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INTEGRAL GROUP RINGS WITHOUT PROPER UNITS 

BY 

K. HOECHSMANN AND S.K. SEHGAL 

ABSTRACT. If A is an elementary abelian p-group and C one of its cyclic 
subgroups, the integral group rings ZA contains, of course, the ring ZC. It 
will be shown below, for A of rank 2 and/? a regular prime, that every unit 
of ZA is a product of units of ZC, as C ranges over all cyclic subgroups. 

1. Introduction. If A is an elementary abelian p-group and C one of its cyclic 
subgroups, the integral group ring ZA contains, of course, the ring ZC. It will be shown 
below, for A of rank 2 and p a regular prime, that every unit of ZA is a product of units 
of ZC, as C ranges over all cyclic subgroups. It is in this sense that ZA has no units 
of its own, i.e. wo proper units. We shall provide some evidence that this state of affairs 
persists for A of higher rank than 2, and we believe that the restriction to regular primes 
is also just a feature of our method of proof rather than a necessary condition. We may 
assume without loss of generality that p > 3 [9, p. 57]. 

To be more precise, let U(A) denote the group of units of ZA modulo torsion, and 
consider the natural maps 

YlÙ(C)^Ù(A)-^UÙ(K) 
C K 

where C and K run over the cyclic subgroups and factor-groups of A, respectively, and 
where the products are free abelian. The composite y = p o a is an injection of lattices 
(free abelian Z-modules), whose index is a known power of/?; in fact, log^ ind(7) = 
(n/2)R, where n + 1 is the rank (over Fp) of A, and R is the rank (over Z) of any of 
the three lattices involved, namely 

R = \(P-
 3 ) ( ! + P + . . . + />"), 

by Dirichlet's Unit Theorem (cf. [5]). 
Another fact known about 7 is the number of cyclic factors of its cokernel, i.e. the 

corank of 7 = 7 ® z Fp (the unit groups written additively); it equals R — S r h(n,r), 
where R and n are as above, r runs over all even numbers between 1 and p — 2, and 
h(n, r) denotes the number of monomials of degree r in n + 1 indeterminates (cf. [6]). 
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So far, not much seems to be known about a or p. As indicated at the outset, we 
suspect that a is surjective (hence bijective), i.e. that 7 and (3 have the same index. The 
main result of this paper is that 7 and (3 have the same rank, provided that p satisfies 
a condition which is (only ?) formally weaker than regularity. Since the cokernel of (3 
is at least as large as that of (3, this does provide an improved upper bound on the index 
of a, but only for n — 1 does it force surjectivity. These matters are taken up in 
paragraph 3 below. 

Paragraph 4 makes the connection between regularity of p and the condition actually 
used in the proof of the main result, namely that the kernel of 

TT:U{ZC-> UXFPC 

should consist entirely of pth powers, where U\ denotes 1-units and u comes from 
reducing coefficients: Z —» Fp\ C again stands for a cyclic group of order p. 

In paragraph 2, we recall some fairly standard facts about the action of G — Aut(C) 
= Fp on U(C) /U(C)P and on the augmentation ideal of FPA. As in [6], much of our 
information comes from counting the multiplicities of G-characters. 

2. Preliminaries. Continuing in the notation of the introduction, we put U(A) = 
U(A)/U(A)P. In additive notation, this would be U(A) ® z Fp. The natural action of 
G on A makes it into a semi-simple G-module, whose G-structure depends entirely on 
the multiplicity with which the various characters x/.G-^ Fp,r = 1,...,/? — 1, occur 
in it. Explicitly \r is given by Xr(g) = gr- This is because \G\ = p - 1 and Fp is a 
splitting field of G (cf. [3] p. 213-14). 

LEMMA 1. Ifr is an even number between 1 andp — 2, the multiplicity ofxrin U(C) 
is 1. Otherwise it is 0. 

PROOF. This is essentially an Fp-version of Minkowski's Unit Theorem, which makes 
the analogous assertion about U(C) (x)z C and the characters Xr(g) = |JLr E Cx , where 
(JL is a primitive (p — l)st root of 1 and g is a generator of G. Actually, Minkowski's 
theorem (cf. [4], Anhang, p. 271) describes the Galois action on the units of 
Q[e + e_1], e a p{h root of unity. 

Indeed, the integral representation of G on U(C) has a character x whose (rational 
integral) values x(g') c a n be written as S r mr\i

sr in Z[|JL], where mr is the multiplicity 
of Xr (i.e. 0 or 1). Applying the homomorphism Z[[x] —» Fp which sends jx to g, we 
see that the reduced version x of this character has the values x(gs) = 2 r mrg

s\ with 
the same multiplicities. 

Our second lemma deals with the augmentation ideal AP(A) of FPA, again as a 
G-module. This ideal is generated by elements of the form (a — 1) with a E A. On 
these, g G G acts by (a - 1) -> a* - 1 = (1 + [a - \])g - 1 = g (a - 1) + (f) 
(a — l)2 + . . . , which proves the following statement. 

