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THE L-THEORY OF TWISTED QUADRATIC
EXTENSIONS

ANDREW RANICKI

Introduction. For surgery on codimension 1 submanifolds with non-
trivial normal bundle the theory of Wall [13, Section 12C] has obstruction
groups LN (7 — =), with 7 a group and #’ a subgroup of index 2, such
that there is defined an exact sequence involving the ordinary L-groups of
rings with involution

- L]V"(W/ - 77) - L)I(Z[ﬂ] ) - Ln+l(Z[7T,] - Z[W]M)
— LN, (7' —7)—> ...

with the superscript w signifying a different involution on Z[7]. Geometry
was used in [13] to identify

LN, (n" = 7)) = L,(Z[7'], a, u),

with (a, «) an antistructure on Z[7’] in the sense of Wall [14]. The main
result of this paper is a purely algebraic version of this identification, for
any twisted quadratic extension of a ring with antistructure.

The geometric applications of the LN-theory generalize to the non-
simply-connected case the work of Browder and Livesay [1] and Lopez de
Medrano [9] on free involutions on simply-connected manifolds. Ranicki
[12, Section 7.6] contains a general account of these applications. The
LN-groups have been used by Cappell and Shaneson [2], [3], Hambleton
[4], Harsiladze [6], [7] and Hambleton, Taylor and Williams [5] for
computations of the L-groups of finite groups, and for the detection of the
closed manifold surgery obstructions.

On the purely algebraic side LN-theory is related to the work of Lewis
[8] and Warshauer [15] on the L-theory of quadratic extensions of fields, as
detailed in [5, Section 1]. Indeed, this paper was originally intended to
serve as Appendix 4 to reference [H-T-W] of [5]. Accordingly, it uses the
same terminology, with right modules and antistructures as first defined
by Wall [14], rather than left modules and antistructures as in [11], [12].

The quadratic L-groups L,(R, a, u) of a ring R with antistructure (a, u)
are defined in Section 1 using (a, u)-quadratic Poincaré complexes over R,
in the style of Ranicki [11].
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The brief Section 2 deals with scaling isomorphisms in the L-groups.
Given a ring R, a unit ¢ € R and an automorphism p:R — R such that
p(a) = a and

pz(x) =axa ' € R (x € R)

let S = R [\/—] be the p-twisted quadratic extension of R, the quotient
of the p- thsted polynomial extension R[] (tx = p(x)7) by the ideal
(1“ — a). In Section 3 it is shown that an antlstructure (a, u) on S which
restricts to an antistructure (ay u) on R determines two distinct
morphisms of rings with antistructure

ii(R, ay, u) = (S, a, u), P:(R, &y, &) = (S, & @),

in both cases defined by the inclusmn of rings R — S. There are defined
induction and transfer maps i, i in the L- -groups and relative L-groups
L. (i), L*(l ) to fit into exact sequences

i
.= L(R agu)—> L(S, a,u) = L,(i,) = L,_ (R, ag. u) = . ...

B
.
oL (Sau)—> L (R, agu)— L") > L, (R, ag.u)— ...,

and similarly with 7 in place of i.
In Section 4 the algebraic gluing operation of Ranicki [12] is used to
define natural isomorphisms of relative L-groups

F"L (7') - n+l(i')
F L (l ) - Ln+l(l )
as required for the applications described in [5].
1. The L-theory of a ring with antistructure. Let R be a ring with anti-

structure (a, u), that is an associative ring with 1 together with a function
a:R — R and a unit u € R such that

ala + b) = ala) + a(b), a(ab) = a(b)a(a), a(l) =
a(u) = u ', az(a) = uau~' (a, b € R).

Given (right) R-modules M, N let Hom, (M, N) be the abelian group of
R-module morphisms f:M — N.
The a-dual of an R-module M is the R-module

= Homy, (M, R),
with R acting by
M® X R— M% (f, a) = (x — ala)f(x)).

