle, even though there are numbers satisfying irreducible
quintic polynomials over Q constructible using only these tools. In this note we
give a new type of construction that has a rich set of constructible points, including
many whose coordinates are roots of quintic polynomials, but for which an algebraic
characterization of the constructible points is much more manageable than for a twice-
notched ruler and compass. We do not know if our modified construction process is
subsumed under that of the twice-notched ruler and compass, but we would guess that
it is. In any case, perhaps surprisingly, all real fifth roots of rational numbers (among
many others) are constructible by our modified method.

2. Tools for q-constructions

Here, we set up our construction, and define constructible points and numbers.
We shall be working in R × R. We call a point in R × R q-constructible if it is the

last point in a finite sequence of points P1, P2, . . . , Pn such that the point is in the
‘starter’ set

{(0, 0), (1, 0), (0, 1)},

or is obtained inductively in one of the following ways:

(i) as the intersection of two lines, each of which passes through two points that
appear earlier in the sequence;

(ii) as an intersection of a line passing through two earlier points and a circle passing
through (0, 0) and centered at a point on the x-axis appearing earlier in the
sequence;

(iii) as a point of intersection of the graph of y = x3 and a line described in (i);
(iv) as a point of intersection of the graph of y = x3 and a circle described in (ii).

A real number will be called q-constructible, if it is the x-coordinate of a q-
constructible point lying on the x-axis. A line passing through two q-constructible
points will be called a q-constructible line. Also, for convenience, we call the sequence
of points P1, . . . , Pn in the definition a q-constructible sequence.

Here are some reasons for looking at this particular type of construction. First of
all, if we use the conic y = x2 instead of our cubic y = x3 along with a straightedge and
compass, then the set of points that are constructible is the same as the set of points
obtained by using only a marked ruler. See [1, 4, 8] for more details. The numbers
constructible by this process are precisely those that lie in a real 2–3-tower over Q.
This means that a is constructible by this process if and only if there exists a sequence
of field extensions K0, K1, . . . , Kn such that

Q = K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ R,
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where [K j : K j−1] = 2 or 3, for j = 1, . . . , n, and a ∈ Kn. Notice in particular that
intersecting two conics yields at most four points by Bezout’s theorem. Hence the
numbers constructed this way satisfy polynomials of degree at most four over fields
generated by previously constructed numbers. Thus, by the solutions of cubic and
quartic equations by Cardano and Ferrari, it is easily seen that the numbers do indeed
lie in real 2–3-towers over Q.

Next, if we allow a marked ruler and compass, then it is not too hard to show that the
numbers constructible by this process satisfy equations of degree at most six. See [1]
for a very nice presentation of this fact and others. Hence by replacing the marked
ruler with the cubic y = x3, we would expect solutions to equations of degree at most
six. See [8] for other suggestions of cubics. However, by our restriction on the use of
the compass, we shall see that the degree is at most five; hence the ‘q’ in q-construction
stands for ‘quintic’.

One of our results gives an algebraic characterization of q-constructible numbers.
A real number a is q-constructible if and only if there exists a sequence of field

extensions K0, K1, . . . , Kn with a ∈ Kn such that

Q = K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ R,

where [K j : K j−1] ∈ {1 2, 3 5}, for all j = 1, . . . , n, and if [K j : K j−1] = 5 then K j =

K j−1( ∗
√

a j−1) where a j−1 ∈ K j−1 is the unique real root of the polynomial x5 + x − a j−1.

3. A characterization of q-constructible numbers

As promised, we give a characterization of q-constructible numbers. However, we
first introduce some notation and terminology for convenience.

We denote by F the set of all q-constructible numbers.
If a is a real number, then the unique real root of the polynomial x5 + x − a is called

the ultraradical of a and is denoted by ∗
√

a. If a ∈ F, where F is a subfield of R, then
F( ∗
√

a) will be called an ultraradical extension of F.
Let Q = K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ R be a tower of field extensions, with [K j : K j−1] = 1,

2, 3, or 5 (where j = 1 2, . . . , n), such that K j is an ultraradical extension of K j−1 if the
degree is five. We shall call such an extension a (real) q-tower of Q.

Given this notation, here is a statement of one of our results.

T 1. A real number a lies in F if and only if a ∈ Kn for some real q-tower
K0 ⊆ · · · ⊆ Kn of Q.

The proof will be carried out in several steps.

P 2. Let P j = (a j, b j), for j = 1, . . . , m, be a q-constructible sequence of
points. Then there is a real q-tower K0, . . . , Kn of Q such that a j, b j ∈ Kn for all j.

P. We use induction on m. For m = 1, P1 = (a1, b1) ∈ {(0, 0), (1, 0), (0, 1)} and
thus a1, b1 ∈ Q = K0.
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Now assume that m > 1 and that the proposition holds for any q-constructible
sequence of less than m points. Let P1, . . . , Pm be a q-constructible sequence of m
points. Hence by the induction hypothesis there is a real q-tower K0, . . . , Kn such
that a j, b j ∈ Kn for all j < m. Now consider Pm = (am, bm). Then Pm is a point of
intersection of curves in four possible ways, which we now consider individually.

Suppose that Pm is the intersection of two lines, each passing through two earlier
points in the sequence. Then the lines have equations with coefficients in Kn, and thus
the coordinates of the point of intersection are in Kn.

Next suppose that Pm is a point of intersection of a line passing through two earlier
points in the sequence and a circle passing through (0, 0) and centered at a point on
the x-axis appearing earlier in the sequence. Then the line and circle have equations
with coefficients in Kn, and so am, bm ∈ Kn(

√
c) for some c ∈ Kn with c > 0. Hence

am, bm ∈ Kn+1 = Kn(
√

c), and [Kn+1 : Kn] = 1 or 2, and Kn+1 ⊆ R. Thus am, bm ∈ Kn+1,
the terminal field of a real q-tower of Q.

