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Depth-averaged systems of equations describing the motion of fluid–sediment mixtures
have been widely adopted by scientists in pursuit of models that can predict the paths of
dangerous overland flows of debris. As models have become increasingly sophisticated,
many have been developed from a multi-phase perspective in which separate, but mutually
coupled sets of equations govern the evolution of different components of the mixture.
However, this creates the opportunity for the existence of pathological instabilities
stemming from resonant interactions between the phases. With reference to the most
popular approaches, analyses of two- and three-phase models are performed, which
demonstrate that they are more often than not ill posed as initial-value problems over
physically relevant parameter regimes – an issue which renders them unsuitable for
scientific applications. Additionally, a general framework for detecting ill posedness in
models with any number of phases is developed. This is used to show that small diffusive
terms in the equations for momentum transport, which are sometimes neglected, can
reliably eliminate this issue. Conditions are derived for the regularisation of models in
this way, but they are typically not met by multi-phase models that feature diffusive terms.

Key words: shallow water flows, wet granular material, mathematical foundations

1. Introduction
Debris flows are large-scale gravity currents that are formed on hillslopes when water
entrains and mixes with rocks, mud and other natural detritus. Despite their daunting
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physical complexity, the threat they pose to human life (Dowling & Santi 2014) motivates
ongoing efforts to develop detailed model descriptions of them, for the purposes of hazard
prediction and risk assessment (Hutter, Svendsen & Rickenmann 1994; Iverson 1997;
Trujillo-Vela et al. 2022).

The commonest class of available models are variations on the classical depth-
averaged shallow-water equations, re-derived to incorporate physical effects particular to
debris flows, such as non-Newtonian stresses, buoyancy and pore water pressure. Early
approaches considered flows to be sufficiently homogeneous that the mass and momentum
of fluid and submerged debris could be lumped together into a single continuous phase,
subject to bulk conservation laws (Savage & Hutter 1989; Macedonio & Pareschi 1992;
Iverson 1997; Fraccarollo & Papa 2000; Iverson & Denlinger 2001; Christen, Kowalski
& Bartelt 2010). While this perspective is sometimes justified, it cannot fully account for
important phenomena that arise from interactions between different components within
the flow, such as changes in the debris composition due to dilation and particle size
segregation, which can have a profound effect on the dynamics (Hutter et al. 1994; Iverson
1997; Berti et al. 2000; McCoy et al. 2010; Johnson et al. 2012). Consequently, some
models have included an equation for the transport of an additional phase of solid particles
within the flow, enabling solutions to develop compositional variations that may in turn
affect the local fluid rheology (Takahashi et al. 1992; Shieh, Jan & Tsai 1996; Brufau
et al. 2000). This approach may be augmented by introducing coupled equations for the
evolution of the vertical distribution of solids (Kowalski & McElwaine 2013), or the basal
pore-fluid pressure (George & Iverson 2014; Iverson & George 2014). A related strategy
is to consider the transport of two or more species of granular material, while neglecting
the presence of a carrier fluid (Gray & Kokelaar 2010). When combined with velocity
shear through an assumed vertically segregated flow column and frictional dependence
on particle size, this can likewise capture complex phenomena that are inaccessible to the
simplest models, including thickened fronts that dam the flow (Denissen et al. 2019) and
spontaneous finger formation (Woodhouse et al. 2012; Baker, Johnson & Gray 2016).

Truly ‘multi-phase’ systems take a step further by disaggregating the momentum
dynamics of the different phases, thereby permitting the forces acting on each constituent
to be modelled separately (Pitman & Le 2005; Pelanti, Bouchut & Mangeney 2008; Pailha
& Pouliquen 2009; Pudasaini 2012; Bouchut et al. 2016; Li et al. 2018; Pudasaini &
Mergili 2019; Meyrat et al. 2022; Meng et al. 2022, 2024). Model development in this
final category is ongoing and promises to deliver the most faithful realisation of debris-
flow physics within the depth-averaged framework, particularly when there is significant
separation of phases within the flow.

However, the specification of separate momentum equations for multiple flow phases
can introduce a fundamental pathology into depth-averaged models, causing them to
no longer reflect the behaviour of the underlying physical system. For example, when
a second fluid layer is added to the classical shallow-water equations, they cease to be
unconditionally strictly hyperbolic (Ovsyannikov 1979), leaving the system ill posed as an
initial-value problem when the flow is in certain conditions. The underlying reason for this
is that buoyancy-mediated coupling between the two layers introduces a linear instability
with a growth rate that diverges to infinity in the limit of high-wavenumber perturbations.
A practical consequence of this is that time-dependent simulations of the system in these
conditions are guaranteed to be mesh-dependent. Therefore, much attention has been given
towards developing physically defensible methods which locally amend this model or
otherwise drive solutions away from non-hyperbolic regimes (see e.g. Castro, Macías &
Parés 2001; Sarno et al. 2017; Krvavica, Tuhtan & Jelenić 2018; Castro Díaz et al. 2023).
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Figure 1. Demonstration of ill posedness, using the model of Meng et al. (2022). Snapshots of total flow
depth (h = H f + Hs in the notation of § 2.2) at times t = 1 s (black) and 2 s (red) are plotted for numerical
simulations of an initially uniform steady flow in a periodic domain of length 0.2 m, subject to a small noisy
perturbation. (Full details of the simulation are given in Appendix A.) Successive panels show computations
with increasingly refined numerical grids, with cell spacing �x = (a) 5 × 10−4 m, (b) 5 × 10−5 m and
(c) 5 × 10−6 m. The insets in (a,b) show the corresponding t = 1 s snapshots using shorter vertical axes, as
indicated. Supplementary movie 1 available at https://doi.org/10.1017/jfm.2025.10297 shows an animation of
the simulations.

Shallow debris-flow models with two phases possess a similar mathematical structure
and can suffer from the same pathology. An illustration of this is depicted in figure 1,
which shows successive attempts to numerically simulate a small perturbation to a
steady uniform flow in the model of Meng, Johnson & Gray (2022), for conditions
where strict hyperbolicity is lost. While at the coarsest resolution, there appears to
be no instability, finer discretisations reveal oscillations. These develop more rapidly,
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and with higher spatial frequency as the grid is refined further. This is because each
successive discretisation permits the approximation of higher-wavenumber modes, thereby
inviting faster and faster growth. Any attempt to converge the simulation towards an
underlying solution of the governing equations is guaranteed to fail, since there is no upper
bound on growth rate, implying that the observed divergence of successive numerical
solutions can never terminate. More precisely, no well-defined time-evolving solution of
the continuous equations exists to converge upon. Full details of this computation are given
in Appendix A.

Ill posedness presents a problem for any physical model and numerous examples have
arisen in the fluid mechanics literature over the years (Joseph & Saut 1990). In particular,
it has been discovered to affect mixed-sediment shallow-flow systems that feature particle
segregation (Woodhouse et al. 2012; Baker et al. 2016) and bed morphodynamics (Cordier,
Le & Morales de Luna 2011; Stecca, Siviglia & Blom 2014; Chavarrías et al. 2018, 2019;
Langham et al. 2021). Furthermore, it was established long ago that the underlying mixture
equations from which shallow multi-phase debris-flow models are derived can feature
ill posedness in some cases (Bedford & Drumheller 1983; Drew 1983). Though these
cases are obviously physically related, depth-averaged debris-flow systems are structurally
inequivalent in general and require their own analyses that depend upon the particular
assumptions employed to reach a shallow model description. There has been comparatively
little work in this direction, possibly because the corresponding linear dispersion relations
(which underlie the analysis of ill posedness) are at least quartic, making them very
difficult to make sense of algebraically. The only substantial progress appears to be the
analysis of Pelanti et al. (2008), who derived equations very similar to the model of
Pitman & Le (2005) and provided inexact bounds on the flow properties that guarantee
well posedness. Nevertheless, these bounds can be violated in situations accessible to
realistic debris flows – a possibility which should trouble any operational modellers aiming
to compute reliable simulations of these dangerous phenomena.

The following paper presents an investigation of this issue from a general framework that
addresses many of the existing multi-phase models in the literature. Rather than attempting
to identify conditions where models can be safely used, we instead take the view that any
ill posedness within physically realistic limits is disqualifying for a model and look for
situations where this can occur. Our analysis is sufficiently general in scope to establish
the existence of ill posedness within the two-phase models of Pitman & Le (2005), Pelanti
et al. (2008), Pudasaini (2012), Meyrat et al. (2022) and Meng et al. (2022), as well
as in the three-phase model of Pudasaini & Mergili (2019). The two-phase models are
introduced in § 2, as particular cases within a generalised shallow-layer description, and
their posedness is analysed in § 3, along with a separate treatment of three-phase models.
Furthermore, in § 4 we show that ill posedness may be alleviated in each of these models
via the inclusion of neglected momentum diffusion terms. En route to this conclusion, a
theoretical recipe is developed for assessing posedness that may be employed to analyse
any model of n phases and spatial derivatives of up to second order.

2. Depth-averaged theory
Consider a fluid medium consisting of n continuous phases. Each phase i consists of
material of constant density ρi , flows with velocity ui ≡ ui (x, t) and occupies a fraction
ϕi ≡ ϕi (x, t) of the mixture volume at each point in space x and time t . The interior of
the flow is assumed to be saturated, so ϕ1 + · · · + ϕn = 1. In debris flows, the different
phases may be either fluids, such as pure water or muddy suspensions, or distributions of
small solid particles that are concentrated enough to transmit internal stresses. Although
no single point may be simultaneously occupied by fluid and particles, the local volume
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fractions may be theoretically rationalised either via an explicit assumption that the phases
are everywhere superposed, or by means of suitable averaging procedures defined over the
microscale (Bedford & Drumheller 1983; Jackson 2000). While there are some technical
differences between these approaches (Joseph et al. 1990), the resulting form of the
governing equations for each phase in three spatial dimensions is well established (see
e.g. Anderson & Jackson 1967; Drew 1983; Morland 1992). Assuming negligible surface
tension at any interfaces and that no exchange of material occurs, either between phases
or with the external environment, these may be written as

∂ϕi

∂t
+ ∇ · (ϕi ui ) = 0, (2.1a)

∂

∂t
(ρiϕi ui ) + ∇ · (ρiϕi ui ⊗ ui ) = ∇ · σ i + f i − ρiϕi g, (2.1b)

for i = 1, . . . , n, where σ i denotes an effective (or ‘partial’) stress tensor for each phase,
f i is the total force per unit volume acting on phase i due to the others and g is acceleration
due to gravity.

On the grounds that debris flows propagate over distances far greater than their
characteristic thickness, the models that we study simplify (2.1a) and (2.1b) by averaging
the motion over the flow depth. In addition to this assumption, two simplifications are
made for ease of presentation that do not affect the generality of our primary conclusions.
Firstly, we suppose that the flow propagates over a flat surface located at z = 0 through
which there is no flux of material, and orient Cartesian spatial coordinates x = (x, y, z)
so that x and y are parallel with this surface. Secondly, we enforce uniformity of flow in y
and hereafter drop consideration of this direction from the analysis. The flow is bounded
above the base by a surface located at z = h(x, t), which is assumed to be stress free. For
any quantity q(x, z, t), its depth-averaged counterpart q(x, t) is defined by

q(x, t) = 1
h

∫ h

0
q(x, z, t) dz. (2.2)

On averaging both sides of (2.1a) and (2.1b), one may obtain

∂

∂t
(hϕi ) + ∂

∂x
(hϕi ui ) = 0, (2.3a)

∂

∂t
(ρi hϕi ui ) + ∂

∂x

(
ρi hϕi ui

2 − hσ xx
i

)
= h f x

i − ρi hϕi g
x − σ xz

i |z=0, (2.3b)

where algebraic superscripts denote components of vectors and tensors in the
corresponding Cartesian directions. The details involved in deriving the above equations
follow standard methods and are not important here, except to note that wherever a product
of depth-averaged quantities arises, we make use of the approximation

qr = q r

[
1 + 1

h

∫ h

0

(
1 − q

q

)(
1 − r

r

)
dz

]
≈ q r , (2.4)

where q and r denote arbitrary fields. The relative error introduced by using this formula
is quantified by the second term inside the square brackets of (2.4). It is small if the fields
do not vary greatly over the flow depth. This is frequently assumed in operational models,
including each of the systems that we focus on below.