For f.g. projective M the R-module morphism
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biM = (MY x = (f = o f(x) Ju)

is an isomorphism.
The a-dual of an R-module morphism f/ € Homg (M, N) is the
R-module morphism

JENS =M% g (x = g(f(x))).
Given a f.g. projective R-module chain complex

d d 5
CI...—>C"_H—>CH—> ﬂ'l_)"' (HEZ,d :0)

define a Z[Z,]-module chain complex Homy , (C*, C) by
d:Homy , (C*, C),

= +2 Homy, (C, C,) = Hompg, (C*, C),_;
pta=n

¢ = d + (—)Ipd”

with T € Z, acting by the («, u)-duality involution
T,:Homg , (C*, C),, — Homg , (C*, C)
¢ > (=), 9",

Define the (a, u)-quadratic Q-groups of C to be the abelian groups
0,(C, &, u) = H,(W Qgz,; Homg, (C*, C)) (n € Z)

with W the standard free Z[Z,]-module resolution of Z

n?

1—-T 1+ T 1 —T
W:...—> 2L, ——1Z[Z,| —> 1|1, — Z[Z,].

An element ¢ € Q,(C, a, u) is represented by a collection of chains

{¢, € Homg , (C*, C),_ s = 0}

such that
Ay + (=) d* + ()T Wy ()T T ) = 0
Ct_,_._,—>C (reZsz=0.

An n-dimensional (a, u)-quadratic Poincaré complex (C, y) over R is an
n-dimensional f.g. projective R-module chain complex

d
C:...=0—>C,—=>Cp ) —=Cpy—...

d
—C, > Cy—=0—... (nZ=0)

together with an element y € Q,(C, «, u) such that (as in [11])
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(] + 7:4)4/0 = Hn(HomR.a (C*’ C))

determines R-module isomorphisms

(1 + T):H*(C) = H,_(C),
where the homology and cohomology R-modules of C are defined by
H,.(C) = ker(d:C, — C,_))/im(d:C, ., — C,)
(re )
H'(C) = ker(d*:C} — C7, )/im(d*:C)_| — C)).
For example, a 0-dimensional (a, u)-quadratic Poincaré complex over R
(C, 4 € 0y(C, a, u)) is the same as a non-singular («, u)-quadratic form

(M, ) over R in the sense of Wall [14], that is a f.g. projective R-module
M = C{ together with an element

v € QuC, a, u)
= coker(l — T,;Homy (M, M“) — Homy (M, M®))
such that (1 + T, )¢ € Homy (M, M®) is an isomorphism, where
T,:Homyg (M, M*) — Homy (M, M*);
¢ > (¢%,:x > (¥ > a(p(y)(x) Ju)

is the (a, u)-duality involution on Homg (M, M*®).
Given a chain map of R-module chain complexes

f:C—D

let C(f) denote the algebraic mapping cone of f, the R-module chain
complex with

dD (_)n—]
d- =
“n (0 dc f)

IC(f),, = Dn @ Cn*] - C(f)nvl = Dn*l @ Cn—2'
The relative homology R-modules H.(f) = H,(C(f)) fit into the exact
sequence
S

-2 H, (D)= Hy () > H(O)= H (D) > ...

A chain map of f.g. projective R-module chain complexes f:C — D induces
a Z[Z,]-module chain map

Homy , (/*, /):Homp , (C*, C) — Homg , (D*, D); ¢ = fof“,
so that there are induced Q-group morphisms

Jou:0,(C, e, u) = Q,(D, a, u) (n € Z).
Define the relative (a, u)-quadratic Q-groups. of [
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QnJr](f; a, u) = H}1+1(W®Z[Z2] C(HOmR,a (f*’j) )) (n € Z)

to fit into the exact sequence
- Qn+|(D’ Q, u) - Qn+](f; «, u)
— Q,(C, a, u)ji%a 0,(D,a, u)y = ...