LEMMA 2. G acts on A;?(A)r/A/,(A)r+1 via the character Xr-

The point of this observation is to deduce the proposition stated at the end of this 
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paragraph. Before we get to it, we need to recall something about logarithms. 
In the ring Q[[x,y]] of formal power-series, we have the identity 

log (1 + x + y + xy) = log (1 + x) + log (1 + y). 

If we work modulo the//h power of the maximal ideal (x, y), this identity can be written 
with coefficients in the p-adic integers Zp, since (x + y + xy)p = xp = yp = 0. The 
same identity is thus valid in the truncated polynomial ring Fp[x, y]/(xy y)p. It therefore 
allows us to define a homomorphism 

\og:U]R(A)-^I(A) 

from the 1-units of the artinian local ring R(A) = F/)A/A/7(A)/7 to its maximal ideal 
1(A) = AP(A)/AP(A)P. We remark in passing that, for A = C cyclic, AP(C)P = 0 
anyway, and hence R(C) = FPC. 

Since G acts as ring automorphisms on R(A) and log (1 + t) is a polynomial in 
t E /(A), the logarithm is a G-map. In paragraph 3 the following statement will 
be useful. 

PROPOSITION. The multiplicity of \r in 1(A) is h(n,r), for r = 1,...,/? — 1. 

PROOF. If a0,. . . ,an are generators of A, t-x = ax - 1 generate the ideal AP(A), and 
FpA is the polynomial ring F[t0,. • . , tn] subject to the relations tp = 0. For 1 < r < 
/?, 7(A)7/(A) r+ l — A/,(A)r/A/?(A)r+1 is isomorphic, as an F/?-space, to the space of 
homogeneous polynomials of degree r. 

3. The Main Result. We shall produce a diagram 

YlÛ(C)^ 0(A) ^ 1 1 U(K) 
C K 

n v ( o ^ VM) £> n V(A-) 
C A" 

in which the arrows represent linear maps of /^-spaces, the vertical ones being 
surjections. For the coranks of the horizontal ones, we therefore have the inequalities 

cork 7 > corkp > cork(3+, 

and we now shall prove, for certain primes p, that cork p+ > cork 7, which implies 
the equality of all these coranks. This will work for primes which fit the following 
description. 

DEFINITION. A prime p will be called quasi-regular, if the kernel of the map 

7 T : / 7 , Z C - > U,FPC7 

as described in the introduction, consists entirely of pth powers. 
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As we shall see in paragraph 4, regularity implies this condition, and the two notions 
actually coincide modulo the so called Vandiver conjecture. 

Our main result can now be stated. 

THEOREM. If p is quasi-regulary the maps (3 and p o â have the same rank. 

For the unreduced map a, this has a relatively modest consquence. 

COROLLARY 1. log^ index ^ ((n — 2)/2)R + 2 r h(n,r) where r runs over the even 
numbers between 1 and p — 2. 

PROOF. Immediate from the values for logp ind7 and cork 7 quoted in the 
introduction. 

If A is of rank 2, i.e. n — 1, we have 

p — 3 ^ ^ p — 3 / 7 + 1 
R = —^(P + 1), X h(n,r) = 2 (/1 + 1) = ^ - ^ — ' 

and therefore logp inda < 0. We state this formally. 

COROLLARY 2. If A has rank 2 and p is quasi-regular, (7(A) is the free abelian 
product Ilc (7(C), where C runs over the cyclic subgroups of A. 

The first candidates for elementary abelian groups whose group rings might have 
proper units are those of order 53 and order 372, both large enough to discourage naive 
computational verifications. 

For the proof of the theorem, it is convenient to work with a subgroup (7* (A) of 
U\ZA — (7(1 + A (A)), namely those units of 1 + A (A)2 which are fixed under the 
involution of ZA taking every group element to its inverse. This is "the" torsion-free 
subgroup of UZA; it is isomorphic to (7(A) (cf [2], Lemma 2.6) in a manner obviously 
compatible with the action of G. 

In particular, we may identify (7(A) with U*(A)/U*(A)P, from where we have a 
G-map 

iiA:U{A)-+UlFpA 

induced by TTA (reduction of coefficients Z ^ Fp), because every element of U\FPA is 
of order p. In fact, we shall take this map a little farther, into U)R(A), which entitles 
us to follow it with the logarithm, as explained in paragraph 2. All in all, we now have 
a G-map p^ = log TTA: 

T*A log 
U(A) > UMA) >I(A). 

We let V(A) be its image and have thereby produced the diagram promised at the 
beginning of this paragraph. 

It remains to be seen that corkp+ > cork 7, which will be done in two steps 

(\)rkV(C) = rkO(C), and 
(2) rk$+ < S r/z(n,r), 
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r constrained as in Corollary 1. 
Step (1) amounts to seeing that p c : U(C) —» 1(C) is injective, or—since log has its 

usual inverse exp—that TTC:U(C) —-> U\FPC is injective. This is immediate from the 
definition of quasi-regularity and the identification U(C) = U*(C)/U*(C)P. 