Now suppose that Pm is a point of intersection of the curve y = x3 and a line passing
through two points appearing earlier in the sequence. As above, the line has an
equation with coefficients in Kn. Thus am is a real root of a cubic polynomial with
coefficients in Kn. Let Kn+1 = Kn(am). Then Kn+1 ⊆ R and [Kn+1 : Kn] ≤ 3. Moreover
bm ∈ Kn+1, since bm = a3

m.
Finally, suppose that Pm is a point of intersection of the curve y = x3 and the circle

passing through (0, 0) and with center P j = (a j, 0) for some j < m. Hence a j ∈ Kn.
The circle has an equation y2 + x2 − 2a jx = 0. Thus am must satisfy the sextic equation
x6 + x2 − 2a jx = 0. If am = 0, then Pm = (0, 0) and we are done. If not, then am satisfies
the quintic equation

x5 + x − a = 0,

where a = 2a j ∈ Kn. Hence am = ∗
√

a. So if we let Kn+1 = Kn( ∗
√

a), then [Kn+1 : Kn] ≤ 5.
We shall be done if we can show [Kn+1 : Kn] , 4. Assume otherwise, then

x5 + x − a = p(x)q(x),

where p and q are irreducible polynomials over Kn of degrees four and one
respectively. By assumption, ∗

√
a is a root of p. However, q also has a real root,

implying ∗
√

a must be this root, since the real root of x5 + x − a is unique. This is the
desired contradiction, and the proposition is now established. �

From this proposition, we immediately obtain the following result.

C 3. If a ∈ F, then a ∈ Kn for some real q-tower K0, . . . , Kn of Q.

Now we consider the converse. However, we first isolate a useful lemma that
follows essentially by observing that one can prove F is a field by using only a
straightedge.

L 4. The set F is a subfield of R.
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P. We just sketch the argument. First note that the points (1, 0), (0, 1), (2, 0) and
(0, 2) are q-constructible, for the first two are in our starter set; (2, 0) and (1, 1) are
intersections of the (q-constructible) x-axis and the curve y = x3 respectively with the
circle through (0, 0) centered at (1, 0). However, (0, 2) is then the intersection of the q-
constructible lines x + y = 2 and the y-axis. This new starter set is all that is necessary
to show that the numbers constructible from this set by using only a straightedge form
a field; see [4, Ch. 4].

We now take advantage of Martin’s presentation. In [4, Ch. 4], starting with
Theorem 4.4 through Corollary 4.11, replace the words ‘ruler point’ and ‘ruler line’
with ‘q-constructible point’ and ‘q-constructible line’ respectively. The proofs of all
the results remain unchanged and the new Corollaries 4.9 and 4.11 show that F is
a field. For later use, we note that by the new Theorem 4.7, any line through a
q-constructible point and parallel to a q-constructible line is a q-constructible line. �

For a detailed proof of this lemma, see [6].
We now use this lemma and its proof to help prove the converse to Corollary 3.

P 5. Let K0, . . . , Kn be a real q-tower of Q. Then Kn ⊆ F.

P. We proceed by induction on n. If n = 0, then Kn = Q ⊆ F, since F is a field.
Now suppose that n > 1 and that all q-towers ofQ of length less than n are contained

in F. Let K0, . . . , Kn be a real q-tower of Q. Then by the induction hypothesis,
Kn−1 ⊆ F. We consider three cases depending on the degree [Kn : Kn−1].

First, suppose that [Kn : Kn−1] = 2. Then Kn = Kn−1(
√

a) for some a ∈ Kn−1 with
a > 0. We claim that

√
a is q-constructible. The argument is essentially the same as

for the Poncelet–Steiner theorem, which shows (roughly) that points constructible by
straightedge and one circle are precisely those constructible by the usual straightedge
and compass; see [4, Ch. 6]. Thus square roots can be constructed.

Notice that a > 0, and so −1 < (a − 1)/(a + 1) < 1 and 0 < (a − 1)/(a + 1) + 1 < 2.
Since a ∈ F by the induction hypothesis, (a − 1)/(a + 1) + 1 ∈ F, as F is a field. By
the last statement in the proof of the lemma, the vertical line through the point
((a − 1)/(a + 1) + 1, 0) is q-constructible. Hence the points

(a − 1
a + 1

+ 1, ±

√
1 −

(a − 1
a + 1

)2)
of intersection of this line with the circle passing through (0, 0) centered at (1, 0) (thus
with an equation y2 + (x − 1)2 = 1) are q-constructible. However, by the last statement
of the proof of the lemma again, by projecting to the y-axis and then along a line of
slope −1 we then see that √

1 −
(a − 1
a + 1

)2

∈ F.
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However, we now have

√
a =

(a + 1
2

)√
1 −

(a − 1
a + 1

)2

∈ F,

as desired.
Next suppose that [Kn : Kn−1] = 3. Then Kn = Kn−1(α), where α is the real root of

an irreducible cubic polynomial p over Kn−1. We claim that F is Vietian; that is, if
a ∈ F with a > 0, then

√
a, 3
√

a ∈ F, and, moreover, if cos θ ∈ F, then cos(θ/3) ∈ F. To
see this, suppose that a ∈ F with a > 0; notice from the previous argument that

√
a ∈ F.

Moreover, ( 3
√

a, a) is the intersection of the q-constructible line y = a with y = x3 and
thus q-constructible. Projecting to the x-axis shows 3

√
a ∈ F. Finally, let a = 2 cos θ ∈ F.

Then x = 2 cos(θ/3) satisfies the equation x3 − 3x − a = 0. However, this is the x-
coordinate of the intersection of the line y = 3x + a, which is q-constructible, and
the curve y = x3. Thus 2 cos(θ/3) and hence also cos(θ/3) are in F. Therefore, F is
Vietian as claimed. However, by [4, Theorem 9.8], which states that a real root of any
polynomial of degree less than five over a Vietian field lies in this field, we then have
α ∈ F. Therefore, since F is again a field, Kn ⊆ F.

Finally, suppose that [Kn : Kn−1] = 5. Then Kn = Kn−1(α) where α = ∗
√

a for some
a ∈ Kn−1 ⊆ F; that is, α is the unique real root of x5 + x − a. However, the points of
intersection of y = x3 with the circle passing through (0, 0) centered at (a/2 0) are then
q-constructible. These points are easily seen to be (0, 0) and (α, α3). By projection,
α ∈ F. Therefore Kn ⊆ F, as desired.

This establishes the proposition. �

Corollary 3 and Proposition 5 establish the theorem, that is, an algebraic
characterization of the q-constructible numbers.

4. More properties and some examples of q-constructible numbers

We saw in the proof of Proposition 5 that the field F of q-constructible numbers
is Vietian, and so any real root of a polynomial over F of degree at most four is also
q-constructible. Now we address the problem of the q-constructibility of real roots of
quintic polynomials over F. First we show that F is closed under taking fifth roots.