An element (8¢, ¥) € Q, . (f, a, u) is represented by a collection of

chains

{ (84, ¥,) € Homg, (D*, D), _, ® Homg, (C*, C),_Is = 0}
such that

dsy, + (—)dd® + (—)" (84

F (TS )+ (YRS =0

Dy, =D,

Ay + (=) hd® ()T T Wy (T T ) = 0

: ff,,,s,, —C, (relZ,s=0).

An (n + 1)-dimensional (a, u)-quadratic Poincaré pair (f, (8¢, ¢) ) over R
consists of a chain map f:C — D from an n-dimensional R-module chain
complex C to an (n + 1)-dimensional R-module chain complex D together
with an element

Y. ) € 0,1/, a, u)
such that

(1 + Tu)(8¢0’ tP()) = H/1+I(H0mR,a (j*’f))

determines R-module isomorphisms

(1 + T8 o):H*(D) = H, ().

The boundary of (f, (8¢, ¥) ) is the n-dimensional («, u)-quadratic Poincaré
complex over R(C, ¢ € Q,(C, a, u)).

A cobordism of n-dimensional («, u)-quadratic Poincaré complexes over
R(C, ¢), (C', ¢) is an (n + 1)-dimensional (a, u)-quadratic Poincaré pair
over R

(():CO®C =D, (84,4 ® —Y))

with boundary (C, ) © (C’, —¢/).
A homotopy equivalence of n-dimensional («, u)-quadratic Poincaré
complexes over R

SA(C ) = (CL )
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is a chain equivalence f:C = (’ such that

fo@) =¥ € Q0,(C, a, u).

Cobordism is an equivalence relation on the set of n-dimensional
(a, u)-quadratic Poincaré complexes over R, such that homotopy equiva-
lent complexes are cobordant. The cobordism classes define an abelian
group, the n-dimensional (e, u)-quadratic L-group of R L, (R, a, u) (n = 0),
with addition and inverses by

(Cd) +(CY) =(COC, Y BY),
—(CY) = (C, ) € L(R, a, u).

Given an R-module chain complex C define the suspension SC to be the
R-module chain complex with

dsc = de:SC, = C,_, = SC,_, = C,, (r € D).
If C is a f.g. projective R-module chain complex there is defined an iso-
morphism of Z[Z,]-module chain complexes
S:S*Homg , (C*, C) = Homy , (SC*, SC);
fH ()" (f € Homg (CS, C,))
with T € Z, acting by T, on Homg , (C*, C) and by 7, on Homg,
(SC*, SC), so that there are induced isomorphisms in the Q-groups
S:04(C, a, u) = Q4 5(SC, a, —u).
The skew-suspension maps in the L-groups
S:L,(R, a,u) = L, (R, a, —u); (C,$) = (SC, SY) (n = 0)

are isomorphisms, by Proposition 4.3 of [11]. In particular, it follows that
the («, u)-quadratic L-groups are 4-periodic

L,(R, a,u) = L, 4R, a, u) (n =0).
Furthermore, working as in Section 5 of [11] it is possible to identify

{Lzl(R, a, u)

Ly (R, a, u) (i(mod 2))

with the Witt group of non-singular

forms

. over R.
formations

(a0, (—)'u)-quadratic {

2. Scaling. Scaling is a classical device for generating isomorphisms
between categories of quadratic forms (cf. [14]), and hence also of
L-groups.
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The scaling of the antistructure («, u) on R by the unit v € R is the

antistructure on R
(a, u)" = (B, w)

defined by
B:R — R; at> va(ay ', w

= va(v_l)u € R.
For any R-module M there is defined a scaling isomorphism of the a-dual

and B-dual R-modules

0" MY MP i (f7ix v (x)).
If Cis a f.g. projective R-module chain complex there is defined a scaling
isomorphism of Z[Z,]-module chain complexes

o':Homy , (C*, C) = Homy 4 (C*, C); ¢ > ¢'

sending ¢ € Homg (C,, C,) to the composite

. ') 1
¢wﬂl*ng
There are induced scaling isomorphisms of Q-groups

6":0,(C. &, u) = Q,(C, B, w); ¢ = ¢
and hence also of L-groups
0":L,(R, a, u) = L,(R, B, w); (C, §) — (C, ¢").

