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Suppose S is a regular semigroup and E is its set of idempotents. If E is
subsemigroup of S, then S has been called orthodox and studied recently by
Hall [3], Meakin [6], and Yamada [8]. In this paper we assume that E is not
(necessarily) a subsemigroup of S and consider the subsemigroup generated by
E, denoted <£>. If E" denotes the set of all elements of S which can be written
as the product of n (not necessarily distinct) idempotents of S, then <£> = Un°l iE".
We show that <£> is always a regular subsemigroup of S and investigate
relationships between it and S. The case where <£> = S is of particular interest
to us; such semigroups will be referred to as idempotent-generated regular semi-
groups.

Throughout S will denote a regular semigroup and E its set of idempotents.
The set of inverses of an element x of S is denoted by V(x). The regularity of S
guarantees that each of its elements has at least one inverse. For other facts
about regular semigroups see Clifford and Preston [2].

1. The regularity of

Our first lemma was motivated by a lemma of Howie and Lallement [4].

LEMMA 1.1. Let S be a regular semigroup and let n > 1. An element x
of S can be written as the product of n idempotents of S if, and only if, x has
an inverse which can be written as the product of n — 1 idempotents of S. In
symbols,

xeE" o V{x)C\En~i # 0 .

PROOF. =>: The case n = 2 is due to Howie and Lallement [4]. If x = ele2,
then choose y e V(x) and let / = e2ye^. One computes that fe V(x) O E.

Inductively, suppose n is a positive integer > 1 and suppose it has been shown
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that each element of £" has an inverse in E"~l. Let xeEn+1, say x = exe2 • • • en + 1 .
Pick geV(e2~-en + t)nE'-1 and yeV(x) and let / = g{e2 • • • e n + 1 ye 1 )eg£ .
By computation, one sees that fe V(z) nE"; hence, the first implication is es-
tablished.

<=: Suppose xeS such that V(x) nE"'1 9* 0 for some positive integer
n > 1. If n = 2 , pick e e V(x) n E and note that x = xex = (xe)(ex) e £ 2 . If
« > 2 , choose weV(x) n £ " - 1 and use the first implication to choose
}e7Wnr2 . Then

x = xwx = (xw)y(wx) € E • E"~2 • E - E".

This concludes the proof of 1.1.

COROLLARY 1.2. If S is a regular semigroup, then the subsemigroup <£>
o / 5 generated by the idempotents of S is also regular. In fact, if xeE", then
V(x) E £ n + 1 ; so that every inverse of an element of <£> is also in <£>.

PROOF. The first assertion follows from the first implication of 1.1. To prove
the second assertion, let y e F(x) . Then x e V(y) and xeE"; hence by the second
part of 1.1, yeEn+1.

A natural equivalence relation to define on any regular semigroup S is the
following:

x"fy o there exists a sequence x1 ( •••,xn of elements of S such that xt e V(x),
x ,e V(xi_i) for i = 2,---,n and ye V(xn).

Note that "V is simply the transitive closure of the 'inverse' relation on S
(x ~ y <s» x e V(y)). Note also that f s 3) (3) is the usual Green's relation
on S) since all inverses of an element of S are ^-related to that element.

The next theorem gives a description of <£> in terms of the relation "f.

THEOREM 1.3. Let S be regular with idempotents E. Let xeS. Then
(i) x s <£) o there is an eesuch that xVe.
(ii) xeE" => xe(DxnE)n+2.

Proof, (i) =*• : Let x e <£>, and let n be a positive integer such that x e E".
If n = 1, the conclusion holds. If n > 1, repeated application of the first part
of 1.1 yields a sequence xux2,---, x n _ t of elements of S such that
E"'1 andxieVix^JnE"'1 for i = 2,...,n-\. Note that xn_tG£ and

<=: Suppose xeS and x'fe for some eeE. Choose a sequence Xi,---,xn

in S such that XleV(x), xieV(xi_1) for i = 2,—,n and eeV(xn). Note that
x = x x 1 x = xXiX2---xnexn-"X2x1x.Ifn is odd, x = (xx1)(x2x3)---(xn_1x>(xnxn_1)
•••(x3x2)(x1x)e£" + 2. If n is even, x = (xxi)(x2x3)---(xne)(exn)---(x3x2)(x1x2)
e £ " + 2 .