T 6. If r ∈ F, then the real fifth root 5
√

r ∈ F.

Hence, as noted in the introduction, all fifth roots of rational numbers are q-
constructible.

Note that it suffices to prove the theorem for positive r. Moreover, we need only
prove the theorem when r ≥ 2 (or r is sufficiently large), since we can reduce the
problem to this case by multiplying by a fifth power of a sufficiently large integer.

We prove the theorem in several steps. In what follows, if r ∈ R, then 5
√

r always
means the real fifth root.
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P 7. Suppose that K is a subfield of R and a finite extension of Q. Suppose,
too, that r ∈ K, r ≥ 2 and the polynomial x5 − r is irreducible in K[x]. Then there exists
an extension L in R of K of degree at most three, and there are numbers a, b ∈ L with
a > 0, such that if β is the real root of the polynomial x5 + ax + b, then L( 5

√
r) = L(β).

P. Let α = 5
√

r. Then 1, α, α2, α3, α4 is a basis of L(α)/L (where L will be
determined below). Let β = a0 + a1α + · · · + a4α

4 for some a j ∈ L. We shall determine
the root β described in the statement of the proposition. Since x5 − r =

∏5
j=1(x − αζ j),

where ζ = ζ5 is a primitive fifth root of unity in C, the minimal polynomial p of β over
L is given as p(x) =

∏5
j=1(x − β j), where β j =

∑4
µ=0 aµζ jµαµ. Also,

p(x) = x5 − σ1x4 + σ2x3 − σ3x2 + σ4x − σ5,

where the σ j are the elementary symmetric functions of β1, . . . , β5, that is,

σ j(x1, . . . , x5) =
∑

1≤k1<···<k j≤5

xk1 · · · xk j

for j = 1, . . . , 5, where xk = βk.
Since p(x) = x5 + ax + b, we want σ1 = σ2 = σ3 = 0. Instead of working directly

with the σ, it is easier to use the following power sums of the roots. Let

s j = s j(β1, . . . , β5) =

5∑
k=1

β
j
k.

Relations between the elementary symmetric functions and the power sums are given
by Newton’s identities, see [3]:

s j − σ1s j−1 + − · · · + (−1) j−1σ j−1s1 + (−1) j jσ j = 0,

for j = 1, . . . , 5.
Notice that σ1 = σ2 = σ3 = 0 if and only if s1 = s2 = s3 = 0. Given the latter, we

derive relations among a0, . . . , a4 defined above.
We start with

s1 = 0.

Notice then that

s1 =

5∑
i=1

βi =

5∑
i=1

4∑
µ=0

aµζ
iµαµ =

4∑
µ=0

aµα
µ

5∑
i=1

ζ iµ = 5a0,

since
∑5

i=1 ζ
iµ is equal to 0 if µ . 0 mod 5, but is equal to 5 otherwise. Therefore,

a0 = 0,

which we assume from now on.
Now we consider

s2 = 0.
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In this case,

s2 =

5∑
i=1

β2
i =

5∑
i=1

( 4∑
µ=1

aµζ
iµαµ

)2

=

5∑
i=1

( 4∑
µ=1

a2
µα

2µζ2µi + 2
∑

1≤µ<ν≤4

aµaνα
µ+νζ(µ+ν)i

)

=

4∑
µ=1

a2
µα

2µ
5∑

i=1

ζ2µi + 2
∑

1≤µ<ν≤4

aµaνα
µ+ν

5∑
i=1

ζ(µ+ν)i

= 5(2a1a4 + 2a2a3)α5 = 5(2a1a4 + 2a2a3)r,

since
∑5

i=1 ζ
2µi = 0 for µ = 1, . . . , 4 and

∑5
i=1 ζ

(µ+ν)i = 0, unless µ + ν is a multiple of 5.
From this we obtain

a1a4 + a2a3 = 0.

Next we consider
s3 = 0.

Here

s3 =

5∑
i=1

β3
i =

5∑
i=1

( 4∑
µ=1

aµζ
iµαµ

)3

=

4∑
µ=1

a3
µα

3µ
5∑

i=1

ζ3µi + 3
∑

1≤µ,ν≤4
µ,ν

a2
µaνα

2µ+ν
5∑

i=1

ζ(2µ+ν)i

+ 6
∑

1≤µ<ν<κ≤4

aµaνaκα
µ+ν+κ

5∑
i=1

ζ(µ+ν+κ)i

= 15((a2
1a3 + a1a2

2)α5 + (a2
3a4 + a2

4a2)α10),

since the first and third sums are zero and the second is nonzero only when (µ, ν) ∈
{(1, 3), (3, 4), (2, 1), (4, 2)}. Now using the fact that α5 = r and the assumption that
s3 = 0, we obtain

a1a2
2 + a2

1a3 + (a2a2
4 + a2

3a4)r = 0.

Now we need to ensure that a > 0. Notice that a = σ4, and by Newton’s identity,
with s1 = s2 = s3 = 0, it follows that s4 + 4σ4 = 0 and thus

a = − 1
4 s4.

We now compute s4 in terms of the ai. Notice that

s4 =

5∑
i=1

β4
i =

5∑
i=1

( 4∑
µ=1

aµζ
iµαµ

)4

= S 1 + S 2 + S 3 + S 4 + S 5,
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where some calculation shows that

S 1 =

4∑
µ=1

a4
µα

4µ
5∑

i=1

ζ4µi = 0,

S 2 = 4
∑
µ,ν

a3
µaνα

3µ+ν
5∑

i=1

ζ(3µ+ν)i = 20(a3
1a2r + (a3

2a4 + a1a3
3)r2 + a3a3

4r3),

S 3 = 6
∑
µ<ν

a2
µa2

να
2(µ+ν)

5∑
i=1

ζ2(µ+ν) = 30(a2
1a2

4 + a2
2a2

3)r2,

S 4 = 12
∑

|{µ,ν,κ}|=3
µ<ν

a2
µaνaκα

2µ+ν+κ
5∑

i=1

ζ(2µ+ν+κ)i = 0,

and, finally,

S 5 = 24a1a2a3a4α
10

5∑
i=1

ζ10i = 120a1a2a3a4r2.