3. Twisted quadratic extensions. A structure (p, a) on a ring R is a pair
consisting of a ring automorphism p:R — R and a unit ¢ € R such that

pz(x) —axa ' € R (x € R)
and p(a) = a € R. The (p, a)-twisted quadratic extension of R is the

ring
2
S = RJVal = RV — a)
with ¢ an indeterminate over R such that
tx = p(x)t (x € R).
The extension of p to an automorphism of S is denoted by

p:S— S x +yt—>i(x +y ' (x,y € R).

Let now R be a ring with antistructure (&, ) and structure (p, a) such
that «, extends to an antiautomorphism of S

«R[\/a) = S = R[\/al
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with a(\/a).\/a € R € S and o*(\/a) = u\Jau ' € S. Thus (a, u) is an
antistructure on S, and the inclusion i:R — S defines a morphism of rings
with antistructure

ii(R, ay, u) = (S, a, u).

Use scaling by the unit \/a € S and the Galois automorphism of S
over R

v:S—=>8; x +yt—>x —yt (x,y € R)
to define an antistructure on S
@w) = @ )
by
@) = (va, WV = (z > Vayaz)Va) ', Vaya((Va)
= (ove. —Vaa((Va) ).

Then (a, ) restricts to another antistructure (&, #) on R, with a
morphism of rings with antistructure

i(R, @&, u) = (S, & u).
Given an R-module M denote the induced S-module by
WM = M Qy S.
If M is a f.g. projective R-module then /yM is a f.g. projective S-module,
and there is defined a natural S-module isomorphism
W(M®) = (M) [ @ x > (u @ y = a(x)f(u)y)
(fe M ue M x,y €S).

If Cis a f.g. projective R-module chain complex then /,C is a f.g. projective
S-module chain complex, and there is defined a Z[Z,]-module chain
map

ixHomg , (C*, C) — Homg , (i,C*, 1,C);
o> (1 @ x > (/) ® x)
(¢ € Homy (Clﬂ,‘, Cq),fe C/‘f, x €58)
inducing Q-group morphisms
i:04(C. ag u) = QuliyC. o, w); ¥ > it
The induced L-group morphisms
i Ly(R, g, u) = Ly(S, a, u); (C, ¢) = (,C, i)

fit into an exact sequence
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i
.= L,(R, oy, u) RN LS, a u)— L, (i, a u)
=L, (R, ay u) = ...

in which the relative L-groups L, (i, a, u) (n = 1) are defined as in
Section 2 of [12] to be the cobordism groups of pairs

((C, ), (f:iyC = D, (8, i) ))

consisting of an (n — 1)-dimensional (&, u)-quadratic Poincaré complex
over R

(C* ‘1!/ € Qn*l(C* a()’ ll))

and an n-dimensional (a, u)-quadratic Poincaré pair over S
(fl'C - D’ (8"#’ Iy\l/) € Qn(./; «, u) )

with boundary i\(C, ¥).

Given an S-module N denote by i'N the R-module with the same
additive group and R acting by the restriction of the S-actionto R C S. If
N is a f.g. projective S-module then iI'Nis a f.g. projective R-module, and
there is defined a natural R-module isomorphism

HNY S (@N)YO f - (- x)
fEN“ueN,f(u)y=x+y\Ja €S, x,.y €R).
If D is a f.g. projective S-module chain complex then i'‘Disaf.g. projective
R-module chain complex, and there is defined a Z[Z,]-module chain
map
i':Homg , (D*, D) = Homy, (' D* i'D); ¢ = (i'¢:/ = (/)
(¢ € Hom, (DS, D)./ € (i'D,)™ = (D))
inducing Q-groups morphisms
0D, a, u) = Q.(I'D, ay. u); Y > iy
The induced L-group morphisms
LS, @, u) = Ly(R, ay, u); (D, ) = (' D, i)

fit into an exact sequence

1

;!
.= LS, a, u) = L(R, ay, u)
- L”(i!‘, a, u) > L, (S, a,u)— ...