The framework encapsulated by (2.3a) and (2.3b) is general enough to encompass most
shallow multi-phase flow models. Different specialisations to the particular case of debris
flows are made by specifying constitutive models for σ xx

i , f x
i and the basal drag σ xz

i |z=0.
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These mostly involve a fluid phase of either pure water or water containing fine suspended
sediments, and a solids phase of monodisperse grains. Therefore, for the remainder of this
exposition, we simplify to two phases, labelled f (fluids) and s (solids). For convenience,
a table is provided for this case in Appendix B, which cross-references our notation
against the primary models covered below. Later, a three-phase model, due to Pudasaini
& Mergili (2019), is analysed and its relevant features are specified separately in § 3.2 and
Appendix C.

One ingredient that must be included within the interphase force terms is the buoyancy
felt by the immersed particles. This is caused by the fluid pressure p acting on the solid
phase. Therefore, we write the force on the solids as

f s = −ϕs∇ p + ds, (2.5)

where ds represents any other forces associated with the fluid phase acting on the solids
and p is the fluid pressure, which is implied to be hydrostatic at leading order, by the
assumption of shallow flow (see e.g. Pitman & Le 2005; Meng et al. 2022). Hydrostatic
pressure is determined by the weight of the fluid within in the water column:

p(z) = ρ f gz(h − z). (2.6)

Therefore, on depth-averaging the slope-parallel component of (2.5), we obtain

h f x
s = −ρ f gzhϕs

∂h

∂x
+ hdx

s . (2.7)

By Newton’s third law, an equal and opposite force f x
f = − f x

s acts upon the fluid phase.
The remaining component of the interphase forces, ds = −d f , must include

contributions due to their relative motion. In conditions close to equilibrium, this may
be modelled with an appropriate closure depending on the relative velocity u f − us that
captures the aggregate effect of drag between the two phases (Morland 1992; Jackson
2000). However, if one phase accelerates into the other, this induces an additional transfer
of momentum between the phases, which can also be included (Anderson & Jackson
1967). The force on individual particles associated with this is called the ‘added’ or
‘virtual’ mass effect and depends on the relative accelerations in a frame following the
particle (Maxey & Riley 1983). It is unclear how best to aggregate this into a force
acting on a collective phase of particles, so approaches differ (Anderson & Jackson 1967;
Bedford & Drumheller 1983; Drew 1983). One option, favoured by Pudasaini (2012) in the
derivation of their debris-flow model, defines the added mass force on the solids to be

Ms = Cρ f ϕs

(
∂u f

∂t
+ u f · ∇u f − ∂us

∂t
− us · ∇us

)
, (2.8)

where C is a positive coefficient (that may depend on the flow variables, in particular, the
volume fraction). Depth-averaging this term proceeds in the same way as for the convective
terms on the left-hand side of the governing equations and leads to

hMx
s = C ′

[
∂

∂t
(ρ f hϕ f u f ) + ∂

∂x
(ρ f hϕ f u f

2)

]
−γ C

[
∂

∂t
(ρshϕs us)+ ∂

∂x
(ρshϕs us

2)

]
,

(2.9)
where γ ≡ ρ f /ρs and C ′ ≡ Cϕs/ϕ f . An opposing force Mx

f = −Mx
s must likewise appear

in the depth-averaged momentum equation for the fluid phase.
The remaining terms to be specified are: the depth-averaged lateral stresses σ xx

i , the
basal stresses σ xz

i |z=0 and any remaining depth-averaged forces h(dx
i − Mx

i ) (such as
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drag between the phases, for example). The choice of the lateral stress components is
responsible for most of the key differences that affect the analysis of models in this paper.
Therefore, these are given with reference to particular models in the subsections below.
The other two terms will not be given explicitly. Only terms containing time or space
derivatives of the flow fields affect the analysis in the rest of this paper, and typically,
neither σ xz

i |z=0 nor dx
i carry dependence on gradient information. Therefore, these are

left arbitrary and notation is subsequently simplified by defining

Si = (ρi hϕi )
−1
[
h
(

dx
i − Mx

i

)
− ρi hϕi g

x − σ xz
i |z=0

]
(2.10)

for use in the following subsections. The factor of 1/(ρi hϕi ) is included to account for the
fact that the momentum equations will shortly be multiplied through by this quantity in
the course of converting them to quasilinear form.

2.1. Pitman and Le’s model
The assumption of shallow flow, used in deriving (2.3a) and (2.3b), may also be used to
infer from the slope-normal component of (2.1b) that at leading order the normal stresses
are in equilibrium with the interphase forces and gravity:

∂σ zz
i

∂z
= − f z

i + ρiϕi g
z . (2.11)

In deriving their debris-flow model, Pitman & Le (2005) use this to obtain expressions for
the stresses. The fluid tensor is assumed to be isotropic and the slope-normal interphase
forces are considered to be dominated by buoyancy, so dz

s = 0 and from (2.5), f z
s =

−ϕs∂p/∂z = − f z
f . Substituting this into (2.11), depth-integrating twice and using (2.6),

gives

σ zz
f = −ρ f gz(h − z) and σ xx

f = σ zz
f = −1

2
ρ f gzh. (2.12a,b)

Note that the direction of the buoyancy force and gravity coincide to make the effective
stress for the fluid phase equal to the intrinsic pressure p of the fluid. Conversely, for the
solids phase, buoyancy acts against gravity to reduce the effective normal stress to

σ zz
s = −ϕs(ρs − ρ f )g

z(h − z). (2.13)

Since the flow is anticipated to be densely packed with grains, principles of soil mechanics
are invoked to infer a proportional relationship between lateral and normal stresses, via an
Earth pressure coefficient K :

σ xx
s = Kσ zz

s . (2.14)

On depth-averaging and using (2.14), one may therefore deduce that

− ∂

∂x

(
hσ xx

s

)= ∂

∂x

[
1
2

K (1 − γ )ρs gzϕsh2
]
. (2.15)

The model may be expressed in full by substituting (2.7), (2.12b) and (2.15) into (2.3a)
and (2.3b) and algebraically simplifying. It is convenient at this stage to define variables
that express the proportion of the mixture depth occupied by each phase:

Hi = ϕi h. (2.16)

Using these variables and noting in particular that h = Hs + H f , the following set of
equations are obtained:
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∂ Hs

∂t
+ ∂

∂x
(Hsus) = 0, (2.17a)

∂us

∂t
+ us

∂us

∂x
+ gz

[
γ + K (1 − γ )

(
1 + H f

2Hs

)]
∂ Hs

∂x
+ gz

[
γ + K

2
(1 − γ )

]
∂ H f

∂x
= Ss,

(2.17b)
∂ H f

∂t
+ ∂

∂x
(H f u f ) = 0, (2.17c)

∂u f

∂t
+ u f

∂u f

∂x
+ gz ∂ Hs

∂x
+ gz ∂ H f

∂x
= S f . (2.17d)

The particular case of K = 1 was studied in detail by Pelanti et al. (2008).

2.2. Meng et al.’s model
The model of Meng et al. (2022) is derived using a conceptually different description of
the flow that posits separate free surfaces for the depth of solid particles hs and depth of
fluid h f . When h f > hs , the particles are ‘oversaturated’ with fluid and assumed to have
settled into a layer at the bottom of the flow, within which they occupy a constant volume
fraction ϕc. We consider this case only, since the analysis of Meng et al. (2024) (in their
Appendix A) establishes that their model equations in the ‘undersaturated’ regime h f < hs
are hyperbolic, with a differential operator whose structure decouples into separate
shallow-layer terms for each phase, thereby leading to well-posed initial-value problems.

The solids stresses take the same form as in the Pitman & Le (2005) model’s (2.13),
except they are only present up to the height hs of the solids layer, implying that the term
inside the pressure derivative of (2.15) differs by a factor of hs/h f . Moreover, K = 1 is
assumed. Therefore,

− ∂

∂x

(
hσ xx

s

)= ∂

∂x

[
1
2
(1 − γ )ρs gzϕshsh f

]
. (2.18)

Additionally, the viscous component of the fluid stress tensor is retained. Therefore, rather
than appealing to (2.11), the constitutive relation

σ f = −pI + ϕ f η f

[
∇u f + (∇u f )

T
]

(2.19)

is proposed, where η f is the dynamic viscosity of the fluid. The intrinsic pore fluid
pressure is hydrostatic as before, so (2.6) applies and consequently,

− ∂

∂x

(
hσ xx

f

)
= ρ f gzh f

∂h f

∂x
− ∂

∂x

(
2η f h f ϕ f

∂u f

∂x

)
. (2.20)

To obtain the final term on the right, ∂u f /∂x ≈ ∂u f /∂x is used, which follows from an
assumption of low shear in the velocity profile u f ≈ u f (h), and is consistent with the
approximation made in (2.4).

Averaging the solids volume fraction over the full depth gives ϕs = ϕchs/h f . This
implies that the equivalent partial depths (2.16) in this model are

Hs = ϕchs, H f = h f − ϕchs . (2.21)

On making these transformations, the derivative terms in the Meng et al. (2022) model
equations are the same as the Pitman & Le (2005) model’s (2.17a–d), save for the
components related to the different formulations for internal stresses. Therefore, we report
only the solid and fluid momentum equations, which may be obtained by substituting (2.18)
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and (2.20), along with the buoyancy forces (2.7), into (2.3b), using (2.21) and simplifying,
leading to

∂us

∂t
+ us

∂us

∂x
+ gz

[
γ + 1 − γ

ϕc

]
∂ Hs

∂x
+ gzγ

∂ H f

∂x
= Ss, (2.22a)

∂u f

∂t
+ u f

∂u f

∂x
+ gz ∂ Hs

∂x
+ gz ∂ H f

∂x
= 2η f

ρ f H f

∂

∂x

(
H f

∂u f

∂x

)
+ S f . (2.22b)

A typical choice for the solids fraction constant in the regimes relevant to this
model might be expected to lie somewhere in the range 0.5 � ϕc � 0.75 (Pierson 1995).
Nevertheless, it should be noted that in the limit ϕc → 1 (where there are no saturated
gaps between particles) and assuming also that η f = 0, (2.22a) and (2.22b) together
with (2.17a) and (2.17c) reduce to a system of depth-averaged equations for the motion
of two immiscible fluids of different densities, whose properties have been widely studied
(see e.g. Ovsyannikov 1979; Vreugdenhil 1979; Castro et al. 2001; Abgrall & Karni 2009;
Kurganov & Petrova 2009; Chiapolino & Saurel 2018). A model of this latter type has also
been proposed by Meyrat et al. (2022), for use in debris-flow modelling.

2.3. Pudasaini’s model
Pudasaini (2012) uses an approach that is consistent with Pitman & Le (2005), but extends
their framework in various ways. Of relevance to our analysis are the inclusion of the
added mass term given previously in (2.9) and a fluid stress tensor that incorporates a
non-Newtonian component.

