Canad. Math. Bull. Vol. 49 (3), 2006 pp. 347-357

Affine Completeness of Generalised
Dihedral Groups

Jurgen Ecker

Abstract. In this paper we study affine completeness of generalised dihedral groups. We give a for-
mula for the number of unary compatible functions on these groups, and we characterise for every
k € N the k-affine complete generalised dihedral groups. We find that the direct product of a 1-affine
complete group with itself need not be 1-affine complete. Finally, we give an example of a nonabelian
solvable affine complete group. For nilpotent groups we find a strong necessary condition for 2-affine
completeness.

1 Introduction

Let G = (G, -) be a finite group and let N be a normal subgroup of G. Forg € G
and S C G, let [g] and [S] denote the normal subgroups of G generated by g and S,
respectively. As in [9], let 7;(G) denote the i-th term of the lower central series of G.

Let k € N, and let ¢: G* — G be a k-ary function on G. We say ¢ is compatible
with N iff for all x = (x1,..., %),y = (y1,..., %) € GF such that xiyfl € N for
every 1 < i < k, we have p(x)p(y)~' € N. We call ¢ compatible iff it is compatible
with every normal subgroup of G. Equivalently [8, Lemma 3a], ¢ is compatible, if for
allx = (x1,...,%), ¥ = (P1,-.., %) € G5 px)p(y)~! € [{xlyl_l, .. ,xkyk_l}].
Let Comp, (G) denote the set of all k-ary compatible functions on the group G. Then
(Comp,(G), ) is a group, where - is the point-wise multiplication of functions. For
everyi € {1,...,k} and forevery g € G, the projection ;: G* — G, (xi,...,x;) —
xi, and the constant function §: GF = G, (x1,...,x1) — g are k-ary compatible
functions on G. Let Poli(G) be the subgroup of Comp,(G) generated by {m; | 1 <
i <k}U{g|g € G}. We call the elements of Poly(G) the k-ary polynomial functions
on G. For the definition of a k-ary polynomial function on an arbitrary algebra A we
refer to [5]. We call G k-affine complete if Poly(G) = Comp,(G), and affine complete
if G is k-affine complete for every k € N. By [8, Lemma 1], if G is k-affine complete
for some k € N, then G is I-affine complete for each | < k.

Let C, denote the cyclic group of order n. For a finite abelian group A, the gener-
alised dihedral group of A, Dih(A), is the semi-direct product of A with C,, where the
non-identity element of C, takes each a € A to a~!. We write all group operations as
multiplications.
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The objective of this paper is to determine the k-affine complete generalised dihe-
dral groups for every k € N. In Section 2 we treat the case of unary functions and
prove the following theorem.

Theorem 1.1  Let A be a finite abelian group. Then Dih(A) is 1-affine complete if and
only if A is 1-affine complete.

To this end, we first study unary compatible functions on a group that map all ele-
ments of the group into a certain normal subgroup (Proposition 2.4). In Section 4 we
study compatible and polynomial functions of higher arity and prove the following
result.

Theorem 1.2 Let A be a finite abelian group. Let P be a 2-group and let Q be a group
of odd order such that A = PQ. Then for G = Dih(A) the following conditions are
equivalent:

(1)  Gis affine complete.
(if) G is 2-affine complete.
(iii) (a) expP =2 and

(b) Qs affine complete.

To achieve this we generalise the results for unary functions in [2] and, in Proposi-
tion 4.1, give a strong necessary condition for a nilpotent group to be 2-affine com-
plete.

Theorems 1.1 and 1.2 reduce the problem of deciding affine completeness to the
case of a finite abelian group. For every k € N, the finite k-affine complete abelian
groups have been characterised in [6, 8]. For easier reference we gather some results
in the following lemma.

Lemma 1.3 ([6,8]) Let p be a prime and let
G = Cpos X Cpay X +++ X Cpar,

where oy > o > -+ > o, andr € N. Then G is 1-affine complete iff one of the
following conditions holds.

(i) r>lando; = ay,

(i) r>Lp=2,anday =a,+1,

(i) r=1,p=2ando; = 1.

Furthermore, G is not 2-affine complete in cases (ii) and (iii) and affine complete in
case (i). The direct product of two finite groups Gy and G, of coprime order is k-affine
complete iff Gy and G, are k-affine complete.

2 The 1-Affine Complete Generalised Dihedral Groups

We start with a few simple observations concerning the structure of generalised di-
hedral groups. For every abelian group A and every integer d > 0, the groups
Dih(A) x (C;)¢ and Dih(A x (C,)?) are isomorphic. Let d > 0 be such that A is
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the direct product of d cyclic groups of even order and some or no groups of odd
order. Then the derived subgroup of G = Dih(A) is 1,(G) = {a* | a € A} (by [9,
5.1.5.]), hence the abelian quotient is G/7,(G) = (C,)*!. Forallg € G\ A and
a € A, we have [g,a] = a?, thus [g] 2 12(G).