Step (2) depends on the characters xr:G —» Fp. The range of p+ can only involve 
such characters as can be found in 0(C), namely \r with 1 < r = 2s < p - 2. By the 
proposition at the end of paragraph 2, the multiplicity in 1(A) of such a character is 
h(n,r). 

4. Quasi-Regularity. Since U\ZC consists of a cyclic group of order/? and a free 
abelian group of rank (p - 3)/2, quasi-regularity means that the image of the map 

7T log 

UXZC^UXFPC > A„(C) 

has dimension > (p - l)/2. Following Kervaire and Murthy [7], we shall describe an 
adaptation modulo/? of a classical calculation [cf. [1], Ch. V, §6.3), which shows that 
it has dimension > ((p — l)/2) — bp), where 8P is the number of Bernoulli numbers 
#2, B4, • • • ,Bp-3 vanishing in Fp. 

Of course, bp is exactly what keeps p from being regular (cf. [1], Ch V, §6.4); the 
first irregular prime (Sp =£ 0) being 37. 

Let e be a pth root of 1. In Z[e] consider the units 

er - 1 , p - 1 
vr = = 1 + € + . . . + € r _ I , for r = 2 , . . . , - • 

e - 1 2 
If x is a generator of C, the Wedderburn map takes 1 + x + . . . + xr ~l to a unit in the 
second component of Z © Z[e], but not in the first. That can be fixed by taking instead 
vr = (1 + x + .. . + xr~l)p~x - mrC, where C = 1 + x + . . . + xp~} and rp~ ' = 
1 + mr/7. These vr are units in £/iZC, and we will show that the elements log (ir(vr)), 
together with log(7r(x)), span a space of dimension ((p — l)/2) — bp in R'(C) = 
FpC/Ap(C)p~\ which is certainly all we need. 

Working modulo AP(C)P'] is not a mere whim; it is imposed on us by two 
circumstances: 

1) The image of vr in R'(C) is (1 + x + . . . + xr~l)p~\ since C E Ap(C)p~l. 
2) If z is a generator of AP(C), division by z is a well-defined linear map AP(C) -^ 

R'(C), but not into FPC. 
Now, to carry out the long-announced calculation, we shall work with the inverses 

(in R'(C)) of the vr: 

1 1 xr — 1 

ur = ~(\ + x + . . . + xr- ') = • 
r r JC — 1 

To see that these are the inverses, one has to remember that the plh power is an additive 
homomorphism. 

Let z = log (1 4- [JC — 1]) in FPC, so that x = exp (z); z is certainly a generator of 
AP(C), and hence the identity 
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exp(rz) — 1 
ur = - rz exp (z) - 1 

is valid in R'(C). 
We can now go into the Bernoulli routine and show (cf. [7]) that the formula 

. e--\ 1 "y2B, z-

makes sense in R'(C) and holds true for any z in its maximal ideal. Hence, for 
r — 2 , . . . , ( / ? — l)/2 and z = log x, 

1 p 2 rs' — 1 
log nr = - ( r - l)z + S r ^ z 9 -

2 v = 2 ^ • 5 ! 

Of course, apart from Bx = —1/2, only the even values of s have a non-trivial Z?5. If, 
for m — (p — 3)/2 , we write 

log « , - - ( r - \)z= I ( r 2 *- 1): -2* 
2V , . , '2*(2*) 

we only need to observe the invertibility of the m x m matrix (r2k — 1), 2 < r < 
m + l , l < / : < m , to conclude that the elements on the left of this set of relations span 
an (m — ô/7)-dimensional space. Setting u\ = x, hence log ux — z, the log ur then span 
a space of dimension (p — l)/2 — bp, as advertised. Thus we have proved the 
following statement: 

PROPOSITION. Ifbp = 0, then p is quasi-regular. 

In concluding, we shall make some remarks about a possible converse. We recall that 
p is regular if and only if the class number hp of Q [e] does not vanish modulo p and 
semi-regular if and only if the class number hp of Q[e + e"1] does not so vanish. Now 
hp , which divides hp (it is the "second factor" of hp), is also the index in UZ[e] of the 
group generated by the units vr together with the trivial units (cf. [8], Ch. 3, §5). It is 
not hard to see that the units vr plus the trivial units generate a subgroup of index k • hp 

in UZC, where all the prime divisors of k divide p — 1, and hence k is prime to p. The 
only way a prime can be quasi-regular is therefore that h* contains the factor p to the 
power bp, so that the short-fall hp can be made up as we pass from U to U. However, 
a conjecture ascribed to Vandiver (cf. [8], Ch. 5, §4) says that h* is always prime to 
p. This would mean that only regular primes can be quasi-regular. 
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