in which the relative L-groups L”(i!, a, u) (n = 1) are defined as in Section
2 of [12] to be the cobordism groups of pairs

(D, ). (fii'D — C. (84 i'¥)))
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consisting of an (n — 1)-dimensional («, u)-quadratic Poincaré complex
over S

(D.y € 0, (D, a, u))
and an n-dimensional (e, u)-quadratic Poincaré pair over R
(fi'D — C, (8¢, ') € O, ([ &y, 1))
with boundary i’(Dﬂ Y).
If M is an R-module and N is an S-module there are defined natural
abelian group isomorphisms

Homy, (M, i!N) = Homg (iyM, N); [ (x @ s = f(x)s)

Hom, (i'N, M) = Homg (N, iyM);
gy g(»)®1 + g(yVa)®(\Va) Y(x e M,y e N.seS)

which we shall use as identifications.
Given a f.g. projective R-module M let pM denote the f.g. projective
R-module with the same additive group and R acting by

pM X R — pM; (x, r) = xp(r).

The isomorphism of abelian groups
p:Homy (M, M*) = Homy (pM, (pM)™);

¢ > (ppix = (¥ = a(\/a)$(x)(¥) )Va))
is such that T, (pp) = p(T,$), so that it is an isomorphism of
Z|Z,]-modules. Thus if C is a f.g. projective R-module chain complex there
is defined an isomorphism of Z[Z,]-module chain complexes
p:HomRﬁH (C*, C) = HomR‘an (pC*, pC)
inducing Q-group isomorphisms
p:Qx(C, g, u) = 04(pC., Q), U).

Furthermore, there is defined an isomorphism of R-module chain
complexes

i!i,(‘ SCOpC: xQ(r + s\/a) > (xr, xs) (x € C,r,s € R).
allowing the identifications
Homyg , (i,C*. i,C) = Homg, (C*, i'i,C)
= Homka“ (C*, C) D Homk‘a" (C*, pC)
= Homg , (C* C) ® Homy 5 (C*. C),
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Q*(lyC, a, u) = Q*(C, a(), u) @ Q*((w, a(), “ﬁ).

The identity i!i,C = C @ pC has the following geometric interpretation.
Let X be a connected topological space with fundamental group =, and
let # C 7’ be the inclusion of 7 as an index 2 subgroup in a group =’.
Then S = Z[#'] is a (p, a)-quadratic extension of R = Z[n] with
Va € 7/ — @, and the chain complex of the universal cover X of X is an
R-module chain complex C = C(X). The composite

X — K(7, 1) = K(', 1)

classifies a covering X’ of X with group of covermg translations 7/, such
that C(X’) = i,C. As a m-space X' = X U pX, and the chain level
decomposition

C(X') = C(X) ® pC(X)

is precisely i'\C = C ® pC.
Given a f.g. projective S-module N let yN denote the f.g. projective
S-module with the same additive group and S acting by

YN X § = yN; (x, s) > xy(s).

The isomorphism of abelian groups

y:Homg (N, N®) = Homyg (YN, (YN)*);
¢ > (ypix = (y = y(P(x)(y)))

is such that T ,(y¢) = y(T,¢), so that it is an isomorphism of Z[Z,]-
modules. Thus if D is a f.g. projective S-module chain complex there is
defined an isomorphism of Z[Z,]-module chain complexes

y:Homg , (D*, C) = Homyg , (yD*, YD)
inducing Q-group isomorphisms

¥:04(D, a, u) = Qu(yD, a, u).