Therefore, −4a = s4, and this is equal to

10r(2a3
1a2 + r(2a3

2a4 + 2a1a3
3 + 3a2

1a2
4 + 3a2

2a2
3 + 12a1a2a3a4) + 2a3a3

4r2).

Summarizing what we have so far,

β = a1α + a2α
2 + a3α

3 + a4α
4

is a root of p(x) = x5 + ax + b, if the ai satisfy the two conditions,

a1a4 + a2a3 = 0, (1)

a1a2
2 + a2

1a3 + (a2a2
4 + a2

3a4)r = 0. (2)

Now let a3 = −1 and a4 = 1; thus by (1), a1 = a2. Hence by (2),

a3
1 − a2

1 + (a1 + 1)r = 0.

However, we then have

s4 = 10r(2a4
1 + (2a3

1 − 6a2
1 − 2a1)r − 2r2).

Therefore in order that a > 0, we need s4 < 0 or, equivalently, that

c = r2 + (a1 + 3a2
1 − a3

1)r − a4
1 > 0.

Now notice that if f (x) = x3 − x2 + (x + 1)r, then f is an increasing function of x ∈ R
(since r ≥ 2) and has its real root a1 between −1 and 0, since f (−1) = −2 and f (0) = r.
However, for these constraints on a1, we then see that

c > r2 − r − 1 > 0,

again since r ≥ 2.
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Now let L = K(a1), so L ⊂ R and [L : K] ≤ 3. Moreover, β = a1α + a1α
2 − α3 + α4

and satisfies the equation x5 + ax + b = 0, where a, b ∈ L, with a > 0 by construction
and b , 0. Also notice that L(α) = L(β). This establishes the proposition. �

Now we can complete the proof of Theorem 6.

P  T 6. Let r ∈ F and assume, without loss of generality, that r ≥ 2.
Hence r ∈ Kn for some real q-tower K0 ⊆ · · · ⊆ Kn of Q. Consider the field Kn( 5

√
r).

If [Kn( 5
√

r) : Kn] < 5, then 5
√

r ∈ F, since F is Vietian (see the proof of Proposition 5).
Hence we may assume that this field extension is of degree five and thus x5 − r is
irreducible in Kn[x]. Now by the previous proposition, there is an extension L ⊆ R
such that [L : Kn] ≤ 3 and there is an element β, which is the real root of a polynomial
x5 + ax + b ∈ L[x] with a > 0, such that L( 5

√
r) = L(β). Next, let N = L( 4

√
a) and let

γ = β/ 4
√

a where 4
√

a denotes the positive fourth root of a. Now γ is a root of the
polynomial x5 + x + b/

4
√

a5. Let M = L(
√

a) and R = N(γ). However,

K0 ⊆ · · · ⊆ Kn ⊆ L ⊆ M ⊆ N ⊆ R

is then a real q-tower of Q such that 5
√

r ∈ R, as desired. �

Notice that x5 − r has exactly one real root for r ∈ F. This is no accident, as the
following theorem indicates.

T 8. Let p(x) = x5 + a1x4 + a2x3 + a3x2 + a4x + a5 ∈ F[x] and be irreducible
over F = Q(a1, . . . , a5). If p has a root in F, then p has exactly one real root.

To prove this theorem we first isolate a lemma.

L 9. Let K/k be a finite Galois extension and F/k an arbitrary extension for
which both K and F are subfields of some common field. If L is any field such that
F ∩ K ⊆ L ⊆ K, then the degree [L : F ∩ K] = [LF : F].

P. As is well known, KF/F is a Galois extension and

Gal(K/K ∩ F) ' Gal(KF/F).

Hence K and F are linearly disjoint over K ∩ F; see, for instance, [5, Section 20].
However, by transitivity of linear disjointness (again see the above reference), L and
F are then linearly disjoint over K ∩ F. Thus [L : F ∩ K] = [LF : F], as desired. �

Now we proceed with the proof of the theorem.

P  T 8. Write p as
∏5

j=1(x − β j) where β j ∈ C. Let K0 ⊆ · · · ⊆ Kn be a
q-tower of minimal length such that there is a root of p contained in Kn, that is,

n = min{m : Km ∩ {β1, . . . , β5} , ∅}.

Hence Kn−1 contains no roots of p. Let N = F(β1, . . . , β5) be the splitting field of
p over F. (Recall that Gal(N/F) is isomorphic to C5, the cyclic group of order
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five, D5, the dihedral group of order 10, F20, the Frobenius group of order 20, A5, the
alternating group of degree five, or S 5, the full symmetric group; see [2, Section 13.2]
for a particularly nice presentation of this and related facts.) We consider two cases
according as the degree [N ∩ FKn−1 : F] is not or is a multiple of 5.

Case 1. Suppose that 5 - [N ∩ FKn−1 : F]. Let β = β j ∈ Kn. Since [F(β) : F] = 5
but 5 - [N ∩ FKn−1 : F], we see that [(N ∩ FKn−1)(β) : N ∩ FKn−1] = 5. Hence by
Lemma 9, [FKn−1(β) : FKn−1] = 5; and thus

[Kn : Kn−1] ≥ [Kn−1(β) : Kn−1] ≥ [FKn−1(β) : FKn−1] = 5.

Since [Kn : Kn−1] ≤ 5 we have [Kn : Kn−1] = 5. However, this implies that Kn/Kn−1 is
an ultraradical extension and so, in particular, the minimal polynomial of any generator
of Kn/Kn−1 must have exactly one real root. Since β is such a generator and p is its
minimal polynomial over Kn−1 (as well as F), p must have exactly one real root, as
desired.

Case 2. Suppose that 5 | [N ∩ FKn−1 : F]. We show that this case cannot occur. Let
G = Gal(N/F) and consider G identified with a subgroup of S 5 by fixing an ordering
of the roots of p. This ordering may be altered for convenience in what follows. We
now consider the five possible groups to which G can be isomorphic.

If G 'C5, then N = F(β). However, N ∩ FKn−1 = F, since Kn−1 contains none of
the β j, contrary to the assumption in this case. Thus G cannot be cyclic of order five.