The inclusion of added mass augments the inertial terms in the momentum equations.
The coefficient C in (2.9) is assumed to be a constant. Furthermore, in order to simplify
the conservative form of the equations Pudasaini (2012) makes the assumption that
C ′ ≡ C ϕs/ϕ f may be absorbed into the time and space derivatives of (2.9) without
explicitly holding it constant. This does not appear to be justified in our view. Nevertheless,
summing the added mass force terms for each phase with the corresponding inertial terms
from (2.3b) and converting to quasilinear form (i.e. by dividing through by ρi Hi and
simplifying) leads to

(1 + γ C)

(
∂us

∂t
+ us

∂us

∂x

)
− γ C

(
∂u f

∂t
+ u f

∂u f

∂x

)
− γ C u f

Hs

[
∂ Hs

∂t
+ ∂

∂x

(
Hsu f

)]
︸ ︷︷ ︸,

extra terms (2.23a)(
1 + C Hs

H f

)(
∂u f

∂t
+ u f

∂u f

∂x

)
− C Hs

H f

(
∂us

∂t
+ us

∂us

∂x

)
+
︷ ︸︸ ︷
C u f

H f

[
∂ Hs

∂t
+ ∂

∂x

(
Hsu f

)]
(2.23b)

for the inertia of the solids and fluid phases, respectively. The extra terms, highlighted by
the braces, do not appear if (2.9) is depth-averaged directly and could arguably be omitted,
since they correspond to a force between the phases whose physical origin is unclear.
However, in order to analyse the model as it has appeared in prior publications, we retain
them.

The assumed form of the fluid stress tensor is equal to the expression used by Meng
et al. (2022), given in (2.19), plus an additional phenomenological component

− η f A
[∇ϕs ⊗ (u f − us) + (u f − us) ⊗ ∇ϕs

]
, (2.24)
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where A is a parameter that depends on the solids fraction. After adding on the Newtonian
component, depth-averaging σ xx

f gives

− ∂

∂x

(
hσ xx

f

)
= ρ f gzh

∂h

∂x
− ∂

∂x

(
2η f hϕ f

∂u f

∂x
− 2η f Ah(u f − us)

∂ϕs

∂x

)
(2.25)

for this model, where we have used ∂ϕs/∂x ≈ ∂ϕs/∂x , which is consistent with the
assumption of negligible variation in volume fraction over the depth, ϕs ≈ ϕs(h).
In the original derivation, Pudasaini (2012) goes further, following an approach of
Iverson & Denlinger (2001) for averaging diffusive stresses by bringing h outside the
spatial derivatives of (2.25). This introduces extra terms, which, under the stress-free
boundary condition, reduce to expressions that do not contain derivatives and may be
modelled separately as source terms (Pudasaini 2012). These extra steps do not affect
the forthcoming analysis of the model structure (since the linearised diffusion operator
remains the same). Therefore, we leave (2.25) as it is.

3. Local analysis
We will demonstrate that the two-phase models outlined in the previous section, as well as
straightforward three-phase extensions to these systems, contain flow regimes where the
equations are ill posed as initial-value problems. This is because under certain conditions,
infinitesimal disturbances blow up with linear growth rates that increase without bound
in the limit of high spatial frequencies, leaving the equations without solutions – a
pathological property sometimes known as a ‘Hadamard instability’ (Joseph & Saut 1990).

3.1. Two-phase models
Given some putative model solution with fields q = (Hs, us, H f , u f )

T , we would like
to understand the local behaviour of the governing equations at an arbitrary space–time
location (x0, t0). Denote a state vector there by

q0 = q(x0, t0) =
(

H (0)
s , us

(0), H (0)
f , u f

(0)
)T

. (3.1)

We assume non-vanishing fluid depth H (0)
f > 0 and velocity u f

(0) �= 0, so that the
governing equations for each model may be non-dimensionalised with respect to these
scales. States may then be fully characterised by three dimensionless quantities:

RH = H (0)
s /H (0)

f , Ru = us
(0)/u f

(0), Fr = u f
(0)√

gz H (0)
f

, (3.2a–c)

where Fr is the local Froude number for the fluid phase. Therefore, hereafter the
transformations

x 	→ x/H (0)
f , t 	→ tu f

(0)/H (0)
f , Hi 	→ Hi/H (0)

f , ui 	→ ui/u f
(0),

Si 	→ Si H (0)
f /(u f

(0))2 (3.3a–e)

are made to the two-phase models analysed. Furthermore, note that the systems detailed
in §§ 2.1–2.3 may be collectively cast in the general form

A(q)
∂q
∂t

+ B(q)
∂q
∂x

= S(q) + D1(q)
∂

∂x

(
D2(q)

∂q
∂x

)
, (3.4)
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where S(q) = (0, Ss, 0, S f )
T and A, B, D1, D2 are matrices of (dimensionless) variable

coefficients that that may be readily specified for each model.
We now ‘freeze’ the solution, by assuming that q(x, t) = q0 within a local

neighbourhood of (x0, t0) and consider the evolution of a normal-mode perturbation
r exp(ikx + σ t) to this state, where k is a real-valued wavenumber, σ a complex growth
rate and r a vector constant with |r| 
 |q0|. Linearising (3.4) around the frozen base state
q0 leads to the following eigenproblem for the pair (σ, r):

σA(q0)r + ikB(q0)r = C(q0)r − k2D(q0)r, (3.5)

where C ≡ ∂ S/∂q and D = D1D2. If q0 happens to represent a state for which the model
equations admit steady uniform flow, i.e. S(q0) = 0, then the solutions to (3.5) dictate the
linear stability of such a flow, for which Re(σ ) > 0 indicates an unstable mode and the case
of Hadamard instability occurs if Re(σ ) → ∞ as k → ∞, indicating that the governing
equations (3.4) are ill posed at q0. Otherwise, the procedure of freezing the base state
is justified insofar as it may be used to identify this latter pathology on the grounds that
any candidate solution q must be effectively constant near (x0, t0), when measured with
respect to the infinitesimal length and time scales over which the Hadamard instability
develops (Joseph & Saut 1990; Joseph 1990).

Since diffusion can be small, relative to other terms in the equations, it is sometimes
desirable to neglect its effects. Therefore, we first consider the case where D is the zero
matrix. It may then straightforwardly be determined from (3.5) that in the asymptotic limit
of high k, the leading-order components of the growth rates for the four eigenmodes are
σ = −ikλ j , where λ j ( j = 1, . . . , 4) denote the characteristic wave speeds of the problem,
given by the solutions to the generalised eigenproblem Br = λ j Ar . If all four are real
and distinct then the system is said to be ‘strictly hyperbolic’ at q0 and is well posed
as an initial-value problem. On the other hand, any complex characteristics must arise in
conjugate pairs. Since one of the pair must have Im(λ j ) > 0, the corresponding real part of
σ is positive and scales as O(k) for k � 1, giving rise to a Hadamard instability. Repeated
real characteristics can also lead to growth rate blow-up, but the reasons for this are more
subtle. This case is covered later in § 4.1.

3.1.1. Emergence of ill posedness
The inclusion of added mass leads to complications, which we address shortly, in §§ 3.1.2
and 4.3.2. If it is neglected, then A simplifies to the identity matrix I and the problem
reduces to computing the eigenvalues of the Jacobian B, which has the same essential form
for each of the models. Bearing in mind our transformation to dimensionless variables
in (3.3a–e), this matrix is

B(q) =

⎛
⎜⎜⎜⎝

us Hs 0 0

(γ + β1)Fr−2 us (γ + β2)Fr−2 0
0 0 u f H f

Fr−2 0 Fr−2 u f

⎞
⎟⎟⎟⎠ , (3.6)

where β1 = K (1 − γ )[1 + H f /(2Hs)], β2 = K (1 − γ )/2 for Pitman & Le (2005) and
Pudasaini (2012); β1 = (1 − γ )/ϕc, β2 = 0 in Meng et al. (2022); and β1 = 1 − γ , β2 = 0
for two-fluid models (e.g. Ovsyannikov 1979), as well as the debris-flow model of Meyrat
et al. (2022). Note that at q = q0, Hs = RH , us = Ru and H f = u f = 1.

The possibility for B(q0) to have complex characteristics arises due to the coupling
between the momentum equations provided by the entries B23 and B41. Physically, these
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terms arise because the buoyancy and solids stresses depend on the total depth Hs + H f .
For systems without this coupling, i.e. B23 = B41 = 0, the eigenvalues of B(q0) are

λ±s ≡ Ru ±
√

RH (γ + β1)

Fr
and λ±f ≡ 1 ± 1

Fr
. (3.7a,b)

These are real provided β1 + γ > 0. For the model closures described above, this is
certainly the case, since both β1 and γ are strictly positive. While the corresponding
expressions for the eigenvalues of B(q0) in the general case, B23, B41 �= 0, can be
computed via the quartic formula, these are are too complicated to be especially useful
(Pitman & Le 2005; Pelanti et al. 2008; Pudasaini 2012). Nevertheless, since B(q0) is
almost block diagonal, its characteristic polynomial is amenable to further analysis.

In particular, one can generalise an approach followed by Ovsyannikov (1979) for
the simpler two-fluid case (β1 = 1 − γ , β2 = 0) and notice that the eigenvalues λ j are
determined by an equation of the form

f (P1, P2) ≡ (P2
1 − 1)(P2

2 − 1) = c, (3.8)

where

P2
1 = (λ j − Ru)2Fr2

RH (γ + β1)
, P2

2 = (λ j − 1)2Fr2 and c = γ + β2

γ + β1
. (3.9a–c)

For a particular point in parameter space, characterised by the triple (RH , Ru, Fr ), we can
eliminate λ j from (3.9a,b) to determine that the characteristics lie on the intersection of
the line

P2 = P1
√

RH (γ + β1) + Fr(Ru − 1) (3.10)

with the level set given by the contour of the surface f (P1, P2) (3.8) at the value c. This
is depicted graphically in figure 2(a). Coloured contours in the figure show the surface
f (P1, P2), with an example level at c = 1/3 given by the solid black curves. Three dash–
dot black lines illustrate possibilities for the characteristics. The line labelled I represents
a strictly hyperbolic case, since it possesses four distinct intersections with the solid black
contour. On shifting the line upwards to II (by increasing Fr(Ru − 1)) the characteristics
associated with the central contour merge to form a complex conjugate pair and only
two real solutions to (3.8) and (3.10) remain. Shifting the line further up recovers strict
hyperbolicity, since at position III, it makes two additional intersections with the portion
of the level set that is confined to {(P1, P2) : P1 < −1, P2 > 1}. Provided that c > 0 and
that β1, β2 are either constants or a functions of RH only, as is the case for the models
considered herein, we can see that there will always be an ill-posed region associated with
the loss of strict hyperbolicity (i.e. regions without four distinct real eigenvalues). This is
because a given RH fixes the level set determined by c. Then, varying Fr(Ru − 1) shifts
the dash–dotted lines in the P2 direction, guaranteeing that they pass through a region with
only two intersections. Indeed, by symmetry, there must be two such regions.

This framework encapsulates the analysis by Pitman & Le (2005) who showed for their
model that cases close to Ru = 1 are always strictly hyperbolic. This is a consequence of
the fact that the (3.10) lines pass through the origin at this point. Moreover, Pelanti et al.
(2008) later gave bounds on |Ru − 1| that guarantee well posedness for sufficiently small
and sufficiently large values.