Furthermore, there is defined a short exact sequence of S-module chain
complexes

0—>yD%i!i’D—>D—>0
with
YD = ii'D; x> x @ 1 — x(\Va) ' @ \a
i,i!D = D; xQst—>xs (x € D, s €58),

giving rise to a short exact sequence of Z[Z,]-module chain complexes
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0 — Homy,,, (D*, D) = Homy,, (i'D*,i'D) = Homy , (D*, D) = 0

and a long exact sequence of Q-groups

R
i \
.= Q.(D, ya, u) —> Q,(i'D, &, u)
= Q,(D, o, u) > Q, (D, ya, u) = ....

If D = i,C for some f.g. projective R-module chain complex C the long
exact sequence of Q-groups is naturally isomorphic to the direct sum of
the exact sequence
()
1

- QH(C* ), LI)——»Q”(C, &, I,l) & Qu(C’ A, M)
(I =10

0
—» Q,(C, oy, u) = O, _(C, o, u) = ...
and the exact sequence

.= 0,(C. &, #) = H,(Homg; (C*, C))

S -
- QII(C’ a()’ _ﬁ) - Qn I(C’ a()‘ “) ..

of Proposition 1.3 of [11], with S the suspension map. The exact
sequence

0—yD — ii'D— D —0

has the following geometric interpretation.

Let Y be a connected topological space with fundamental group
m(Y) = 7/, and let # C 7’ be a subgroup of index 2 classifying a non-
trivial (Dl, S())-bundle §over Y

(D', S = (E@), S(¢))— Y

with 7,(S(§) ) = 7. As before, S = Z[7'] is a (p, a)-quadratic extension of
R = Z[7]. The chain complex of the universal cover ¥ of Y is an S-module
chain complex D = C(Y). Let £ be the (D', $")-bundle over Y obtained
from ¢ by pullback along the covering projection ¥ — Y

(D', 8" = (E@. S@) — V.
Then

C(S@&) = ii'D. C(EE) =D
(up to chain equivalence) and

CEE@). S&) = SyD

by the chain level Thom isomorphism.
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4. The main result. As in Section 3 let (p, a) be a structure on a ring R,
and let («, u) be an antistructure on the (p, a)-twisted quadratic extension
ring § = R,[ Va] such that there are defined morphisms of rings with
antistructure

i(R, &, u) = (S, &, u), i:(R, &y, u) = (S, &, ).

. S g~
MAIN RESULT. The relative L-groups of i\, i\, ', i’ are related by natural
isomorphisms

FY:LH(TY) - L;1+I(i7)’
'L, — L, @

The isomorphisms T',, I'' are defined using the following construc-
tions.

Given an n-dimensional (&, #u)-quadratic Poincaré complex over
R(C, ¢y € Q,(C, &y, u)) there is defined an (n + 1)-dimensional (e, u)-
quadratic Poincaré pair over R

(80211, C = C. (0. Vi) € O, (g . 1))
with
ge = (I, 0):i'i,C = C®pC— C,
and
f'oVay = (0,0, (1 + T,)p)
€ Q,(I'i\C, &, u)
= 0,(C. &g, u) ® Q,(C. &y 1) ® H,(Homp, (C*. C))
the image of Y € Q,(C, @, ) under the composite

0\/67 ,'Y

o o~ o~ . S~
0,(C, ay u) = Q,(,C,a,u) = Q,iC, ya, u) = Q,(i'i,C, &, ).
Given an n-dimensional (a, u)-quadratic Poincaré complex over S

D,y € Q,(D, a. u))

there is defined an (n + 1)-dimensional (a, @)-quadratic Poincaré pair
over S

(ep:iyiD = D, (0, iyi'"y) € Q, 4 (ep, & 1))
with

eD:i!i’D =D, xQst>xs (x € D,s € §),
and

0, iyi'y) € O, (ep. & W)
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the image of ¢ € Q, (D, a, u) under the map
Q,(D, a, u) = Q, 1 (ep. @& W)

appearing in the morphism of exact sequences

K
1

S 0D, ) e O, (i D, g, ) e O, (D YO ) e 0, (D 0 u)
Va, 16 Va

€p%
Qi ep, @ )t O, (i4i' D, &, 1) eeeete O, (D, &, U)o O, (€ & T) — . ..