In the other four instances, we claim first that all the F j = F(β j) are distinct. For
otherwise suppose, without loss of generality, that F1 = F2. Then (see [2]) G contains
a 5-cycle σ = (12i jk). Again, without loss of generality, assume that σ = (12345).
However, we then have F2 = σ(F1) = σ(F2) = F3, and, furthermore, F3 = σ(F2) =

σ(F3) = F4. Similarly F4 = F5. Thus all the F j are identical, which implies that
G 'C5; but we have ruled this situation out. Thus these fields are distinct as claimed.
Now each of the four groups D5, F20, A5, S 5 has exactly five subgroups of index 5
in the full group. Hence Gal(N/F j) must correspond to these maximal subgroups.
Now since no β j ∈ N ∩ FKn−1, we see that Gal(N/N ∩ FKn−1) * Gal(N/F j) for any j.
However, 5 | [N ∩ FKn−1 : F], and so the index of Gal(N/N ∩ FKn−1) in G must be a
multiple of 5 in G, or equivalently the order of Gal(N/N ∩ FKn−1) is not divisible by 5.

If G ' D5 or F20, any subgroup whose order is not a multiple of five lies in a
subgroup of index 5 in G. Thus Gal(N/N ∩ FKn−1) ⊆ Gal(N/F j) for some j, contrary
to the assumption of Case 2. Hence these two groups cannot occur in this case.

Finally, suppose that G ' S 5 or A5. First consider S 5. The five subgroups of index 5
(hence of order 24) are S (i)

4 = {σ ∈ S 5 : σ(i) = i}, for i = 1, . . . , 5. There are subgroups
of order relatively prime to five that are not contained in any of the S (i)

4 . They are the
conjugates of H1 = 〈(123), (45)〉 = 〈(123)(45)〉 'C6 and H2 = 〈(123), (12)(45)〉 ' S 3,
which are of order six, and H3 = 〈(123), (12), (45)〉 ' S 3 × S 2 of order 12. It turns out
that H3 is a maximal subgroup of S 5 and H3 is the only subgroup lying between S 5

and either of H1 and H2. Similarly for A5, H2 above is a maximal subgroup (unique
up to conjugation) in A5 not contained in any of the subgroups of index 5 in A5.
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Now let H = Gal(N/N ∩ FKn−1). Then H must be conjugate to H1, H2 or H3 in S 5

if G ' S 5, or to H2 in A5 if G ' A5. If G ' S 5 and H is conjugate to H3 or if G ' A5 and
H is conjugate to H2, then N ∩ FKn−1/F is of degree 10 with no intermediate subfields.
In the other two situations, [N ∩ FKn−1 : F] = 20 and N ∩ FKn−1/F contains exactly
one intermediate field K and [K : F] = 10.

Now let k be the maximal index such that N ∩ FKk = F. Since

F ⊂ N ∩ FKk+1 ⊆ N ∩ FKn−1,

we see that [N ∩ FKk+1 : F] ≥ 10. First suppose that [N ∩ FKn−1 : F] = 10. Thus
N ∩ FKn−1 = N ∩ FKk+1. However, by Lemma 9, we then have

[(N ∩ FKn−1)FKk : FKk] = [N ∩ FKn−1 : F] = 10.

However,
FKk ⊂ (N ∩ FKk+1)FKk ⊆ FKk+1

and thus
[Kk+1 : Kk] ≥ [FKk+1 : FKk] ≥ 10,

which contradicts the definition of a q-tower. On the other hand, suppose now that
[N ∩ FKn−1 : F] = 20. Again, let K be the unique field with F ⊆ K ⊆ N ∩ FKn−1

for which [K : F] = 10. Hence N ∩ FKk+1 = K or N ∩ FKk+1 = N ∩ FKn−1 since
F ⊂ N ∩ FKk+1 ⊆ N ∩ FKn−1. Applying Lemma 9 again, we see that

[(N ∩ FKk+1)FKk : FKk] ≥ 10.

However,
FKk ⊂ KFKk ⊆ (N ∩ FKk+1)FKk ⊆ FKk+1,

and so [Kk+1 : Kk] ≥ 10, which cannot occur.
This establishes the theorem. �
We can say more, namely, the converse of this theorem is also true.

T 10. Let

p(x) = x5 + a1x4 + a2x3 + a3x2 + a4x + a5 ∈ F[x]

and be irreducible over F = Q(a1, . . . , a5). If p has exactly one real root, then this
real root is in F.

A major part of the proof of this theorem (in a different context) was given by
Sylvester using an application of an extension of his law of inertia for quadratic forms.
Here is one version of Sylvester’s result, stated in a way that will be convenient.

T 11. Let

p(x) = x5 + a1x4 + a2x3 + a3x2 + a4x + a5 ∈ F[x]
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with exactly one real root, β, where F be a subfield of R. Then there are field extensions

F ⊆ K ⊆ L ⊆ M ⊆ R

such that [K : F] ≤ 2, [L : K] ≤ 2 and [M : L] ≤ 3 such that M(β) = M(γ) where γ is a
root of a polynomial q(x) = x5 − ax − b for some a, b ∈ M.

For a proof, see [7]. A similar theorem is true if there is no restriction on the reality
of the coefficients. This follows by the (independent) work of Bring and Jerrard as is
well known. Sylvester’s contribution was in considering the real case.

Before proving Theorem 10, we single out a result; but first we give a couple of
definitions. Let

f (x) = a0xn + a1xn−1 + · · · + an = a0

n∏
i=1

(x − xi)

and

g(x) = b0xm + b1xm−1 + · · · + bm = b0

m∏
i=1

(x − yi)

be polynomials over some field. Then the discriminant of f is

D( f ) = a2n−2
0

∏
i< j

(xi − x j)2,

and the resultant of f and g is

R( f , g) = am
0 bn

0

n∏
i=1

m∏
j=1

(xi − y j).

P 12. Let f and g be polynomials with real coefficients of degrees three and
four respectively, such that a0 > 0 and b0 > 0.

(1) If D( f ) < 0, then exactly one root of f is real.
(2) If D(g) < 0, then exactly two (distinct) roots of g are real.
(3) Suppose that D( f ) < 0 and D(g) < 0. Without loss of generality, let x1 ∈ R and

y1, y2 ∈ R with y1 < y2. If R( f , g) < 0, then y1 < x1 < y2, in which case g(x1) < 0.

P. The statements (1) and (2) are well known (see for example [9, pp. 272–277]).
Thus we prove only (3). First,

R( f , g) = a4
0b3

0(x1 − y1)(x1 − y2)z,

where

z = (x1 − y3)(x1 − y4)
3∏

i=2

4∏
j=1

(xi − y j).