This concludes the proof of (i). The proof of (ii) follows upon noting that
all of the products xx 1 ) xx 2 x 3 , ••• are in the ^-class of x .
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COROLLARY 1.4. / / S is an idempotent-generated regular semigroup and I
is an ideal of S, then I is also an independent-generated regular semigroup.

PROOF. This follows from 1.3(ii) and the fact that I is the union of all the
^-class of S which it meets.

2. Green's ^-relation on <E> and a characterization of
idempotent-generated regular semigroups

It is well known that, in general, Green's relations are not well-behaved
relative to subsemigroups; that is to say, if T is a subsemigroup S, then it it
not necessarily the case that KT = Ks O (T x T), where Ks denotes one of
Green's relations on S and KT denotes the corresponding relation on T.

In case T is regular, it follows from a lemma of Anderson, Hunter, and
Koch [1] that the relations &, <£, and «?f do behave nicely in the above sense.
However, it still may not be the case that 3iT=@)sc\{T x T); for example, let
S be the bicyclic semigroup and T be its semilattice of idempotents.

In this section we shall describe the ^-relation in <£> when S is a regular
semigroup and use this to characterize those regular semigroups which are idem-
potent generated.

LEMMA 2.1. Let T be a regular subsemigroup of semigroup S. Then

(i) KT = Ks n (T x T) for K = <£, 0t, or tf.

(ii) x!3Tyo there exists zeTsuch that x2/tsz££sy.

The proof of (i) follows immediately from [1], whereas (ii) is a direct con-
sequence of (i) together with the definition of 2. It will thus be necessary to
denote the ^-relation on <£> by ^ < E > , while the relations <£, 0t, and tff on <£>,
being restrictions of the corresponding relations on S, will not be subscripted.

In order to facilitate the statement of the next lemma we define the relation
a on £ as follows:

eaf o there is a sequence gu---,gn in E such that e.K;gr1,0;K1 + 1gfj+1 for
i = 2,••• ,«-1 and gnKn+if, where for each i, Kt is one of i*f or 0t.

Note that a is simply the transitive closure of the symmetric reflexive relation

ise n (E x £)] u [m n {E X £)]

and is thus an equivalence. Note also that a £ 'V since if two idempotents are
Se ox M related they are inverses of one another. Roughly speaking, two idem-
potents are a-related if it is possible to get from one to the other by going along
the 0t and 'V classes of S, turning corners only when one is an H-class containing
an idempotent.

LEMMA 2.2. Let S be regular with idempotents E. Then a. = 3><Ey n (E x £).
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PROOF, C : Since ^<E> u 5£<-E> £ ^<E>
 a nd since a is the transitive closure

of \je n ( £ x £)] U [^ n ( £ x £)], the containment follows.
z>: We say that a pair (x ,y)e^ < £ > n(£ x £) has degree n provided n is

the smallest positive integer k for which there exists zeEk such that x£fz&y.
Let (e,f)e@<E> n ( £ x £). Then clearly if the degree of (e,/) is 1, then ea/.
Inductively, suppose that n is a positive integer for which it has been shown
that whenever a pair of idempotents (e',f) is of degree not exceeding n, then
e'xf. Now if the degree of (e,f) is n + 1, pick z e £ n + 1 such that eSez^f.
By 1.1, pick z ' e F ( z ) n £ " , and let e' = zz', / ' = z'z. Note that e', / ' e £ ,
fMzMe1 and f'<ez££e; hence f@e'£ez'&tf'£ee. By the induction hypothesis,
since/' and e' have degree at most n, e'af; hence ea/ . Since the pair (e,/)
must have some degree, this completes the proof of the containment.

THEOREM 2.3. Let S be a regular semigroup with idempotents E. Then

PROOF. Suppose (x,y) e-f n «£> x <£» . Choose xux2,---,xn in S so
that x ^ ^ x ) , XiBViXi-i) for i = 2, ••-,«, and yeV(xn). Now since xe<£>,
it follows from 1.2 that xt e<£>, and hence x^<£>X!. In the same way we find
x1&><E->x2, and hence x@<E>x2 • Continuing in this manner we finally conclude
that x@<E>y.

Conversely suppose xQi^y. By 1.3(i), we can choose e , / e £ such that x^e
and yff. It follows from the first part of this proof that x^<E>e and y@iE>f;
hence e@<E>f. Thus by 2.2, eaf and so e"ff. Hence x'fy and the equality is
established.

As a corollary we obtain the following characterization of idempotent-
generated regular semigroups.

COROLLARY 2.4. A regular semigroup S is idempotent-generated if, and
only if, 2 = V'.

