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1. Introduction. We consider the following cosine and sine
functional equations:

(1) f(x +y) + f(x - y) = 28x)i(y),
@) f(x + yix - y) = fx)° - (y)°,

where f is an entire function of a complex variable z and x, y are
complex variables [1; 2; 3]. Furthermore, we consider the following
two functional equations:

2 2 2 2
3y i+ |2+ o - % = 2l Pl [P+ 2 e ] ey ]

2 2 2 2 2 2
(4) i+ 97+ Jix - 9|7 = 2] |7 e+ 2[iy) [T e=x)]
where f(z), g(z) are entire functions of a complex variable z and
X, y are complex variables. In Sections 2, 3 we shall prove the
following theorem

THEOREM 1. (i) If f(z)(#%1) is a complex-valued function of
a complex variable z and satisfies (1), then f satisfies (3) with

1
glz) = L(f(z+ V) - f(z - Y)) (1 - f(Y)Z)-2 where Y is a complex

constant such that f(2y) # 1 and ,J"l - f(\/)2 denotes one square

2
root of 1 - f(Y) .

(ii) If f(z)(% 0) is a complex-valued function of a complex
variable z and satisfies (2), then f satisfies (4) with
g(z) = (f(z +v) - f(z - Y)/(2£(Y)) where Yy is a complex constant
such that f(y) # O.

In Section 4 we shall solve (3), (4), that is, prove the following
result.

Canad. Math., Bull. vol. 12, no. 3, 1969

281

https://doi.org/10.4153/CMB-1969-035-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-035-1

THEOREM 2. (i) The only entire solutions of (3) are

i

Jf(z) a

lelz)= b,
where a, b are arbitrary complex constants with |a.[2 = {a,4 + lb|4
and

Jf(z) = exp(ia)coskz

,_
(0]

—
N

-~
1]

exp(ip)sinkz ,

where a, B are arbitrary real constants and k is an arbitrary
complex constant.

(ii) The only entire solutions of (4) are

Jf(z) =0
!g(z) = arbitrary,
and

[f(z) = a

Cgl2) = 3 expio),
"f(z) = az
L 8(z) = exp(i8),

where a 1is an arbitrary complex constant and 8 is an arbitrary real
constant, and

'f(z) = asinkz

l? g(z) = exp(iB)coskz,
L

where a, k are arbitrary complex constants and 6 is an arbitrary
real constant.

2. Proof of the part (i) of Theorem 1. We may assume that
f# 0. By (1), £(0) =1, so that, putting y = x in (1), we get

(5)  f(2x) = 2£(x)° - 1.

Replacing x, y by x+ vy, x -y, respectively, in (1), and using (5),
2 2
we deduce that f(x + y)f(x - y) = f(x) + f(y) - 1, which, with (1),

yields

(6)  (f(x+7y) - £(x -y)? = 4(1 - £(x)2)1 - £(y)?).
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Since f # 41, there exists a complex number Yy such that f(2y) # 1,
so that, by (5), 1 - f(Y)Z # 0. Putting y =Y in (6) and setting

glz) = 3(f(z + v) - £(z - Y))(1 - f(Y)Z)-% ,  we conclude that

g(z)2 =1- f(z)2 for |zl < +9, This, with (6), gives

l€x + v) - £x - ) 1% = 4]t [*[gy)[% 5 also, by (1),

If(x +y)+ f(x - y)[2 4lf(x)|2 ,f(y)l2 . Adding these two equations and

using the parallelogram identity |a + b[2 + |a - blz = 2]3.]2 + 2]b|2
(a, b complex), we have (3).

COROLLARY TO THEOREM 1 (i). If f(z)( #1) is an entire
function of a2 complex variable z and satisfies (1), then there exists
an entire function g of z such that f and g satisfy (3).

Proof. By Theorem 1 (i) and the definition of g(z), this is clear.

3. Proof of the part (ii) of Theorem 1. Since f # 0, there
exists a complex constant Yy such that f(y) # 0. We put
glz) = (f(z + Y) - £(z = ¥))/(2£(Y)). Replacing %, y by 3x+y), Hx -y),

2
respectively, in (2), we get f(x){(y) = f(%(x + y))2 - f(%(x -v)) .
Thus [1, p. 138; 2],

2f(y)g(x) = ?('% (f(x + V)(y) - f(x - v)(y))
1 xtyty2 Xx-y+Ye  xt+ty-Y2
= f(Y)(f( > ) £( > ) £( > )
+ £ x_—%—__\(—)z)

__1_ X + +Y2_ x+vy-Y.2 . Xx=-y+Y 2
oy (0 - a0 - W

- - 2
- f(f_ZLl) )

1
= 'f(—y)'(f(x + YY) - f(x - y)(Y))

=f(x+vy) - f(x -vy).