o

Use the constructions and the algebraic gluing operation of Section 1.7
of [12] to define the abelian group morphisms I}, ' by

F!:L”(i!, 52, ﬁ) i Ln—i—l("!» a, u),
((C.y € Q,_(C, &, u)), (f:iyC— D, (8, iyy) € Q,(f. @, u)))
— ( (C” "V € Q;;(C,v a()s Ll) )»
(f":0,C" = D', (0, i) € Q, (', a,u)))
with
' =CuUyeD=C ((g,}):i!i!CH co i’D),
! R
D= C(f) ¥ =0 Up,\a,yoVisy,
. 0 ¢, O |
/= ( CirC ):i.C,’. = i,C, ® ii'iC,_, ® ii'D,
00 ef" ! 1 !

r—1

®D (relZ),
and
LG au) = L,y () & T):
(D, € Q, (D, o, u)), (fi'D— C, (8, i) € Q,(f. a, u)))
= (DY € QD& W), (fi'D = €' (0. 1Y)
€ Q,(f, &, 1)))
with
’ el) . . N
D=DU,,nC=C o f it > D@ NLC|, C" = C(f).
h
V=0 U, a0 Vhsy,
. 0 ;! ' [ !
[ = ( &tp 0 ):i’D,f — i'D, ®i'ii'D,_, ® i'i,C,
0 0 8¢ ) '
— . =iD

I r

1 @ CI‘ (I' S Z)
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(The definition of T corrects the expression for the ill-defined isomor-
phism
Lo’y a, u) > Ly (1, & @)

given on pp. 704-705 of [12].)
The maps

y:Ly(iy, &, @) = Ly (0, a, u)

are isomorphisms because there is defined a commutative diagram

Ly _5(iy, o, u) = Ly (iy, &, ) — Ly(iy, &, u)

\ o 1

S
Ly 5(iy, a, —u) = L,(i), a, u)

involving the scaling isomorphism ¢ for (a, ) = (a, —u)’, the
skew-suspension isomorphism S and the automorphism

t:Ly(iy, o, u) = L(iy, a, u);

((C. ). (f:yC = D, (8. i) ))

= ((pC, pY), (tf:iypC = yD; x O s

= f(x @ Vay(s)). (8. iypy) ).

The diagram actually commutes on the homotopy (rather than cobordism)
level: given a representative

= ((C.), (/i C = D, (8. i)
of an element of L, (i), &, u) let
[y(x) = ((C ), (f:0,C" = D', (0, i)
L) = ((C7 7). (f7:0,C" = D", (0, i) ) ).

Now

- c((g< ) e @,Df)
AR e
SR [
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with
00
F=\ 0 ijf o
0o o0 i

C( (g'()) — NGO NG @ G,
I'(’I'(- r

- C((’C’:"”)) —i'D,®'i'D,_, ®i'D,

i'ep

G — g 0 0y
" \o g o)

C(%’z'u(') = ',C, ® i'i'iC, | ® ',

re; ¢

S0 0\
= (0 Qilf 0)'

(((€<)) =i C, ®ii'iC,_, ®iC,
h8c)Jr

— C(ep), = D, ®ii'D,_, (r € 7).

- C(ge), = C, QG |,

The chain maps

i) . 1. 0.
( )i C =L C @0 C

re ¢

(‘g:"[)):i!i!i!D —iD®I'D

I"(’])
e

[ TR o o
L C— L C 80
h&¢

are isomorphisms, so that up to chain equivalence

AL el l)-o ()
1'(”-'( 1'(’1) LWEc

" = C(g) = SpC, D" = C(ep,) = SyD.
The quadratic structures follow suit, and
I'y(x) = 1So“(x)

up to homotopy equivalence.

https://doi.org/10.4153/CJM-1987-017-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-017-x

TWISTED QUADRATIC EXTENSIONS 361

Similarly, the maps
ThL,(G @, u) = Ly (1) & %)

are isomorphisms because there is defined a commutative diagram
' 1

Lo (', a,u) = Ly (i @& T) = Ly(i', & %)
A\ >
t
L' o, u) S L' a, —u)

involving the scaling isomorphism ¢“, the skew-suspension isomorphism S
and the automorphism

LG a, —u) S L« —u);
((D, ), (fii'D = C, (8¢, i'Y)))
= ((vD, v), (tf:i'yD — pC; x = f(x(Va) '), (o8¢, i'vd) ).