The white dashed lines in figure 2 show the level set contours at c = 0, given by
P1 = ±1, P2 = ±1. In this special case, the characteristics are everywhere real and it is
straightforward to see that they must be the same as the values for uncoupled systems,
given in (3.7a,b). Moreover, each point (±1, ±1) may be linked to one of the four possible
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Figure 2. Geometric analysis of the characteristics for two-phase models. Filled contours of the surface
f (P1, P2) are plotted, spaced at intervals ±10m for m = 0, . . . , 4. The zero contour is marked separately (white
dashed), as is the level set at c = 1/3 (black solid). Dash–dotted lines are P2 = P1 − 0.75 + 2n, for n = 0, 1, 2.

intersections between the solid (λ±s ) and fluid (λ±f ) characteristics. For example, let Ru ,
RH be fixed and suppose that Ru > 1, implying that the dash–dotted lines of figure 2
(3.10) intercept the P2 axis at positive values. From examination of the expressions for
the characteristics in (3.7a,b), it may determined that there always exists a Fr such that
λ−s = λ+f in this case. Moreover, depending on whether the gradients of the dash–dot lines√

RH (γ + β1) are greater or less than unity, the respective intersections λ−s = λ−f and
λ+s = λ+f are possible. By considering (geometrically) the corresponding options for the
lines to pass through (±1, ±1) in this case, we infer that λ−s = λ+f corresponds to the
point (−1, 1) and likewise that λ−s = λ−f corresponds to (−1, −1) and λ+s = λ+f to (1, 1).
Symmetric reasoning for the case Ru < 1 determines the final intersection, λ+s = λ−f at
(1, −1). The important points are (−1, 1) and (1, −1), when the positive and negative
branches coincide. This occurs when

Ru = 1 ± 1
Fr

[
1 +√RH (γ + β1)

]
. (3.11)

It is from these intersections that the complex eigenvalues of B(q0) emerge when the
system is fully coupled. Therefore, the consequent blow-up in growth rate in these regions
can be thought of as stemming from a resonant interaction between the characteristic wave
speeds of the solid and fluid phases.

In figures 3(a) and 3(b), we plot the regions where ill posedness occurs for the Pitman
& Le (2005) and Meng et al. (2022) models, respectively (without diffusion), in terms
of RH and |Fr(Ru − 1)|. Note that these two parameters fully determine whether the
characteristics are real-valued or not. As already inferred from the geometric analysis,
the models are unconditionally well posed when Ru = 1 and at sufficiently high values of
|Fr(Ru − 1)|. Furthermore, the bands of ill posedness are organised around the condition
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|Fr (Ru − 1)|
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|Fr (Ru − 1)|
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0

0.5
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0.5

1.0RH
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2.0(a) (b)

well posed

ill posed

well posed
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ill posed

Figure 3. Regions of parameter space which contain complex characteristics, indicated by the red shaded
regions, for the models of (a) Pitman & Le (2005) with γ = 0.5, K = 1 and (b) Meng et al. (2022) with γ = 0.5,
ϕc = 0.5. In the case of (b), the parameter choices correspond to the solid black level set in figure 2. Outside
the shaded regions, the characteristics are real and distinct. The black dashed curves are where positive and
negative branches of characteristics from the corresponding uncoupled problems intersect, as given in (3.11).

in (3.11) (black dashed lines). The width of the bands is contingent on the model
parameters, which select the level set(s) in figure 2, and the qualitative differences in
shape between the bands for the two models are explained by the different dependence.
Specifically, while the level set value c for the Meng et al. (2022) model is fixed, for
Pitman & Le (2005), c ≡ c(RH ) with c → 0 as RH → 0. This implies that the width of
the figure 3(a) band approaches zero in this limit. Conversely, when c is constant, the band
has a finite width as RH → 0, determined by the minimum distance between the central
piece of the figure 2 level set and any of the lines P1, P2 = ±1, which are asymptotically
approached by the other sections of the level set. A brief calculation shows that this is
1 − √

1 − c for c ∈ [0, 1], or 1 for c > 1 (where in this latter case there is no central piece
of the level set). Additionally, the uncoupled characteristic intersections must lie at the
upper limit of the band as RH → 0. Combining these observations with (3.11) determines
that the interval (

√
1 − c, 1) remains ill posed in this case, as RH → 0. This property is

demonstrated for the Meng et al. (2022) model with c = 1/3, by examining figure 3(b).

3.1.2. Added mass effect
When the added mass effect is included in the two-phase model of Pudasaini (2012), many
additional terms are introduced that cause the equations to be more strongly coupled.
Though this model also contains diffusive terms, it is informative to investigate first
how the incorporation of this additional physics affects the model’s eigenstructure in the
absence of diffusion. One reason for this is that, at least in some cases, ill posedness in
some non-depth-averaged two-phase flow systems without diffusion can be regularised by
including added mass terms (Drew 1983).

On introducing added mass effects by generalising the inertial terms in the solids and
fluid momentum equations to the expressions given previously in (2.23a) and (2.23b),
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respectively, the matrices A and B become

A =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

−γ C u f H−1
s 1 + γ C 0 −γ C

0 0 1 0

C u f H−1
f −C Hs H−1

f 0 1 + C Hs H−1
f

⎞
⎟⎟⎟⎟⎠ , (3.12)

B =

⎛
⎜⎜⎜⎜⎜⎝

us Hs 0 0

(γ + β1)Fr−2 − γ C u f
2

Hs
(1 + γ C)us (γ + β2)Fr−2 −2γ C u f

0 0 u f H f

Fr−2 + C u f
2 H−1

f −C us Hs H−1
f Fr−2 u f + 2C u f Hs

H f

⎞
⎟⎟⎟⎟⎟⎠ .

(3.13)

When the added mass coefficient C is non-zero, the corresponding characteristic
polynomial pc(λ) = det(B − λA) for this system lacks the advantageous structure that was
leveraged in the previous section to analyse the eigenvalues geometrically. Nevertheless,
they are straightforward to obtain numerically at any point in parameter space. On doing
so, it was found (as might well be expected) that the boundaries of the well-posed regions
do not collapse neatly onto curves in terms of the parameters RH and Fr(Ru − 1), as
before. However, it is possible to observe the qualitative effect of increasing C from zero.

The plots in figure 4 show an illustrative example, in which γ = 0.5, RH = 1 and C
is incremented up to the value of 0.5 suggested by Pudasaini (2012). When C = 0, the
system reduces to the structure of the Pitman & Le (2005) model. The ill-posed regions
lie either side of Ru = 1 and take the form of bands around the curves given previously
in (3.11). Increasing C to 0.1 results in a slight narrowing of the ‘upper’ band with Ru > 1
and a slight thickening of the lower Ru < 1 band. Additionally, a new region of complex
characteristics emerges beneath the lower band at higher Froude numbers. This region
extends further towards lower Fr when C is increased to 0.5 (figure 4c), leaving most of the
Ru < 1 half-plane ill posed. Furthermore, the upper band separates into two pieces, leaving
a well-posed region in between them. Moreover, a small region of ill posedness appears at
an Ru closer to unity. It is approximately centred around the point (Fr, Ru) = (3.04, 1.05).
We inspected equivalent plots for other choices of γ and RH in the ranges 0.3 < γ < 0.8,
0.2 < RH < 1.5 and found them to be qualitatively similar.

These results indicate that the added mass force in this case does little to ameliorate the
problem of ill posedness on its own and arguably seems to make matters worse, especially
when the fluids velocity greatly exceeds the solids velocity (Ru < 1) – a situation which
could be encountered when a less concentrated debris flow entrains a static pile of grains,
for example. Some analytical insight into the emergence of the large ill-posed region for
Ru < 1 is gained later in § 4.3.2.

3.2. Three-phase models
For three-phase models that share the same essential structure as the two-phase models
we have analysed, it is possible to generalise the geometric reasoning of § 3.1.1 to identify
regions of parameter space that must contain complex characteristics, provided the added
mass effect is negligible.
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(b) C  = 0.5
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Figure 4. Effect of added mass terms in the Pudasaini (2012) model without diffusion. Regions of parameter
space that possess complex characteristics are shaded red, for RH = 1, γ = 0.5 and C = (a) 0, (b) 0.1 and
(c) 0.5.

Therefore, we return to the case C = 0, A = I and consider models that possess a
Jacobian of the form

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 H1 0 0 0 0
β11 u1 β12 0 β13 0
0 0 u2 H2 0 0

β21 0 β22 u2 β23 0
0 0 0 0 u3 H3

β31 0 β32 0 β33 u3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.14)

where Hi denote partial heights for each phase, ui the corresponding downstream
velocities and βi j represent arbitrary functions of these flow variables. This generalises
the essential structure of the two-phase Jacobian in (3.6) to three phases. Denote the
characteristic polynomial of this matrix by pc. By direct computation, it may be shown
that pc(λ) = 0 simplifies to

f (P1, P2, P3) ≡
3∏

i=1

(P2
i − 1) − (P2

1 − 1)
β23β32

β22β33
− (P2

2 − 1)
β13β31

β11β33

− (P2
3 − 1)

β12β21

β11β22
= c, (3.15)

where

P2
i = (ui − λ)2

βi i Hi
and c = β13β21β32 + β12β23β31

β11β22β33
> 0, (3.16)

for i = 1, 2, 3. We retain the convention adopted previously, by non-dimensionalising with
respect to the depth and velocity of the third phase, represented by the final two governing
equations and hereafter assumed to represent the carrier fluid. There are now two pairs of
relevant dimensionless quantities associated with the relative heights and velocities of the
phases:

RH1 = H (0)
1 /H (0)

3 , RH2 = H (0)
2 /H (0)

3 , Ru1 = u1
(0)/u3

(0), Ru2 = u2
(0)/u3

(0),

(3.17a–d)

alongside the Froude number for the fluid phase Fr = u3
(0)/

√
gz H (0)

3 . On making the
appropriate non-dimensionalising transformations and eliminating λ from among the
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defining relations for the Pi coordinates in (3.16), it may be concluded that the number
of real roots of pc at a given point in parameter space is determined by the intersections of
the level surface defined in (3.15) and (3.16), with the line given by the map

P3 	→
(

Ru1 − 1√
β11 RH1

+ P3

√
β33

β11 RH1

,
Ru2 − 1√
β22 RH2

+ P3

√
β33

β22 RH2

, P3

)
. (3.18)

To illustrate the resulting geometric picture, we use the model of Pudasaini & Mergili
(2019), which extends the two-phase system of Pudasaini (2012) to incorporate an
intermediate fraction of fine solid particles. When added mass effects are neglected, the
Jacobian for this model matches the structure given in (3.14). If the equations are organised
such that the first two rows denote the solid phase, the second two the fine-solid phase and
the final two the fluid phase, then the (non-dimensionalised) βi j closure terms are

β11 = 1
Fr2

[
1 + 1

2
(1 − γ1)

(
RH1 + RH2 + 1

RH1

)]
, (3.19a)

β12 = β13 = 1
2Fr2 (1 + γ1) (3.19b)

and β2i = γ2/Fr2, β3i = 1/Fr2, for i = 1, 2, 3, where γ1 is the ratio of fluid to solid
densities and γ2 is the ratio of fluid to fine-solid densities. These latter two parameters
are fixed material constants. On substituting the expressions for βi j into (3.15), (3.16)
and (3.18), it may be deduced that both the level surface f (P1, P2, P3) = c and the
gradient of the line in (3.18) depend only on the flow via the relative heights RH1 and
RH2 . Consequently, for a given (RH1, RH2) pair, the number of intersections between the
line and the level set is determined by the remaining degrees of freedom for the line,
namely the terms

K1 ≡ Ru1 − 1√
β11 RH1

and K2 ≡ Ru2 − 1√
β22 RH2

. (3.20a,b)

By substituting in the appropriate values for β11, β22, it may be seen that
Ki ∝ Fr(Rui − 1).