PROOF. =>: This implication is immediate by setting S = <£> in 2.3.
<=: Suppose S ^ <£>. By 1.3(i), there is an element whose f-class contains

no idempotent. Since every ^-class contains at least one idempotent, it follows
that 2 # -T.

The next theorem describes when the ^-relation on <£> is well-behaved in
the sense that @<E> = Q)s n «£> x <£» .

THEOREM 2.5. For a regular semigroup S, the following are equivalent:
(i) a = 3>s n (£ x £)
(ii) < 2 < £ > = S s n « £ > x < £ »
(iii) Each Jf-class of S contains a product of idempotents S.
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PROOF, (i) => (ii): By 2.1, ^< E > <= S>s n « £ » x < £ » . If (x,y)e3>s n « £ >
x < £ » , choose idempotents e and / such that e££x and y0lf. Then e ^ s / a n d
so (e,f)e3>s n £ x E and hence using (i) eaf. But by 2.2 a = 3><E> U ( £ x E)
hence e@<E>f. So x<£e2iEyf@y from which we get that x^ < £ > y .

(ii) => (iii): Let H be an <?f -class of S. Then H = RnL where i? is an
^-class of S and Lis an iP-class of S. Choose eeRC\E a n d / e L n £ . So e ^ s /
and hence using (ii) e@<E>f. Thus there is a z e <£> such that e0lz<£ f and thus

(iii) => (i): We always have a £ ^ s D (£ x £). If (e,/) e ̂ s n (£ x £)
then by (iii) there is a z e l R . n y n ^ ) , Hence (e,f) e @<E> n (£ x £) and
so by 2.2, ea/ . This concludes the proof.

3. The simple case

If S is a simple (no proper ideals) regular semigroup with idempotents E,
then of course it need not be that <£> is simple; for example take S to be the
bicycle semigroup.

In this section we shall first investigate the relationship between S and <£>
when one of them is simple.

LEMMA 3.1. Let S be a regular semigroup. Then
(i) S is simple if, and only if, for every e,feE, there is an aeS and an

inverse a' of a such that aa' = e and a'af = a'a.
(ii) S is bisimple (one Si-class) if, and only if, for each e,feE there is an

aeS an inverse a' of a such that aa' = e and a'a = f.

PROOF. These statements are proved for inverse semigroups in Clifford and
Preston [2,11] and no essential use is made of the uniqueness of inverses.

THEOREM 3.2. Let S be a regular semigroup. Then
(i) If <£> is simple, then S is simple
(ii) If S is simple and each 3^-class of S meets <£>, then <£> is simple.
(iii) <£> is bisimple if, and only if, S is bisimple and each M'-class of S

meets <£)>.

(iv) <£> is completely simple if, and only if, S is completely simple.

PROOF, (i) follows from 3.1(i).

(ii) let e,feE. By 3.1(i), choose aeS and a' e V(a) such that aa' = e and

a'af = a'a.
Now choose x e f f , n ( £ ) , where Ha denotes the ^f-class of a, and let x'

denote the inverse of x which lies in Ha,. Then we have xx' = aa' = e and
x'xf = a'af = a'a = x'x. Since by 1.2, x ' e < £ > , we conclude from 3.1(i) that
<£> is simple.
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(iii) If <£> is bisimple, then S is bisimple from 3.1 (ii). Now if H denotes

an Jf -class of S , let e, feE such that ReC\Lf = H. Since e@<E>J such that

e^zMf; hence zeH n(E}.
(iii) If <£> is completely simple, then <£> has a primitive idempotent; hence

S has a primitive idempotent. By 3.2(i), S is simple. Hence S is completely simple.
Conversely if S is completely simple, then S is simple and each ^f-class of S meets
<£>; hence by 3.1(ii), <£> is simple. But also S has a primitive idempotent which
must also then be a primitive idempotent of <£>, so <£> is completely simple.

REMARK 3.3. The authors have so far been unable to find an example of a
simple idempotent-generated regular semigroup which is not completely simple.
The following theorem seems to indicate that possibly no such example exists.

THEOREM 3.4. The only simple regular semigroup with identity which
is idempotent-generated is the one element semigroup.