As before, the diagram actually commutes on the homotopy level: given a
representative

x = (D). (fii' D — C. (3. i)
of an element of L*ﬁz(i!, a, u) let
I'x) = (DY), (f0'D — C. (0, i)
LT (x) = (D7) (f7 D" = €7 (0.197))).

Now

D’ = C((f”'/):i!i’zy - D@ i!C’)
B F ) €,i'n . €.c o
()<l (n)) - () Jocen).
" = C(f) = C(H:C((%';D))" C(g<-)).
leép

~

with
if 0 0
F=| 0 i'if 0
0 0 if

e
(P )] = ii'D @ id'ii'D_, @ ii'D,
l!gi!D r : S :
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e c ,
— C((,"( )) =iC. @ ii'ilC._, ®iC,
h8c) )"
0 0
G — €n )
0 e, O

e.
.l “”)) =ii'D.®iiii'D,_, ®ii'D,
LW8i'n) Jr ' o '

— C(ep), = D, ®ii'D, |,
0 0
H = f ' .
(0 rif 0)

:C((’f’f"”)) — i'D,®i'ii'D,_, ®i'D,
rep) Jr '

- C(go), = C,®i'C,_, (rel.

The chain maps

€ilp Y . I ]
U Vicid'D = 0D @ iy D
h&i'n

e. -
(_" ):i,i‘i,c — i,C®i,C
hgc

(%"D):i’i.t’D —i'D®'D
rep)

are isomorphisms, so that up to chain equivalence

(i) olC)) o el) -

D" = C(ep) = SyD, C” = C(g-) = SpC.
The quadratic structures follow suit, as before, so that
I'x) = 6tS(x)

up to homotopy equivalence.
The isomorphisms

Ui Ly(iy, & @) = Ly o (iy, @, 1),

LG ya, u) S LG, ya, —a)
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(using (ya, u) = (a, u)\ﬁ = (ya, —u)) can be combined to define a
commutative braid of exact sequences

' Kl
i I 1

LS. @& a)/\ /_\}_I.(S‘ a, u) L, (R, & i)

= L,(R. ay. u) = _
L, (S. ya. u) / \ L(S. y& —u) L, (R, &, —1u)
\ L, (i, & u) L', ya, u) L, _ (1. & )
L, (il u) 1_,,H(1'. Y&, —u) LG a, u)
Lyt (S a u) L,—(R. &. ) L, \(S. & @) \
_ - = L, (R, & u)

L, 4+1(S. va, L/'I’n+l‘k‘ &, 73)\_/(17171(5‘* Y“'l‘)\_/

] ]
i n i

(This is the Twisting Diagram (0.1) required by Hambleton, Taylor and
Williams [5].) It follows that the chain complexes of abelian groups
!

i i
— L(S, ya, u) = L,(R. ap, u) = L,(S, a, u)
i’oﬁ

i
— L, (R, @, —0) > LS, & —7)— ...
! .
o Ly (S, Y&, ) > L, (R, &, —) —> L, (S, & —@)
o Ve i

—L, (R ooy —u) > L, (S, a, —u)— ...

have isomorphic homology groups. This homology isomorphism was first
obtained by Harsiladze [6], [7] in the special case when S = R[Z,] is the
untwisted quadratic extension of R and u = =1 € R. Indeed, it is
possible to generalize the methods of [6], [7] to obtain the isomorphisms
r, I of relative L-groups, replacing the quadratic Poincaré complexes of
Ranicki [11], [12] by the quadratic forms and formations of Ranicki
[10].
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