In figure 5, we plot the surface corresponding to the case RH1 = RH2 = 1 and γ1 = γ2 =
0.5. It consists of nine disjoint pieces, comprising eight surfaces in each corner octant,
which we label 1–8 for later reference, and a central ‘cross-shaped’ surface. Far from the
origin, the corner surfaces asymptote to the planes Pi = ±1. This is a consequence of the
more general property that in the limit |Pi | → ∞, (3.15) reduces to the two-dimensional
level set corresponding to the equivalent two-phase problem with phase i removed. This
also explains the extended stems of the central cross, since slices of the surface in the
far-field limits |P2| → ∞ and |P3| → ∞ (removing either of the fluid phases) may be
compared with the two-phase level set in figure 2(a), with the stems of the cross giving
rise to the closed curve around the origin.

Also plotted in figure 5 is the corresponding line with K1 = K2 = 0, which passes
through (0, 0, 0). Using the fact that β21 = β22 = β23 and β31 = β32 = β33 for this model,
it may be verified that the origin is an additional isolated point on the level set. Since the
line also necessarily passes through the central cross surface and the corner surfaces 1 and
8, it intersects with the level set five times in total. Therefore, this case corresponds to a
repeated real root of pc. More generically, we should expect an even number of purely
real eigenvalues, determined by the number of intersections of the plotted line through
the origin after undertaking an appropriate translation in the (P1, P2) plane by (K1, K2),
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Figure 5. The surface f (P1, P2, P3) = c, for the three-phase model of Pudasaini & Mergili (2019), with γ1 =
γ2 = 0.5 and RH1 = RH2 = 1. For visual clarity, the disjoint pieces of the surface are rendered with a triangular
mesh and coloured from blue to red according to the value of the P3 coordinate. Also plotted is the line defined
by (3.18) for Ru1 = Ru2 = 1. This intersects with the surface at the four points marked with circles and at
the origin (marked with a cross), which is an additional isolated solution of f (P1, P2, P3) = c, in this case.
Supplementary movie 2 shows an animated view of the surface.

depending on the values of Fr(Rui − 1) at a given point in parameter space. The different
possibilities are summarised in figure 6. In particular, figure 6(a) plots, as a function of
(K1, K2), whether there are six real roots (white), four real roots (pink) or only two (red).
Cases where there are repeated real roots are associated with either tangential intersections
between the line and level set (the borders of each shaded region in figure 6a) or isolated
points such as the origin. Regions with complex eigenvalues cover a substantial part of
the plane. Notably, the model is ill posed as an initial-value problem in this case for all
(K1, K2) ∈ [−1, 1]2, i.e. when

|Ru1 − 1|�√β11 RH1 and |Ru2 − 1|�√β22 RH2 . (3.21a)

From the geometric picture in figure 5, we see that this is because there are only four
available intersections in these cases (excepting the special case Ru1 = Ru2 = 1, already
discussed). This observation contrasts with the two-phase models analysed above, which
are always well posed when Ru is sufficiently close to unity.

There are various other possibilities when Ru1 or Ru2 are large enough to lie outside
the intervals in (3.21a). The diagrams in figure 6(b–d) are useful for visualising them.
These plots show how the intersections of the line and level set change as the line
is translated along different trajectories in the (K1, K2) plane, represented by dashed
lines in figure 6(a). The first of these, in figure 6(b), considers translations with K2 =
−K1. When |K1| < 1.06 (3 s.f.), four intersections are identified, as already discussed.
However, when 1.06 < |K1| < 2.30 (3 s.f.), two intersections are lost, since the line no
longer passes through the central cross-shaped surface. On increasing |K1| further, two
pairs of intersections are created with corner surfaces (2 and 6 for K1 > 2.30, 3 and
7 for K1 < −2.30), ultimately leading to well-posed regions when |K1| > 3.43 (3 s.f.).
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Figure 6. (a) Regions of the (K1, K2) plane, for which the (RH1 = RH2 = 1) surface geometry in figure 5
gives rise to six (white), four (pink) or two (red) real eigenvalues. (b–d) Intersections between the (3.18) line
and the (3.15) level surface (solid lines), for (K1, K2) values along the corresponding dashed lines plotted in
(a). These are: (b) K2 = −K1, (c) K2 = −K1 − 6 and (d) K2 = −K1 + 4. The shaded bands indicate the
number of intersections, in accordance with the colouring in (a). Labels denote regions enclosed by the
numbered corner surfaces (see figure 5).

Figure 6(c) shows translations with K2 = −K1 − 6. In this case, when K1 = 0, the line
passes out of region 1, through the arm of the cross that extends along the P1 = 0 plane
and clips the sixth corner surface before passing into region 8, leading to six intersections.
Larger K1 values lead to a band of complex characteristics (1.04 < K1 < 2.26, 3 s.f.),
where the line misses the cross arm. When K1 is lowered from zero, it misses region
6 and the cross arm in turn, leaving only two intersections for −1.48 < K1 < −1.04
(3 s.f.). In the interval −2.69 < K1 < −1.48 (3 s.f.), the line again intersects with the
cross surface, this time through the arm extending along the P3 axis. Lowering K1 further
leads to intersections with the seventh and third corner surfaces for K1 < −3.42 (3 s.f.) and
K1 < −9.40 (3 s.f.) respectively. Finally, the intersections depicted in figure 6(d), which
cover translations along K2 = −K1 + 4, are similar, but highlight an additional case: for
0.786 < K1 < 1.05 (3 s.f ), the line clips through both arms of the cross, leading to a small
well-posed band. Translations farther from the origin can also lead to intersections with
regions 4 and 5.
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Varying RH1 and RH2 alters both the line and the level set. However, our earlier
observation that the limits |Pi | → ∞ reduce to two-phase models implies that the resulting
parameter space must always contain ill-posed regions. This is likewise true for any model
of the form given by (3.14). Therefore, while there may exist other three-phase models
that possess more favourable properties near the origin (a fully general analysis would
require us to classify all surfaces of the form given in (3.15)), none of these systems can
be unconditionally well posed. Returning to the example case of the Pudasaini & Mergili
(2019) model, an investigation of different values in the ranges RH1, RH2 ∈ [0.1, 10] led
to regions of complex characteristics that qualitatively match the plot in figure 6(a),
suggesting that the observations made thus far are robust across parameter space. It should
be noted that in its full generality, this model also includes the option to include added
mass forces and diffusive stresses. Though the presence of former terms alters the system’s
characteristic structure, the § 3.1.2 analysis of the corresponding two-phase case does little
to suggest that they will substantially improve matters. The effect of diffusion is dealt with
in the next section.

4. Regularisation
The question of how best to alleviate the ill posedness in these models is fraught with
difficulty. Its presence in model equations is usually attributed to neglected physical effects
(Joseph & Saut 1990). For example, in the related case of two-layer fluid models, the
emergence of complex characteristics has been linked to the impossibility of resolving the
vertical mixing induced by Kelvin–Helmholtz instabilities within a depth-averaged set of
governing equations (Castro et al. 2001). However, the physics of debris flows are far from
settled and the relative importance of neglected effects may depend on the specifics of a
particular flow. Moreover, it is highly challenging to measure debris flows in situ, which
removes the possibility of examining interior flow instabilities.

Nevertheless, an obvious candidate to investigate is longitudinal diffusion of
momentum, since it is already included in some models and provides a clear mechanism
for damping instabilities at high wavenumber. For example, in the typical case where A = I,
it is straightforward to show that a full rank diffusion matrix D in (3.5) prohibits Re(σ )

from blowing up as k → ∞, provided all its eigenvalues are positive. However, since there
is no clear reason to include diffusion in the equations for mass conservation, D generally
will not be full rank and a deeper analysis is required.

4.1. A general framework for finding Hadamard instabilities
We return to the linear stability problem given in (3.5). A general procedure for detecting
the presence or absence of Hadamard instabilities is developed. Since it is cast as an
arbitrary matrix equation, there is no restriction on the dimensionality N of the system, so
our analysis in this subsection is applicable to models with any number of phases n = N/2.
Readers that would rather skip the linear algebra may proceed to the final paragraph of this
subsection, where the method for determining posedness is recapitulated.

First, we bring (3.5) into a simpler form for analysis. The matrix A must be invertible, in
order for there to be N independent time-evolving fields. Furthermore, we assume that the
matrix A−1D is diagonalisable, since this covers all the specific cases in this paper. Then,
the problem may be reformulated in terms of a basis {ê1, . . . , êN } with respect to which
A−1D is diagonal. Therefore, for each matrix M ∈ {B, C, D}, we define

M̂ = P−1A−1MP and v̂ = P−1v, (4.1a,b)
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for any vector v, where P is a basis change matrix that diagonalises A−1D. With respect
to this transformation, (3.5) becomes

σ r̂ + ikB̂r̂ = Ĉr̂ − k2D̂r̂. (4.2)

At high wavenumber k � 1, we make the following asymptotic expansions:

σ = −σ2k2 − iσ1k + σ0 + . . . , r̂ = r̂0 + k−1 r̂−1 + . . . , (4.3a,b)

substitute them into (4.2) and look for the leading-order terms. Therefore, at O(k2), the
problem reduces to

D̂r̂0 = σ2 r̂0. (4.4)

Noting the sign convention in (4.3a,b), the eigenvalues σ2, which represent diffusion
coefficients for the linear problem, must each have non-negative real part in order to
avoid blow-up of Re(σ ). The growth of modes with σ2 = 0 is determined beyond this
leading-order balance. If D̂ is not full rank, it has i ∈ {1, . . . , N } zero eigenvalues. Without
loss of generality, we locate these in the first i diagonal values of D̂. The corresponding
eigenvectors are determined only up to an i-dimensional subspace (r̂0 ∈ span{ê1, . . . , êi })
by (4.4).

Therefore, we proceed to the O(k) part of the asymptotic expansion of (4.2). When
σ2 = 0, this is

(B̂ − σ1I )r̂0 = iD̂r̂−1. (4.5)

Since r̂0 ∈ span{ê1, . . . , êi }, only the first i columns of B̂ − σ1I enter into this system of
equations on the left-hand side. Furthermore, only the first i rows of (4.5) are needed to
determine r̂0 and these are rows for which the right-hand side is zero. Consequently, the σ1

values are the eigenvalues of the matrix B̂ with the last N − i rows and columns removed.
We write Mred to denote any matrix M reduced in this way by deleting rows and columns
associated with the nullspace of the diagonal matrix D̂. Referring back to (4.3a,b), we
obtain a second criterion that must be met to avoid Hadamard instability: the eigenvalues
σ1 of B̂red must be real. If these values are also distinct, then the growth rates stay bounded
as k → ∞.

However, B̂red may have repeated eigenvalues, which can also lead to blow-up of Re(σ ).
To see why, we proceed to the O(1) equation with σ2 = 0, which reads

(σ0I − Ĉ )r̂0 + i(B̂ − σ1I )r̂−1 = −D̂r̂−2. (4.6)

To eliminate dependence of the left-hand side on the unknown vectors r̂−1 and r̂−2,
the left eigenvectors, corresponding to the eigenproblem adjoint to (4.2), may be used.
By repeating the arguments used to determine r̂0, these may be expanded as l̂ = l̂0 +
k−1 l̂−1 + · · · and inferred to satisfy l̂

T
0 D̂ = 0 and l̂

T
0 (B̂ − σ1I ) = il̂

T
−1D (when σ2 = 0).