However, the factors appearing in z come in complex conjugate pairs, and so z > 0.
Further, (x1 − y1)(x1 − y2) < 0 since R( f , g) < 0 and a0, b0 > 0. It now follows that
y1 < x1 < y2, and hence g(x1) < 0. �
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Now we prove Theorem 10.

P  T 10. It suffices to prove the theorem for p(x) = x5 − ax − b, by
Sylvester’s result above. Notice that the case where a = 0 follows from Theorem 6.
Hence we assume that a , 0 and consider two cases, according to the sign of a.

Case 1. Suppose that a < 0. Let β be the unique real root of p. If c ∈ R \ {0}, then,
since β5 − aβ − b = 0, multiplying this equation by c5, we see that

(cβ)5 − ac4(cβ) − c5b = 0.

Now let c = 1/ 4
√
|a|, where 4

√
|a| is one of the real fourth roots of |a|. Hence β/ 4

√
|a|

satisfies q(x) = x5 + x − b/ 4
√
|a5| = 0. Since |a|1/4 ∈ F and thus also q(x) ∈ F[x], we see

that β/|a|5/4 ∈ F. However, we then have β ∈ F, as desired.

Case 2. Suppose that a > 0. The argument in Case 1 then shows that we may assume,
without loss of generality, that p(x) = x5 − x − b. We now follow Bring and Jerrard,
and Sylvester, by introducing a (real) Tschirnhaus transformation to transform p(x) =

x5 − x − b into q(y) = y5 − a1y − b1, where a1 < 0 and a1 and b1 are in the appropriate
field extension of F = Q(b). To this end, let p(x) = x5 − x − b =

∏5
i=1(x − xi), where

xi ∈ C are the roots of p. Recall that the discriminant ∆ of p is 55b4 − 28. Since p is
irreducible, hence separable, ∆ , 0. Moreover, since p has exactly one real root, ∆ > 0;
see [2, 9]. Let

y = u0 + u1x + u2x2 + u3x3 + u4x4,

where ui ∈ R are to be determined so that

q(y) = y5 − a1y − b1 =

5∏
i=1

(y − yi),

where yi =
∑4
µ=0 uµxµi .

Now the coefficients of the polynomials can be expressed in terms of elementary
symmetric functions of their roots. However, the coefficients may also be given in
terms of power sums of their roots, and for us this will be more convenient, as before.
For a nonnegative integer k, let

sk =

5∑
i=1

xk
i and s′k =

5∑
i=1

yk
i .

Once again we recall Newton’s identities. Let

f (x) = xn + c1xn−1 + · · · + cn =

n∏
i=1

(x − xi),

and, for all positive integers m, let

sm =

n∑
i=1

xm
i .
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Then
sm + c1sm−1 + · · · + cm−1s1 + mcm = 0,

where we define cm = 0 for all m > n. From this we can determine the sm recursively.
Again consider p(x) = x5 − x − b. By Newton’s identities (with c1 = c2 = c3 = 0,

c4 = −1, and c5 = −b), we have for m = 1, s1 + c1 = 0, and so s1 = −c1 = 0. For m = 2
we see that s2 + c1s1 + 2c2 = 0 and thus s2 = −c1s1 − 2c2 = 0. Similarly, s3 = 0, s4 = 4,
and s5 = 5b. For m > 5, we see easily that

sm = sm−4 + bsm−5.

From all of this we list the first 16 power sums for later use:

s1 = 0, s2 = 0, s3 = 0, s4 = 4,
s5 = 5b, s6 = 0, s7 = 0, s8 = 4,
s9 = 9b, s10 = 5b2, s11 = 0, s12 = 4,
s13 = 13b, s14 = 14b2, s15 = 5b3, s16 = 4.

Also recall that q(y) =
∏5

i=1(y − yi). We first write

q(y) = y5 + B1y4 + B2y3 + B3y2 + B4y + B5,

where yi =
∑4
µ=0 uµxµi . We want q(y) = y5 − a1y − b1 as noted above, and so we need

to determine the Tschirnhaus transformation such that B1 = B2 = B3 = 0 and B4 > 0.
By Newton’s identities, we may determine the coefficients B j in terms of the power

sums s′k. After this we can rewrite the s′k and thus also the B j in terms of uµ and
sm (the power sums of the xi). To this end, we first want B1 = 0. By Newton’s
identities,

s′1 + B1 = 0

and hence s′1 = −B1 = 0. However, on the other hand,

s′1 =

5∑
i=1

yi =

5∑
i=1

4∑
µ=0

uµxµi =

4∑
µ=0

uµ
5∑

i=1

xµi

= 5u0 + u1s1 + u2s2 + u3s3 + u4s4 = 5u0 + 4u4,

from our table of values of sm above. Hence

u0 = − 4
5 u4.

Thus in order to have B1 = 0, we use the Tschirnhaus transformation:

y = u1x + u2x2 + u3x3 + u4(x4 − 4
5 ).

Next, we want B2 = 0. Again using Newton’s identities,

s′2 + B1s′1 + 2B2 = 0,
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and so s′2 = −2B2 = 0 (as B1 = 0). On the other hand,

s′2 =

5∑
i=1

y2
i =

5∑
i=1

(
u1xi + u2x2

i + u3x3
i + u4

(
x4

i −
4
5

))2

=

5∑
i=1

(
u2

1x2
i + u2

2x4
i + u2

3x6
i + u2

4

(
x8

i −
8
5

x4
i +

16
25

)
+ 2

(
u1u2x3

i + u1u3x4
i

)
+ 2

(
u1u4

(
x5

i −
4
5

xi

)
+ u2u3x5

i + u2u4

(
x6

i −
4
5

x2
i

)
+ u3u4

(
x7

i −
4
5

x3
i

)))
= u2

1s2 + u2
2s4 + u2

3s6 + u2
4

(
s8 −

8
5

s4 +
16
5

)
+ 2(u1u2s3 + u1u3s4)

+ 2
(
u1u4

(
s5 −

4
5

s1

)
+ u2u3s5 + u2u4

(
s6 −

4
5

s2

)
+ u3u4

(
s7 −

4
5

s3

))
= 4u2

2 + u2
4

(
4 −

32
5

+
16
5

)
+ 2(4u1u3 + 5bu1u4 + 5bu2u3).

Thus we have

0 = s′2 = 4u2
2 + 4

5 u2
4 + 8u1u3 + 10bu1u4 + 10bu2u3.

