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SHARP BOUNDS ON THE DIAMETER OF A GRAPH

BY
W. F. SMYTH

ABSTRACT. Let D, ,, be the diameter of a connected undirected graph
onn = 2 vertices and n — | < m < s(n) edges, where s(n) = n(n — 1)/2.
Then D, ., = 1, and for m < s(n) it is shown that

2<=D,,<sn—[(V8m—n)+ 17— 1D/21

The bounds on D, ,, are sharp.

Introduction. Let D, ,, be the diameter of a connected undirected graph on n
vertices and m edges, where n — | < m < s(n) = n(n — 1)/2. There is no known 0(m)
algorithm for the determination of the diameter of a given graph [3], and even the
specification of useful bounds on D, ,, has so far seemed to be a difficult task. Klee and
Larman [4] and Bollobds [1] have described the asymptotic behaviour of D, ,, as
n— o, where m = m(n) is regarded as a given function of n. Klee and Larman quote
a result due to KorSunov, that for sufficiently large n and almost every graph G, ,, on
n vertices and An edges (A = 2 a small constant),

1
5 logy n < D, \, < 10 log, n.

All these results require lengthy and intricate proofs. More recently, Chung and Garey
[2] have derived bounds on the diameter of the graph resulting from the
addition/deletion of edges to/from a graph of known diameter.

In this paper a straightforward elementary argument is used to derive a sharp upper
bound on D, ,, in closed form. This result has been suggested by computer experiments:

(1) The testing of algorithms for the determination of diameter and “pseudo-diameter”
of random graphs [5] made it clear that the diameter of “most” graphs was much more
narrowly bounded than KorSunov’s results indicated;

(2) exhaustive runs on all graphs on n vertices, 2 < n < §, led directly to conjectures
[6] which in turn led directly to the results described here.

Upper bound on D, ,. Since by definition of D, , the graph is assumed to be
connected, it follows that m = n — 1. Since D, ,,, = |, we may assume that m < s(n).
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We remark then that D, ,, = 2, and moreover that for every integer m € [n — 1,
s(n) — 1] there exists a graph G, ,, on n vertices and m edges whose diameter is
exactly 2. Then the lower bound is sharp. We now prove

LEMMA A. Forn=3andj=1,...,n — 2,
Dn,.v(n)—[ = 2

PROOF. Suppose that n — 2 edges are deleted from a complete graph G, . Then
D, soy-n+2 = 2. Butin G, ,, there is one path of length 1 and n — 2 disjoint paths
of length 2 connecting every pair of vertices. Hence D, y,,-,+2 =< 2 and the lemma
follows.

THEOREM B. Formn =2 andi =0,...,n — 2,

@ D, yu-nsiSi+ 1

®) Dysp-nri-;<i+2,j=1,....,n—i—2.
Every bound is sharp.

PROOE. Observe that the result is true for n = 2 and by Lemma A for n > 2 and
i = 0. Observe further that the bound i + 1 for (a) is attained by the graph G, -+
consisting of a complete subgraph on n — i vertices {v;,,...,v,} together with the
chain

Vi Vo i Vi Vi

The bound i + 2 for (b) is attained by removing | < j<n —i — 2ofthen — i
— 1 edges incident at v; | (an application of Lemma A). The proof is by induction: we
suppose that the result is true for n and show that therefore it holds for n + 1.

(a) Consider any connected graph G, | 4.1, Where a(n,i) = s[(n + 1) — (i + 1)]
+ (@ + 1)and 0 <i=n—2.0bserve that D, , | ,,.;, < i + 4, for otherwise removal
of a single vertex and its j incident edges from the graph would yield D, s, - +i- (-1
=i + 3, in contradiction to the inductive hypothesis. Suppose then that D, | 4.y =
i + 3. Then there exist vertices u, v such that d(u, v) = i + 3, and the vertices of the
graph may be arranged into i + 4 levels including at least one shortest path from u =
Xotov = Xx;43:

X0 X X2 Xiy2 Xit+3

Suppose then that one vertex w # x,, k = 0,...,i + 3, is removed from the graph
together with all edges incident at w. From the level structure it is clear that the number
J of edges deleted satisfies 1 < j = n — i — 1. Then the reduced graph G, ;.- i+ i (-1
has diameter i + 3, in contradiction to the inductive hypothesis. Then it cannot be true
that D, 4 | 4.5y = i + 3. This proves (a) for i > 1.

(b) Assuming that D,y gpn.;)-; = i + 4, forsome | < j<n — i — 2, we use the
inductive hypothesis as in (a) to establish (b) by contradiction.
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Table 1 presents an interpretation of Theorem B. The values of m are displayed in
classesc = 1,...,n — 2, corresponding to the upper bound D, on the diameter D, ,,.

n,m

TABLE 1
No. of edges classified according to maximum diameter D

max

nom

Class Range of Edges
C m k=m-—n+2 D™
1 n—1 n—1 | | n—1
2 n n+ 1 2 3 -2
3 n+2 n+4 4 6 n—3
n—2 s(n) —(n — 2) s(n) — 1 stn —2) + 1 s(n — 1) 2
n—3 s(n) s(n) sth — 1)+ 1 stn — 1) + 1 |

We see from the table that given G, ,,, m < s(n), we can determine D", = n — ¢ by

determining ¢ such that s(¢) < k < s(c¢ + 1). This requires the solution of the quadratic
equation ¢*> + ¢ — 2k = 0, yielding

c=1(V8k+ 1 - 1)2]

from which

DM =n—[(V8m —n)+ 17— 1)/2].
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