For any of the i modes, the dot product of the leading-order left eigenvector l̂0 may be
taken with (4.6) and, on rearranging the result, the formula

σ0 = l̂0 · Ĉr̂0

l̂0 · r̂0
(4.7)

is obtained. The corresponding left and right eigenvectors for B̂red are the vectors l̂0, r̂0

with the last N − i entries (which are all zeros) deleted. When B̂red is diagonalisable,
these vectors form a biorthonormal set, with the left and right eigenvectors for each mode

1015 A52-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
29

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10297


J. Langham, X. Meng, J.P. Webb, C.G. Johnson and J.M.N.T. Gray

satisfying l̂0 · r̂0 = 1, so the O(1) growth rate in (4.7) is well defined. However, if B̂red is
not diagonalisable, at least one of its eigenvalues is defective. Therefore, σ1 is a repeated
eigenvalue associated with one or more Jordan chains of length at least two. Then for the
full matrix B̂ there are two pairs of corresponding generalised left and right eigenvectors
l̂0,1, l̂0,2 and r̂0,1, r̂0,2, respectively, satisfying⎧⎨

⎩l̂
T
0,1(B̂ − σ1I ) = 0,

l̂
T
0,2(B̂ − σ1I ) = l̂

T
0,1

and

{
(B̂ − σ1I )r̂0,1 = 0,

(B̂ − σ1I )r̂0,2 = r̂0,1,
(4.8a,b)

where r̂0,1 ≡ r̂0 and l̂0,1 ≡ l̂0. In this case, the formula in (4.7) is always singular,
since projecting any left eigenvector onto (4.8b) shows that l̂0 · r̂0 = 0. Physically, this
singularity can be thought to emerge from a resonance between two or more modes that
collapse onto one another when B̂red becomes defective. Examples of this are given in
§ 4.3.

The failure of (4.7) in these cases suggests the need for an alternative asymptotic
expansion. Anticipating growth of some intermediate order between O(k) and O(1), we
replace the expansions in (4.3a,b) with

σ = −iσ1k + σ1/2k1/2 + σ0 + · · · , r̂ = r̂0,1 + k−1/2 r̂−1/2 + k−1 r̂−1 + · · · . (4.9a,b)

This leaves the analysis at O(k) unchanged and introduces the following equation at
O(k1/2):

σ1/2 r̂0,1 + i(B̂ − σ1I )r̂−1/2 + D̂r̂−3/2 = 0. (4.10)

We project this onto l̂0,2 and use (4.8), along with the fact that l̂0,2 is orthogonal to the
range of D̂, to conclude that

σ1/2 l̂0,2 · r̂0 + l̂0,1 · r̂−1/2 = 0. (4.11)

The unknown vector r̂−1/2 is eliminated by proceeding to the O(1) equation. With the
new expansion, this is

σ1/2 r̂−1/2 + σ0 r̂0,1 + i(B̂ − σ1I )r̂−1 − Ĉr̂0,1 + D̂r̂−2 = 0. (4.12)

Then, we project this onto l̂0,1. Since l̂0,1 · r̂0,1 = 0, the term containing σ0 vanishes,
along with the diffusive term which lies in an orthogonal subspace. After rearranging
and using (4.11), we obtain a formula for the O(k1/2) part of the growth rate:

σ1/2 = ±1 + i
2

(
2l̂0,1 · Ĉr̂0,1

l̂0,2 · r̂0,1

)1/2

. (4.13)

For Jordan chains of length two, l̂0,2 · r̂0,1 = |l̂0,2||r̂0,1| �= 0, provided both the left and
right vectors correspond to the same Jordan block. Consequently, (4.13) implies that there
is a mode such that Re(σ ) ∼ k1/2, provided the source terms in Ĉ do not interact with the
eigenvectors of B̂ in a way that causes the numerator to vanish.

Conversely, for longer Jordan chains, the denominator in the (4.13) formula is also
guaranteed to be singular. Different asymptotic expansions are needed, depending on the
length of the the chain. However, to avoid these further complications, we terminate our
analysis here, since cases where three or more modes intersect at high wavenumber are far
less commonly encountered.
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To summarise the analysis above, models up to second order that may be cast in
the general form of (3.4) are ill posed as initial-value problems if any of the following
conditions are met:

(i) Any eigenvalue of D̂ is negative, where D̂ denotes a diagonalisation of A−1D.
(ii) Any eigenvalue of B̂red is complex, where B̂red denotes the matrix formed by

representing A−1B in the basis used to diagonalise A−1D in (i) and deleting each
row and column j such that the j th diagonal entry of D̂ is zero. We refer to B̂red as a
‘reduced Jacobian’ in later analysis.

(iii) Repeated real eigenvalues of B̂red of algebraic multiplicity 2 share the same left and
right eigenvectors l̂0,1 and r̂0,1 (up to normalisation), and l̂0,1 · Ĉred r̂0,1 �= 0, where
Ĉred is defined via A−1C in the same way as B̂red. (More generally, the expectation
following from (4.7) is that repeated real eigenvalues of any algebraic multiplicity
m � 2 imply ill posedness if the dimension of their associated eigenspace is strictly
less than m, but this is not explicitly proven above.)

For the remainder of this section, we apply these steps to different example systems.

4.2. Velocity diffusion in every momentum equation
Before analysing individual models, we highlight a generic case, which is guaranteed to
be well posed. Consider an n-phase model, with each phase i characterised by height Hi
and velocity ui , organised into pairs of mass and momentum equations of the form

∂ Hi

∂t
+ ∂

∂x
(Hi ui ) = 0,

∂ui

∂t
+ Fi (H1, u1, . . . , Hn, un) = 0, (4.14a,b)

where the functions Fi contain no dependence on time derivatives or spatial derivatives of
first order or higher. To each of the the j = 1, . . . , n momentum equations, add a term of
the form (∂ /∂x)(ν j (q)(∂u j/∂x)), where ν j (q) denotes a general diffusivity coefficient
function that stays strictly positive. When casting the linearised problem in matrix form,
the equations are ordered so that the mass and momentum equations respectively lie on
odd and even rows, as before. The corresponding diffusion matrix is already diagonal, so
at any q = q0,

D̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
0 ν1(q0) . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 νn(q0)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (4.15)

which is positive semidefinite and damps out growth at high wavenumber for n of the 2n
stability modes. The reduced Jacobian matrix is simply

B̂red =

⎛
⎜⎜⎜⎜⎝

u1 0 . . . 0
0 u2 . . . 0
...

...
. . .

...

0 0 . . . un

⎞
⎟⎟⎟⎟⎠ , (4.16)
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which clearly possesses n real eigenvalues and n linearly independent eigenvectors.
Therefore, debris-flow models with A = I can always be regularised by adding positive
diffusion to every momentum equation.

4.3. Existing models

4.3.1. Meng et al. (2022)
As detailed in § 2.2, in the model of Meng et al. (2022), A = I and only diffusion in the
fluid phase is included. The equations are (2.17a), (2.22a), (2.17c) and (2.22b), rendered
dimensionless as described in § 3.1. The diffusion matrix is already diagonal and is
given by

D̂ =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2ν f

⎞
⎟⎟⎟⎠ , (4.17)

where ν f ≡ η f /(ρ f H (0)
f u f

(0)) > 0 is a dimensionless kinematic viscosity coefficient
(though it could equally be viewed as an eddy diffusivity if the flow is turbulent).
Therefore, the corresponding reduced Jacobian is formed by removing the fourth row and
column from the full matrix B̂ = B, given in (3.6). At q = q0,

B̂red =
⎛
⎜⎝

Ru RH 0

(γ + β1)Fr−2 Ru (γ + β2)Fr−2

0 0 1

⎞
⎟⎠ . (4.18)

Its eigenvalues are

σ1 = 1, Ru ±
√

RH (γ + β1)

Fr
(4.19)

with corresponding eigenvectors⎛
⎜⎜⎜⎝

RH

1 − Ru

(Ru − 1)2Fr2 − RH (γ + β1)

γ + β2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎝

RH

± 1
Fr

√
RH (γ + β1)

0

⎞
⎟⎠ . (4.20)

Firstly, note that the latter pair of σ1 values equal the characteristics for the solids phase
of the ‘decoupled’ problem, given in (3.7a,b). Hence, all values are expected to be real.
However, there is the opportunity for repeated eigenvalues, which occurs when σ1 = 1
matches either of the other two growth rates, i.e. when

Ru = 1 ± 1
Fr

√
RH (γ + β1). (4.21)

This is similar, but not equivalent, to the condition for intersecting decoupled
characteristics, given previously in (3.11). By substituting (4.21) into (4.20), it may be
verified that the corresponding eigenvectors are equal when this condition is satisfied.
Consequently, the equations feature an instability with order k1/2 growth rate in the
high-wavenumber asymptotic limit and are ill posed wherever (4.21) is satisfied.
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Diffusion of momentum is often also included in shallow models of dry granular flows
(e.g. Gray & Edwards 2014; Baker et al. 2016). The general argument in § 4.2 implies
that adding a diffusive term of the form (∂ /∂x)(νs(∂us/∂x)), where νs ≡ νs(q0) > 0,
to the solids momentum equation is sufficient to regularise this model. Moreover, using
analogous arguments to those above, it may be verified that diffusive terms in both
momentum terms are required, in order to guarantee that the model stays unconditionally
well posed.

Specifically, if ν f = 0, but diffusion in the solids momentum equation is included, then
the reduced Jacobian is formed by eliminating the second row and column of B̂, to leave

B̂red =
⎛
⎜⎝

Ru 0 0
0 1 1

Fr−2 Fr−2 1

⎞
⎟⎠ . (4.22)

This matrix is defective when

Ru = 1 ± 1/Fr, (4.23)

giving rise to a family of O(k1/2) instabilities at these points in parameter space, similar
to the case where only fluid diffusion is included.

Note that since we used the general form of B from (3.6) to construct the reduced
Jacobians, these assessments apply also to the case of adding simple diffusive terms to
regularise the models of Pitman & Le (2005), Pelanti et al. (2008) and Meyrat et al. (2022).

4.3.2. Pudasaini (2012)
This model incorporates two diffusive stresses for the fluids phase: a Newtonian
component, equivalent to the term used by Meng et al. (2022), and a non-Newtonian
closure defined in § 2.3. The relevant contributions to the depth-averaged downslope
momentum equation are the second-order terms of (2.25). When the model is converted to
the quasilinear form that was used for the local analysis, the fluid momentum equation is
non-dimensionalised (as per § 3.1) and divided through by ρ f H f , and the diffusive terms
become

2ν f

H f

∂

∂x

(
H f

∂u f

∂x

)
+ 2ν f N

H f

∂

∂x

[
H f (us − u f )

∂

∂x

(
Hs

Hs + H f

)]
. (4.24)

The parameter N =A/ϕ f is a ratio of the effective diffusion coefficients for the
Newtonian and non-Newtonian parts (see (2.25)) and is assumed to be constant by
Pudasaini (2012).

After linearising around q = q0 = (RH , Ru, 1, 1)T , the diffusion matrix becomes

D = 2ν f

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

N (Ru − 1)

(1 + RH )2 0
N RH (1 − Ru)

(1 + RH )2 1

⎞
⎟⎟⎟⎟⎟⎠ . (4.25)
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The matrices A and B were given previously, in (3.12) and (3.13), respectively. The basis
change matrix

P =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 γ C

0 0 1 0
N (1 − Ru)

(1 + RH )2 0
N RH (Ru − 1)

(1 + RH )2 γ C + 1

⎞
⎟⎟⎟⎟⎟⎠ (4.26)

diagonalises A−1D, so that D̂ = P−1A−1DP is the matrix of all zeros, save for its only
eigenvalue σ2, located on the bottom right entry:

D44 = σ2 = 2ν f (γ C + 1)

1 + C(γ + RH )
. (4.27)

Since σ2 > 0, there is no blow-up at O(k2) and it remains to check the properties of B̂red,
which is formed by removing the fourth row and column of P−1A−1BP.