PROOF. Let S denote such a semigroup and let e denote the identity of S.
First we shall show that ET\ Le = {e} ~ E" nRe, n = 1,2, •••: so suppose
feEC\Le. Then xf = e for some xeS, so e = xf = (xf)f = / . Hence
Er\Le = [e]. Similarly E(~\Re — [e]. Inductively, suppose that n is a positive
integer for which it has been shown that E" r\Le = {e} = E" nRe. Let x e
xeE" + 1 C\Le. By 1.1, there exist yeV{x)C\E". Moreover, since E(~\LX =
E n Le — {e}, it must be that y e Re. But by the induction hypothesis, Re n E" =
{e,} hence y = e. Hence e = y = yxy = exe = x, and we conclude that En+1

r\Le={e). Similarly £ n + 1 C\Re = {e}. Since S = <£>, we conclude that
Le = Re = {e} .

Now suppose feE. Since S is simple, there exists, by 3.1(i), an element
aeS and an inverse a' of a such that aa' = e and a'af = a'a. But aa' = e
implies that aeRe = {e}. Hence a - e = a' and so e = a'a = a'af'= eef=f.
Thus £ = {e} and the proof is complete.

Suppose S is a completely simple semigroup and E is the set of idempotents
of S. One may ask about the structure of <£> beyond the fact that <£> is com-
pletely simple. The next theorem shows among other things, that <£> is deter-
mined to a large extent by the number of <£ and 01 classes of S.

THEOREM 3.5. Let a and /? be non-zero cardinal numbers and let X and Y
be sets of cardinal a. and /? respectively. Let ^XxY denote the free semigroup
on XxY and let p be the congruence on ^Xxr generated by the relations
(x,y)(x,z) = (x,z) and (x,y)(z,y) = (x,y). Denote the quotient semigroup
obtained by T(oc,/?). Then T(a,fi) is an idempotent-generated completely simple
semigroup having ji ^-classes and a ^-classes. Further if S is an idempotent-
generated completely simple semigroup having ft ^-classes and a ^-classes
then S is a homomorphic image of T(cc,f5).
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PROOF. For(x,y)eXxY, let [x,y\ be the p-class of (x,y). Suppose [_x,y]
= [ x ' , / ] , and fix (xo,yo)eX x Y. Consider the mapping </>: X x Y->x0 x Y
defined by <j>(x,y) = (xo,y). This induces a homomorphism $> from T(a,y)
onto x0 x Y with right trivial multiplication. Since (xo,y) = <j>[x,y~\ = <f>\x', y'~\
= (xo>y') w e conclude that y = y'. Dually x = x'. Also note that [x, y] is idem-
potent. Thus T(a,/?) is idempotent-generated.

T(a,jS) is a union of groups: If z = ]Yi = ilxuyile T(<*>P)> then
ze[x1,yn]T(<x,P)[x1,yn]. Also one computes that

/B-2 \

\ l=O /

is an inverse for z in [x^yn]T(<x,p)[xi,yn]. Further zz' = z'z = [ x i , j j , so
Lxi> Jn] r(a,/?)[xlJ>'B] is a group. Note also that the idempotent of each group
(and thus every idempotent of T{a,f$)) is of the form [x , j ] .

T(tx,P) is simple: Let a,beT{a,P). Choose inverses a' and b' for a and b
respectively. Then aa' = [*,,}>] and W = [w,z] for some (x,y) and (w, x) in
X x F . Now

a = aa'a = [x,y}a = [x,z][w,z][x,^]a = [x ,z] i i ' [x1 j i ] f l6r(« l^r(« , f l ,

Hence T(a,^) is simple.
Thus we conclude that T(a,f}) is completely simple. Now fix an idempotent

£ = [xo>.yo] m T(oc,P). One computes that the idempotents in the same ^-class
with e are precisely those of the form [xo,y] , y e Y. Hence there are fi if-classes
A dual argument shows that there are a ^-classes.

To prove the last assertion of the theorem, fix an idempotent e in S and
consider the sets eSC\E and EeC\E. By assumption these have cardinality
p and a respectively. Let 1-1 onto mappings X U Se r\E and T -4 eS n E be given
and define a map X x Y *+ E by h(x,y) is the idempotent in g(x)S n Sf(y)
Then clearly h is 1-1 and onto. Further one verifies that the defining relations
for p are satisfied. Hence there is a unique homomorphism h: T(a, ft) ->• <£>
which extends h. This completes the proof of 3.5.

We remark that we have been unable in general to determine the nature
of the group of T{a,P). We conjecture that it is a free group on y generators,
where 7 is a function of (a, j8). For example, if a = p = 2, then the group of
T(a, P) can easily be shown to be the integers.
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