Notice that the right side is a quadratic form in the uµ and can be diagonalized, as
was done beautifully by Sylvester in much more generality using his extended version
of his law of inertia, by completing the squares as

0 = s′2 = 4v2
2 +

4
5

v2
4 −

25b2

4
v2

3 −
1

100b2
∆v2

1,

where

v1 = u1, v2 = u2 +
5b
4

u3, v3 = u3 −
16

25b2
u1,

v4 = u4 +
25b

4
u1, and ∆ = 55b4 − 28,

the discriminant of p as identified above. Choosing the uµ (which we shall do later) to
satisfy the above equation will then guarantee that B2 = 0.

Next we want B3 = 0. By Newton’s identities,

s′3 + B1s′2 + B2s′1 + 3B3 = 0,

in which case we see that s′3 = 0. On the other hand,

s′3 =

5∑
i=1

y3
i =

5∑
i=1

( 4∑
µ=0

uµxµi

)3

.
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Expanding in a manner similar to that in the case of s′2 above, one finds that

0 = s′3 = − 12
25 u3

4 + 9bu3
3 + 3bu1u2

4 + 15b2u2u2
4 + 15b2u2

3u4 + 12u2u2
3

+ 12
5 u2

2u4 + 15bu1u2
2 + 15bu2

1u3 + 12u2
1u2 + 24

5 u1u3u4 + 30bu2u3u4.

Finally, we need to consider B4, which we want to be positive. Again by Newton’s
identities, we easily see that s′4 = −4B4, and thus we wish to have s′4 < 0. In the same
manner as for s′2 and s′3, one finds that s′4 is equal to

52
125 u4

4 + (20b3u3 + 8b2u2 + 4bu1)u3
4

+ (36b2u2
3 + 108

5 bu2u3 + 48
25 u1u3 + 24

25 u2
2 + 30b2u2

1)u2
4

+ ( 116
5 bu3

3 + 48
5 u2u2

3 + 120b2u1u2u3 + 20b2u3
2 + 60bu2

1u3 + 60bu1u2
2 + 48

5 u2
1u2)u4

+ (4u4
3 + 20b2u1u3

3 + 30b2u2
2u2

3 + 108bu1u2u2
3 + 36bu3

2u3 + 24u2
1u2

3 + 48u1u2
2u3

+ 4u4
2 + 20bu3

1u2 + 4u4
1).

We are now in a position to choose the uµ so that s′2 = s′3 = 0 and (perhaps
miraculously) s′4 < 0. We start by letting

v2 =
5
4

bv3 and v4 =

√
5∆

20b
v1,

in which case it is guaranteed that s′2 = 0. In terms of the uµ we see that

u2 = ω2u1 and u4 = ω4u1,

with

ω2 = −
4
5b

and ω4 =

√
5∆ − 53b2

20b
.

Notice that u1 and u3 are still arbitrary.
Now write u3 = ω3u1 and compute s′3 with uµ = ωµu1 for µ = 2, 3, 4. Since s′3 is a

homogeneous form of degree three in u1, . . . , u4, we see that u3
1 is a factor of s′3. A

straightforward calculation yields

s′3
3bu3

1

= 3ω3
3 + A1ω

2
3 + A2ω3 + A3,

where the Ai = Ai(∆) are given by

A1 = −
16
5b2

+

√
5∆ − 53b2

4
= −
√

5
( 144
√

256 + ∆
+

∆

4
√

256 + ∆
−

√
∆

4

)
,

A2 = 45 −
8
√

5∆

25b2
= 5

(
9 −

8
√

∆
√

256 + ∆

)
,

A3 = −

(√5∆ − 53b2

20b

)2(
2 +

√
5∆

53b2

)
+

16
54b4

(
√

5∆ − 53b2)

= −53/2
( 212(2

√
∆ + 3

√
256 + ∆)

(256 + ∆)(
√

∆ +
√

256 + ∆)2

)
.

https://doi.org/10.1017/S1446788711001443 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001443


120 J. Robertson and C. Snyder [18]

Notice that we have given these coefficients in terms of ∆ simply by solving for b,
which we assume positive without loss of generality. Hence if ω3 = ω3(∆) is a real
root of the polynomial

f (x) = f∆(x) = 3x3 + A1x2 + A2x + A3,

then B3 = 0.
On the other hand, again letting uµ = ωµu1 for µ = 2, 3, 4 and then setting x = ω3

one finds that

s′4
u4

1

= g(x) = g∆(x) = 4x4 + C1x3 + C2x2 + C3x + C4,

with Ci = Ci(∆) given as

C1 =

(29
25

√
∆ −
√

256 + ∆

)√
5,

C2 = 120 +
9
10

∆ −
1392

√
∆

5
√

256 + ∆
−

9∆3/2

10
√

256 + ∆
,

C3 =
87
√

5

√
∆ +

∆3/2

4
√

5
−

1280
√

5
√

256 + ∆
−

119∆
√

5
√

256 + ∆
−

∆2

4
√

5
√

256 + ∆
,

C4 =
25600

256 + ∆
+

852∆

256 + ∆
+

25∆2

8(256 + ∆)
−

464
√

∆
√

256 + ∆
−

25∆3/2

8
√

256 + ∆
.

We shall be done essentially if we can show that g(ω3) < 0. To get a hint as to how to
proceed we looked numerically at data involving f and g for ∆ ≥ 0. For ∆ = 0 (which
is, of course, contrary to our assumption), f (x) = 3(x −

√
5)3 and g(x) = 4(x −

√
5)4

and thus f and g have the same unique root. On the other hand, for all the positive
values of ∆ that we checked, g had exactly two real roots, while f had a unique real
root that was sandwiched between the two real roots of g. This, of course, implies that
g(ω3) < 0 in these cases. To actually prove these facts, in light of Proposition 12 it
suffices to show that for all ∆ > 0, the discriminants of f and g are negative and that
the resultant of f and g is also negative. To evaluate these quantities symbolically, we
used MATHEMATICA.

The discriminant of f∆ is found to be

D( f ) =
125

32(256 + ∆)5/2
(A − B),

where
A = 387∆1/2 + 2∆3/2 and B = (131 + 2∆)

√
256 + ∆.