In the general case, analytical expressions for this matrix are cumbersome and it is better
to compute its eigenvalues numerically. However, two limiting cases are tractable. Firstly,
when the non-Newtonian viscosity is not included, N = 0 and the reduced Jacobian is

B̂red =

⎛
⎜⎜⎜⎝

Ru RH 0

1

γ C + 1

[
γ + β1

Fr2 + C(Ru − 1)

RH

]
Ru + γ C

γ C + 1

γ + β2

(γ C + 1)Fr2

0 0 1

⎞
⎟⎟⎟⎠ . (4.28)

The eigenvalues σ1 of this matrix are

σ1 = 1, Ru + 1

γ C + 1

(
γ C

2
±

√
Δ

Fr

)
, (4.29)

where

Δ = (γ C + 1)
[
Fr2γ C(Ru − 1) + (γ + β1)RH

]
+
(

Frγ C

2

)2

. (4.30)

The latter pair are complex conjugate if and only if Δ < 0. Rearranging this inequality
leads to

Ru − 1 < − γ C

4(γ C + 1)
− RH (γ + β1)

γ CFr2 . (4.31)

This describes a region of complex eigenvalues that is constrained to lie within Ru < 1.
Note that in the C → 0 limit, this region entirely recedes and inequality (4.31) is never
satisfied. In addition to these complex eigenvalues, there is the opportunity for O(k1/2)

blow-up if B̂red is defective, which can happen if σ1 = 1 intersects with either of the other
two eigenvalues in (4.29). The condition for this simplifies to

Ru = 1 ± 1
Fr

√
RH (γ + β1)

γ C + 1
, (4.32)
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(b) C  = 0.5

(c)

Figure 7. Regions where the reduced Jacobian for the model of Pudasaini (2012) with diffusive terms possesses
complex eigenvalues (red shading), for RH = 1, γ = 0.5, N = 0 and C = (a) 0.02, (b) 0.1 and (c) 0.5. The
boundaries of these regions are given analytically by inequality (4.31) (dotted black). Along the black dashed
lines, given by (4.32), the reduced Jacobian is defective. The model is ill posed as an initial-value problem for
flow states that pass through either the dashed line or the red region.

which generalises (4.21) for cases where C � 0. It may be separately verified that only one
eigenvector corresponding to σ1 = 1 exists when Ru satisfies (4.32), implying that B̂red is
defective here.

In figure 7, we show the regions where the model is ill posed for N = 0, C = 0.02,
0.1 and 0.5 and the same illustrative parameters used in figure 4(a). Dashed curves
show the lines given by (4.32). The ill-posed region that emerges at low Ru values via
inequality (4.31), whose border is given by the dotted line, may be compared with similar
regions present in the problem without diffusion, plotted in figure 4.

If instead N > 0 and the limit of vanishing added mass C → 0 is taken, then

B̂red =

⎛
⎜⎜⎜⎝

Ru RH 0

(γ + β1)Fr−2 Ru (γ + β2)Fr−2

N (1 − Ru)

(1 + RH )2 0 1 + N RH (Ru − 1)

(1 + RH )2

⎞
⎟⎟⎟⎠ . (4.33)

Note that this is a generalisation of the reduced Jacobian in (4.18). When the non-
Newtonian terms are included, N is expected to be a large number compared with the other
parameters (Pudasaini (2012) uses N = 5000). By solving for roots of the characteristic
polynomial via series expansion, when N � 1, the eigenvalues of B̂red may be obtained:

σ1 = (Ru − 1)RH

(1 + RH )2 N + 1 + O(N−1), ± 1
Fr

√
(γ + β1)RH + γ + β2 + O(N−1).

(4.34)
These expressions are real-valued and remain so in the limit. However, either of the second
and third branches merges with the first when

Ru = 1 ± (1 + RH )2

FrRHN
√

(γ + β1)RH + γ + β2 + O(N−2). (4.35)

As we have seen previously, the merging of branches can give rise to complex eigenvalues.
In this case, the merger originates in the limit N → ∞. For large but finite N , we
compute the eigenvalues of B̂red numerically and summarise their type in figure 8.
The two parametric lines given in (4.35) are flanked by bands where σ1 takes complex
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−1.0

−0.5

0

0.5

1.0 N = 50 N = 500 N = 5000

0 2 4 6

Fr

5
0
 (

R u
 −

 1
)/
N
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(a) (b) (c)

Figure 8. Regions where the model of Pudasaini (2012) with diffusive terms is ill posed as an initial-value
problem (red shading), for RH = 1, γ = 0.5, C = 0 and high values of the ratio N between non-Newtonian and
Newtonian diffusion coefficients: N = (a) 50, (b) 500 and (c) 5000. Note that each vertical axis is scaled with
respect to 50/N and that the shaded regions are near identical under this rescaling. Asymptotic expansions for
the eigenvalues at high N intersect along the black dashed lines, whose formulae are given in (4.35).

values. Furthermore, the shape of these bands is self-similar in the asymptotic high-N
regime.

4.3.3. Pudasaini & Mergili (2019)
To conclude this section, we touch upon the three-phase model of Pudasaini & Mergili
(2019), which was introduced in § 3.2. It was shown previously that omitting the diffusive
terms in this model can lead to ill-posed initial-value problems. However, it remains to
be seen whether including the terms can eliminate this issue. As before, we neglect the
complications of the added mass effect, though as we have just seen, this can be analysed
using the same methods.

Diffusion of momentum in the Pudasaini & Mergili (2019) model appears in the
equations for both fluid phases (which are labelled 2 and 3 in § 3.2). Each contains a
Newtonian and non-Newtonian component similar to the terms in (4.24) for the Pudasaini
(2012) system. The diffusion matrix D for the non-dimensionalised and linearised model
equations is given explicitly in Appendix C. Due to the non-Newtonian terms, it has off-
diagonal entries. It possesses two non-zero eigenvalues, which are 2ν2 > 0 and 2ν3 > 0,
where ν2 and ν3 are the Newtonian diffusion coefficients associated with the second and
third phases. A suitable basis change matrix P that diagonalises D was determined using
computational algebra and is also specified in Appendix C. This allows us to form the
reduced Jacobian (a 4 × 4 matrix in this case) numerically and compute its eigenvalues.

Since there are five independent dimensionless variables (RH1, RH2, Ru1, Ru2, Fr ) that
specify a particular state (in addition to several fixed model parameters), we do not attempt
an exhaustive study. Instead, we fix RH1 = 1 and investigate the effect of introducing
the intermediate fluid phase by increasing RH2 from zero. Guided by our analysis in
§ 3.2, we shift Ru2 slightly away from unity, setting Ru2 = 1.01, to allow for richer
interactions between the phases. Figure 9 shows the results of these computations, using
illustrative model parameters, given in Appendix C. These parameters were selected to
match our choices for computations relating to the Pudasaini (2012) model with N = 5000
(§ 4.3.2), so that when RH2 → 0, the system collapses to the this two-phase case. When
RH2 = 10−3 (figure 9a), there are two bands where the reduced Jacobian features a pair
of complex eigenvalues, either side of Ru1 = 1. As expected, these closely match the
corresponding regions plotted in figure 8(c). However, the reflection symmetry of these
bands about Ru1 = 1 is broken for any RH2 > 0. This becomes apparent at higher RH2
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Figure 9. Illustrative computations of the eigenvalues of B̂red for the model of Pudasaini & Mergili (2019), with
RH1 = 1 and Ru2 = 1.01. In regions shaded pink, the model possesses a single pair of complex eigenvalues,
while red shading covers areas where two complex pairs were found. Elsewhere, all eigenvalues are real. The
parameters for these computations are given in Appendix C.

values. Figures 9(b) and 9(c) show the cases RH2 = 0.01 and 0.1, respectively. The upper
band drops below Ru1 < 1 and overlaps the lower band, with the Froude numbers at which
this occurs decreasing as RH2 increases. Where the bands overlap, there are two pairs of
complex eigenvalues. Additionally, a second upper band appears at higher Fr and draws
towards lower Fr as RH2 increases to 0.5 and 1, in figures 9(d) and 9(e), respectively. In
the final plot (figure 9f ), at RH2 = 4, the two upper bands have merged, though in this case
the merger does not double the number of complex eigenvalues present.

Other choices for the flow variables lead to plots that are similar to figure 9, at least
in the sense that they are constructed from complicated tangles of complex eigenvalue
regions. While it may be possible to make sense of these diagrams in detail, this is perhaps
beside the point. It is clear, even from this cursory investigation, that this three-phase
model suffers from the same issues as the two-phase models.

5. Discussion
We have seen that depth-averaged debris-flow models with mass and momentum equations
for more than one phase lead to initial-value problems that are only conditionally well
posed. In particular, they are overcome by catastrophic instabilities if their flow fields
stray into certain regions of parameter space. This limits their applicability to cases where
solutions provably avoid these regions. For example, travelling-wave solutions, such as
those constructed by Meng et al. (2022) in their model, are mathematically constrained
to have equal depth-averaged velocities for both phases (Ru = 1) – a case which we have
seen is guaranteed to be well posed for the simplest two-phase models. However, since
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the ill-posed regions lie well within physically accessible regimes, no such guarantee
can be made a priori for simulations of real flows over complex topographies. This calls
into question the reliability of computational results obtained with multi-phase models
in prior studies over the past two decades. Furthermore, it strongly suggests that these
systems should not be used in scientific applications such as hazards assessment, since any
numerical ‘solutions’ whose flow fields stray into an ill-posed region become impossible
to converge to values that faithfully approximate the underlying partial differential
equations.

A common observation in our analysis has been that adding physical detail to a debris-
flow model can exacerbate the problem of ill posedness by increasing the opportunities for
unwelcome resonant interactions between flow fields. Therefore, for operational purposes,
it may be wisest for practitioners to adopt a philosophy of favouring models that are
‘as simple as possible (but no simpler)’. In most cases, this will mean depth-averaged
systems that provide a single bulk momentum equation for the flowing mixture. Such
systems can capture most of the important debris-flow physics and available models either
inherit well posedness from the classical shallow-water equations, or have independently
been shown to be strictly hyperbolic, such as the models of Kowalski & McElwaine
(2013) and George & Iverson (2014). However, simplicity comes with the potential risk
of missing or mispredicting key phenomena, such as the longitudinal separation of the
phases over the length of a debris flow. For situations where a fully multi-phase description
is absolutely necessary, careful model development is needed to resolve the issues raised
herein.

The analysis of § 4.1, which provides a general procedure for identifying ill posedness
in initial-value problems of up to second order in their spatial derivatives, should prove
useful in this regard. This may be applied either numerically or (ideally) analytically, to
assess particular models and indicate possible ways to regularise them. One option that we
have highlighted is to add diffusive terms. It is surely reasonable to justify the presence
of momentum diffusion in any phase of a debris flow, over a suitable range of scales and
doing so provides a potentially straightforward way to avoid model pathologies. However,
while diffusion might be expected to automatically regularise the system, we show in § 4.3
that this is not the case for the existing models analysed herein. Moreover, the appropriate
size of the diffusion coefficients in each case may not be clear in advance and careful work
is needed in order to formulate these terms rigorously for particular flows. Nevertheless,
ill posedness is provably avoided for the natural case of a diagonal diffusion operator with
strictly positive entries for each momentum equation and zeros elsewhere. Alternatively,
it may be possible to benefit from the existing research on numerical methods for the
multi-layer shallow-water equations (Castro Díaz et al. 2023) to design schemes that avoid
non-hyperbolic regimes without diffusive terms, bearing in mind that any such approach
would need to be physically justified for debris flows.