We therefore have f(x +y) - f(x - y) = 2f(y)g(x), and, interchanging
x and vy, and using the fact that f is an odd function (which follows
from (2)),

flx+vy) + f(x -y) = 2f(x)gly).

By these two equations and the parallelogram identity (4) results.
COROLLARY TO THEOREM 1 (ii). If f(z)(# 0) is an entire

function of a complex variaiic z and satisfies (2), then there exists
an entire function g of z such that f and g satisfy (4).
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Proof. By Theorem 1 (ii) this is clear.

4. Proof of Theorem 2.

To prove Theorem 2 we shall use the following two lemmas:

LEMMA 1. If £(z), g(z) are entire functions of a complex variable
z and if |f(z)| = M|g(z)| holds for |z]| < +% where M is a non-
negative real constant, then f(z) = Cg(z) holds for lzl < 400 where C
is a complex constant with ]C] = M.

Proof. By Riemann's Theorem concerning a removable
singularity and by Liouville's Theorem this is clear.

LEMMA 2. If f is an entire function of a complex variable z,

2 2
then Alf(z)]” = 4|f'(z)|” where A stands for the Iaplacian
82 82
— + —5 (z = x+1iy,x,y real) holds for [z] < 400,
2 2 —_—
0x ay

Proof. See [4].

Proof of Theorem 2. (i). We may assume that f(z) ¥ const.
Putting y = 0 in (3), we have

2
0 85 ]° = 5 P10 2+ et | e0) ]2

We shall show that the assumption g(0) # 0 leads to a contradiction.
2 -2 2 2
If g(0) # 0, then we have by (7) that |g(x)| = |g(0)] (1 - |£0)] )]f(x)] .
Substituting this into (3), we obtain
2
)

- 2
IR

[g(0)]

,f(x+y),2 + lf(x- Y)IZ = 2(1 + (

whence, by putting y = x, we have

2
2 - |f 2 4
110y * = 21+ (AL g .
|2(0) |
By (7) and since g(0) # 0, also f(0) # 0; hence, for [x[ < 4o,

f(x) # 0 and li/f(x)l = K, where K is a real constant. Thus, by

Liouville's Theorem 1 and so f(x) is a complex constant.

f(x)
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This is a contradiction. Hence g(0) = 0, so that, by (7) and the fact
that f(z) is not a constant, it follows that [£(0)| = 1. Putting x = 0
in (3), we get |f(-y)| = [f(y)|. Since f is an entire function

f(-y) = exp(iB)f(y), where © is a real constant. Putting y =0,

we have exp(iB) = 1. Hence f(-y) = f(y), so that f'(0) = 0.

2 2
9
Taking the Laplacian — + — of both sides of (3) with
9s ot

respect to y (y =s + it, s,t real), by Lemma 2 we conclude that

2 2 2 2
8 ey (-] = 2l e m|C s 2]gm | e o]
Putting y = 0 in (8), we have
(9) f'(x) = exp(iB)g' (0)g(x),

where O is a real constant. If g'(0) = 0, by (9) we have f'(x) = 0
and so f(x) = const. This is a contradiction. Hence g'(0) # 0. By
(9), f'"(x) = exp(iB)g'(0)g'(x), so that, putting x = 0, we obtain
f''(0) # 0.

Taking the Laplacian of both sides of (8) with respect to y
(y = s +it,s,t real), by Lemma 2, we have
2 2 2 2 2 2
[+ ) |7+ [ - y) |7 = 2]f=) [T () |7+ 2 ]glx) [T g"y) ]
Putting y = 0, we get for |x| < +, [f'(x)]| = |f'(0)f(x)|. Hence by
Lemma 1, for |x| < +0o, Cf'(x) = f"(0)f(x), where C is a complex

constant with |C| = 1. Setting x =0 and using [£(0)| =1,
f''(0) # 0, we have C = £(0) # 0. Thus, f{'"(x) = ({(0)/£(0)){(x).

Solving this differential equation with the appropriate boundary
conditions and using (9), we obtain

I f(z) = exp(ia)coskz

|
| g(z) = exp(ip)sinkz,

i

where a, p are real constants and k is a complex constant. Direct
substitution shows that the two systems of functions listed in Theorem
2 satisfy (3).

(ii) can be proved similarly.
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Remark. By the two corollaries to Theorem 1 and by Theorem 2,
all entire solutions of the functional equations (1), (2) can be easily
found.
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