However, D( f ) < 0 if and only if B2 − A2 > 0. Moreover,

B2 − A2 = 1536∆ + 4393216 > 0,

as desired.
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Next we found the discriminant of g to be

D(g) =
27∆6

31250(256 + ∆)3
(C − D),

where

C = (50697 + 1036∆ + 4∆2)
√

∆
√

256 + ∆,

D = 2196608 + 150537∆ + 1548∆2 + 4∆3.

Hence D(g) < 0 if and only if D2 −C2 > 0. However,

D2 −C2 = 589824∆2 + 3373989888∆ + 4825086705664 > 0,

as desired.
We now consider the resultant of f and g. This turns out to be

R( f , g) =
∆6

k
√

256 + ∆
(E − F),

where

E = (m0 + m1∆ + · · · + m7∆7)
√

∆

F = (n0 + n1∆ + · · · + n7∆7)
√

256 + ∆,

where k, the m j and the n j are given in Table 1. Hence R( f , g) < 0 if and only if
F2 − E2 > 0. However, it turns out that

F2 − E2 = k0 + k1∆ + · · · + k11∆11,

where the k j are also given in Table 1. Notice that these coefficients are all positive, as
desired.

Finally we can show that the unique real root, x1 say, of p(x) = x5 − x − b is
q-constructible. This will be done by showing that x1 lies in a q-tower of Q. To
this end, notice that since b ∈ F, there exists a q-tower of Q, say K0 ⊆ · · · Kn, for which
b ∈ Kn. If p is reducible over Kn, then x1 ∈ F, being the real root of a polynomial over
Kn of degree at most four, for recall that F is Vietian. Hence we assume that p is
irreducible over Kn. Now let

u1 = 1, u2 = −
4

5b
, u4 =

√
5∆ − 53b2

20b
,

and u3 = ω3 = ω3(∆) be the real root of f∆. Notice that

f∆ ∈ Q(b,
√

5∆)[x] and Q(u1, . . . , u4) = Q(b,
√

5∆, ω3).
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T 1. Relevant coefficients.

k 32 768 000 000

m0 14 269 936 894 300 127 232 000 000
m1 570 317 780 839 038 976 000 000
m2 8 998 789 708 775 424 000 000
m3 74 991 638 937 600 000 000
m4 362 223 042 560 000 000
m5 1 023 543 552 000 000
m6 1 575 936 000 000
m7 1 024 000 000

n0 2 415 196 037 665 783 808 000 000
n1 203 254 619 999 043 584 000 000
n2 4 509 367 768 449 024 000 000
n3 46 721 862 205 440 000 000
n4 264 570 961 920 000 000
n5 846 989 568 000 000
n6 1 444 864 000 000
n7 1 024 000 000

k0 1 493 292 006 491 264 562 842 625 502 974 715 101 184 000 000 000 000
k1 53 542 746 396 833 318 735 872 129 176 912 789 504 000 000 000 000
k2 857 182 471 590 562 824 743 459 659 626 577 920 000 000 000 000
k3 8 056 613 010 345 157 895 879 306 206 248 960 000 000 000 000
k4 49 136 561 411 116 580 536 626 519 736 320 000 000 000 000
k5 202 673 055 899 025 936 195 212 279 808 000 000 000 000
k6 570 656 643 744 086 383 518 549 968 000 000 000 000
k7 1 078 586 086 986 262 008 299 520 000 000 000 000
k8 1 304 721 582 145 362 984 960 000 000 000 000
k9 916 870 188 991 774 720 000 000 000 000
k10 310 178 243 149 824 000 000 000 000
k11 38 654 705 664 000 000 000 000

Now let

y1 = x1 −
4
5b

x2
1 + ω3(∆)x3

1 +

√
5∆ − 53b2

20b

(
x4

1 −
4
5

)
∈ Q(b,

√
5∆, ω3, x1). (3)

By our construction, y1 is the real root of q(y) = y5 + B4y + B5, where B4 > 0 and
B4, B5 ∈ Q(b,

√
5∆, ω3). However, y1/B1/4

4 is then the real root of y5 + y + B5/B5/4
4 ,

that is,

y1 = −B1/4
4

∗

√
B5B−5/4

4 .
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Hence we have a q-tower

K0 ⊆ · · · ⊆ Kn ⊆ Kn(
√

5∆) ⊆ Kn(
√

5∆, ω3) ⊆ Kn(
√

5∆, ω3,
√

B4) ⊆ L ⊆ M,

where L = Kn(
√

5∆, ω3,
4
√

B4) and M = L( ∗
√

B5B−5/4
4 ) with y1 ∈ M. Now observe that

L(y1) ⊆ L(x1); but [Kn(x1) : Kn] = 5 and since [L : Kn] | 24 as seen by the q-tower,
hence is relatively prime to 5, [L(x1) : L] = 5. However, from Equation (3) above,
y1 < L. Thus L(x1) = L(y1) and so x1 ∈ M ⊆ F, as desired. �

5. Some comments and questions

In case it is not obvious to the reader, we note that q-constructibility cannot possibly
coincide with that of a compass and a twice-notched straightedge. For example, the
three real roots of the irreducible (2-Eisenstein) polynomial

x5 − 4x4 + 2x3 + 4x2 + 2x − 6 ∈ Q[x]

are constructible with compass and marked ruler (see [1]), but are not q-constructible
by Theorem 8 above.

Secondly, even though extracting fifth roots is a q-constructible process, ‘q-
quinsecting’ angles is generally not. In particular, q-quinsecting a 90◦ angle requires
q-constructing an 18◦ angle. However, if θ = 2 cos 18◦, then θ is a root of the
polynomial x5 − 5x3 + 5x − 4, which is easily seen to be irreducible over Q with five
real roots.

Next, notice that we restricted the compass to pass through the origin and have
center on the x-axis, in order to deal with fairly simple polynomials of degree at
most five. Had we used an unrestricted compass instead, then we still could not have
constructed all possible numbers arising from compass and marked ruler. For the
intersection of a circle and y = x3 can have at most four points, but on the other hand it
is possible to construct the roots of irreducible polynomials of degree at least five with
more than four real roots.

On the other hand, if we replace y = x3 by other cubic curves, either of genus zero
again or elliptic curves, is it possible to characterize the numbers constructible using
any one of these curves, along with a straightedge and (unrestricted) compass? Is it
possible too that for some cubic curve, this construction process produces the same set
of points as that of compass and marked ruler?
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