A deeper question remains. To what extent does the presence of ill posedness in
these models signify the existence of underlying physical instabilities? The removal of
the mathematical pathology does not necessarily imply the removal of the associated
linear instability. In particular, regularising a model by diffusively damping out growth
at high wavenumbers can leave larger scales unaffected and susceptible to the same
dramatic instability that gave rise to ill posedness (Baker et al. 2016; Langham et al.
2021). The finger-like structures observed in granular flow fronts are a prime example
of this. Depth-averaged equations for the dynamics of segregated bidisperse grains
suffer from ill posedness of the O(k1/2) kind, arising from repeated real characteristics
(Woodhouse et al. 2012). Nevertheless, the inclusion of a physically motivated diffusive
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term regularises the model and sets the preferred fingering width (Baker et al. 2016).
Therefore, at least in this case, ill posedness signposts the existence of an underlying
physical instability – one that can be correctly captured following improvements to the
model. This is more generally to be expected, since a properly formulated shallow-layer
model that undergoes a Hadamard instability must be regularised with physics that are
only non-negligible over the short length scales where the instability becomes acute.
(Otherwise those terms would have to be present in the original model formulation).

Given the difficulties in conducting experiments and observations of debris flows, it
remains to be seen what kind of instability this analysis might be pointing towards. Free-
surface instabilities that give rise to large-amplitude ‘roll waves’ and related phenomena
are already known to occur in debris flows (Zanuttigh & Lamberti 2007; Schöffl et al.
2023; Chen et al. 2024). However, in these cases, the instability mechanism emerges from
interactions between gravitational forcing and frictional resistance from basal stresses
(Trowbridge 1987). The instabilities that we have considered in this paper are independent
of these effects. Instead, they arise from the coupling between the phases provided by
buoyancy. Consequently, they seem more likely to be related to interior instabilities found
in multi-layered fluid flows such as the Kelvin–Helmholtz mechanism (Castro et al. 2001).
In a well-mixed flow of fluid and grains, the phenomenology of such an instability would
need to be quite different. Nevertheless, perhaps it will turn out that the high-frequency
resonance between the two phases is ultimately resolved similarly to the case of mixing
between fluid layers. That is, through the generation of internal vortices that dissipate
energy and act to reduce the velocity difference between the phases, thereby driving the
modelled flow away from non-hyperbolic regions. Unravelling these issues could be an
interesting challenge for future study.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10297.
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Appendix A. Details of the figure 1 numerical simulations
The data for the illustrative simulation in figure 1 were obtained by numerically integrating
the Meng et al. (2022) model equations for oversaturated debris flows (2.17a), (2.22a) for
the solids phase and (2.17c), (2.22b) for the fluid phase), using the finite-volume scheme
of Kurganov & Tadmor (2000) in combination with the technique of Kurganov & Petrova
(2009) to handle non-conservative product terms. Though the source terms in (2.22a)
and (2.22b) do not affect the presence of the catastrophic instabilities in the model, they
must be specified to simulate the equations. The following closures were employed:

Ss = −gx − (1 − γ )gzμb
us

|us | − Cd

ρsϕc
(us − u f ), (A1a)

S f = −gx − Cw

u f |u f |
H f

− Cd

ρ f ϕc

Hs

H f
(u f − us), (A1b)
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where μb and Cw are dimensionless coefficients and Cd is a dimensional Darcy drag
coefficient modelled by Cd = 180η f ϕ

2
c /[d2(1 − ϕc)], with η f denoting the dynamic

viscosity of the fluid and d a characteristic solids diameter. These capture the essential
competition between downslope gravitational acceleration gx , basal drag and interphase
(Darcy) drag in these systems. The μb coefficient for the solids phase is dynamically set
by a granular friction law (Pouliquen & Forterre 2002; Jop, Forterre & Pouliquen 2005):

μb = μ1 + μ2 − μ1

1 + I0/I
, where I = 5|us |dϕ

3/2
c

2(gzϕc H3
s )1/2 (A2)

is a so-called ‘inertial number’ for the grains.
The source term parameter values used were: gx = −g sin(18.5◦), gz = g cos(18.5◦),

where g = 9.8 m s−2, ρs = 1400 kg m−3, ρ f = 1000 kg m−3 (implying γ = 1/1.4
(≈ 0.7)), η f = 10−3 kg m−1 s−1, μ1 = tan(22.5◦), μ2 = tan(30.1◦), d = 8 × 10−3 m,
ϕc = 0.5, I0 = 9/(44

√
ϕc) (≈ 0.3) and Cw = 0.01. Additionally, diffusion of fluid

momentum was neglected, i.e. ν f = 0 (though note that dynamic viscosity η f retains a
non-zero value for the purposes of the Darcy drag closure). Simulations were conducted
in a domain of length L = 0.3 m with periodic boundary conditions enforced for all fields
at x = 0 m ≡ 0.2 m and three numerical grid spacings �x = 5 × 10−4 m, 5 × 10−5 m
and 5 × 10−6 m. In each case the initial condition used was a steady uniform flow in
an ill-posed regime of the model. Such states occur when the source terms vanish,
implying flow at equilibrium, with Ss = S f = 0. Specifically, hs = 0.0945794565 m,
us = 6.5195983137 m s−1, h f = 0.1176076626 m, u f = 5.711201893 m s−1 were set at
t = 0. The equivalent partial depths Hs , H f are obtained via the transformations in (2.21).
To 3 s.f., the corresponding dimensionless field variables are RH = 0.673, Ru = 1.14
and Fr = 7.06. Additionally, a small disturbance was given to this initial condition.
Specifically, each field q was initialised at t = 0, to the real part of

q0

[
1 + ε

||ξ ||
n=N∑
n=1

An exp (i2πnx/L)

]
, (A3)

where q0 denotes the corresponding steady uniform flow value for the field, ε = 10−6, N =
L/�x is the number of simulation grid cells and ξ is a vector of complex-valued random
amplitudes uniformly distributed within in the unit circle, with norm ||ξ || = (|ξ1|2 + . . . +
|ξN |2)1/2.

Appendix B. Table of notation
To ease comparison between different models and our analysis, table 1 lists the main
symbols used in the paper, alongside the equivalent quantities in Pitman & Le (2005),
Pudasaini (2012) and Meng et al. (2022) using the original authors’ notation. Not all the
symbols can be directly translated, either because some terms only appear in a subset
of models or due to conceptual differences in approach. For example, instead of the
quantities that we term the ‘effective stresses’, some authors define stress tensors that
incorporate part of the buoyancy effect (which itself is not uniquely defined in this context;
see Jackson (2000)). These differences in bookkeeping, though conceptually meaningful,
do not ultimately lead to incompatible physical descriptions once the models are carefully
depth-averaged.
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This paper Pitman & Le
(2005)

Pudasaini
(2012)

Meng et al.
(2022)

Velocity us , u f v, u us , u f ug , uw

Density ρs , ρ f ρs , ρ f ρs , ρ f ρg�, ρw�

Density ratio (ρ f /ρs) γ — γ γ

Volume fraction ϕs , ϕ f ϕ, 1 − ϕ αs , α f φg , φw

Constant solids volume fraction ϕc — — φc

Effective solids stress σ s −T s αs(pI − Ts) −σ e

Effective fluid stress σ f −T f −pI + α f τ f −pw�I + τw

Pore fluid pressure p — p pw�

Total interphase force f s , f f — — —
Non-buoyant interphase force ds , d f f , − f Ms , M f —
Gravity vector −g g f g
Total flow depth h ĥ h hw

Partial depth Hs , H f ϕĥ, (1 − ϕ)ĥ αsh, α f h ϕchg ,
hw − ϕchg

Solid/fluid layer depth hs , h f — — hg , hw

Added mass coefficient C — CVM —
Earth pressure coefficient K αxx Kx 1
Dynamic fluid viscosity η f — η f ηw

Non-Newtonian coefficient A — A —

Table 1. Comparison of notation for the main two-phase models considered herein. Where no direct analogue
of a quantity exists in a given article, we either derive it in the authors’ original notation or leave the entry
blank. Pairs of quantities refer to solid- and fluid-phase components, respectively. In some cases, we retain hats
and overbars that are eventually dropped for brevity in the original articles. As in the main text, the Meng et al.
(2022) model is assumed to be in its oversaturated configuration.

Appendix C. Pudasaini & Mergili (2019) coefficient matrices
The analyses of §§ 3.2 and 4.3.3 investigate the eigenstructure of the frozen coefficient
problem (3.5) for the model of Pudasaini & Mergili (2019). The underlying model
equations are lengthy and fully specified in the original paper. To obtain the relevant
matrices for our analysis, the same essential steps are followed as for the two-phase
systems. The original equations in conservative form are rewritten in the quasilinear form
of (3.4) and non-dimensionalised with respect to the height and velocity of third (fluid)
phase, as described in the text around (3.17a–d). Then, the coefficients are frozen around
a base state given by H1 = RH1 , u1 = Ru1 , H2 = RH2 , u2 = Ru2 , H3 = u3 = 1. Finally, the
added mass coefficients that appear in the model are assumed to be zero, implying that
A = I. The Jacobian matrix B is constructed in § 3.2, by evaluating (3.14) and substituting
the particular closures for this model, which are given in (3.19a, b). Since it is not relevant
for our analysis, there is no need to specify the source matrix C.

Newtonian and non-Newtonian stresses, analogous to those in (4.24), are included for
both the fluid phases 2 and 3. This means there are two ‘kinematic’ viscosities, ν2 and ν3,
respectively, for the Newtonian stresses, which we render dimensionless with respect to
H (0)

3 u3
(0). Furthermore, a single downslope non-Newtonian diffusive term is proposed for

phase 2, while two such terms appear in the momentum equation for phase 3 (Pudasaini &
Mergili 2019). This introduces three further parameters N21, N31, N32, which are defined
similarly to the parameter N of § 4.3.2, as ratios between non-Newtonian and Newtonian
diffusion coefficients. The non-zero entries Di j of the diffusion matrix D are given by
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D41 = 2ν2N21
(Ru1 − Ru2)(1 + RH2)

(1 + RH1 + RH2)
2 , (C1a)

D43 = D45 = 2ν2N21
(Ru2 − Ru1)RH1

(1 + RH1 + RH2)
2 , D44 = 2ν2, (C1b,c)

D61 = 2ν3

(1 + RH1 + RH2)
2

[N31(Ru1 − 1)(1 + RH2) +N32(1 − Ru2)RH2

]
, (C1d)

D63 = 2ν3

(1 + RH1 + RH2)
2

[N31(1 − Ru1)RH1 +N32(Ru2 − 1)(1 + RH1)
]
, (C1e)

D65 = 2ν3

(1 + RH1 + RH2)
2

[N31(1 − Ru1)RH1 +N32(1 − Ru2)RH2

]
, D66 = 2ν3.

(C1f ,g)

A convenient basis change matrix P that diagonalises D is given by the matrix whose only
non-zero entries are

P41 = −N21(1 + RH2)(Ru1 − Ru2)

(1 + RH1 + RH2)
2 , P43 = P45 = N21(Ru1 − Ru2)RH1

(1 + RH1 + RH2)
2 , (C2a,b)

P61 = −N31(Ru1 − 1)(1 + RH2) +N32(Ru2 − 1)RH2

(1 + RH1 + RH2)
2 , (C2c)

P63 = N31(Ru1 − 1)RH1 −N32(Ru2 − 1)(1 + RH1)

(1 + RH1 + RH2)
2 , (C2d)

P65 = N31(Ru1 − 1)RH1 +N32(Ru2 − 1)RH2

(1 + RH1 + RH2)
2 (C2e)

and Pi i = 1 for all i = 1, . . . , 6. This matrix is constructed so that the non-zero entries
of D̂ = P−1DP are D55 = 2ν2 and D66 = 2ν3. Consequently, the reduced Jacobian B̂red is
formed by deleting rows and columns 5 and 6 of P−1BP. Its eigenvalues are computed
numerically in figure 9 for various flow states, using the following illustrative model
parameter values: γ1 = γ2 = 0.5, K = 1 and N21 =N31 =N32 = 5000. Note that since ν2
and ν3 do not appear in P, these values do not need to be specified to reproduce figure 9.
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