The following lemma gives the number of unary polynomial functions on gener-
alised dihedral groups.

Lemma 2.1 ([7]) Let A be a finite abelian group. Let d > 0 be such that A is a direct
product of d cyclic groups of even order and some or no groups of odd order. Then

4-|Poly(A)* ifd=0,
| Pol; (Dih(A))] = { 1 -
?~\P011(A)| ifd > 0.

Lemma 2.2  Let G be a finite group and k € N. Let N be a normal subgroup of G,
such that G/N is k-affine complete. Then the mapping

p: Compy(G) — Compy(G/N), ¢ = ",
where pN(gN) := ©(g)N, for every g € G, is a group epimorphism.
Proof Clearly, p is a group homomorphism
(Comp(G), -) — (Comp,(G/N), -).

We show that p is an epimorphism. To this end we fix an arbitrary ¢ € Comp,(G/N).
Since G/N is k-affine complete, ¢ is induced by a polynomial p over G/N. Lifting
the coefficients of p from G/N to G, we obtain a polynomial g on G. Let g be the
polynomial function on G induced by g. Then p(3) = g~ = ¢. Thus p is surjective.

Corollary 2.3  Let G be a finite group and k € N. Let N be a normal subgroup of G,
such that G/N is k-affine complete. Then

| Compy(G)| = | Polu(G/N)| - [{¢) € Comp,(G) | (G") € N}.
Proof Let p be the epimorphism constructed in Lemma 2.2. The kernel of p is
{1 € Comp,(G) | ¥(G*) C N}. The result follows from the isomorphism theorem.
|

Now we study the part {1) € Comp,(G) | ¥/(G*) C N} in Corollary 2.3 for k = 1.

Proposition 2.4  Let G be a finite group, and let T < A < G, such that

(i)  every normal subgroup of A is normal in G, and
(ii) foreveryl I Gwithl £ Awehavel > T.
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Let C be a transversal for the cosets of A in G. Define the mapping

U: {p € Comp, (4) | p(A) C THC! — { € Comp,(G) | ¢(G) C T}

(®c)eec = 2

where : G — G is defined by p(ac) := ¢.(a) (foralla € Aandc € C). Then ¥ is
bijective.

Proof Let (¢ ).cc be a family of unary compatible functions on A such that for
every ¢ € C, p(A) C T. Let ¢ := U((¢.)cec)- Clearly, ¢ maps G into T. We show
that ¢ is a compatible function on G. Let g, h € G.

If gh~! € A, then there exist unique a,b € A and ¢ € C, such that ¢ = ac and
h = be. Then ¢(g)p(h)™! = p(a)p.(b)~! € [ab™'] = [ac(bc)™!] = [gh™']. We
note that by condition (i), it makes no difference if we generate the normal subgroups
inAorinG. If gh™! & A, then by condition (ii), [gh~'] > T. Since ¢(G) C T, we
have p(g)p(h)~! € [gh™!]. Thus ¢ is compatible.

Clearly, ¥ is injective. It remains to show that W is surjective. Let ¢ be a com-
patible function on G which maps G into T. For each ¢ € C we define a function
@t A — T by p(a) := p(ac). Then U((¢.)c.cc) = ¢, and for every ¢ € C, p(A) C
T. It remains to show that each ¢, is compatible. To this end, we fix ¢ € C and
a,b € A, and we compute ¢ (a)p.(b) ™' = p(ac)p(bc)™" € [acbc)™!] = [ab™!].
Thus W is bijective. ]

Corollary 2.5 Let G = Dih(A), where A is a finite abelian group. Let S := {a* | a €
A}. Then

| {¢ € Comp,(G) | 9(G) € 1(G)}| = |{ € Comp,(A) | p(A) C S}|”.

Corollary 2.6  If A is the direct product of d > 0 cyclic groups of even order and some
or no cyclic groups of odd order, then

. __ Hd+2 M ?
| Comp, (Dih(A))| = 2 ( | Pol, (A/S)| ) ’
where S := {a* | a € A}.

Proof We know that S is normal in A. By Lemma 1.3, the quotient A/S 2 (C,)% is
1-affine complete. Let A := {¢ € Comp,(A) | p(A) C S}. By Corollary 2.3,

(1) | Comp, (4)] = | Pol,(4/S)| - |A].

Let G = Dih(A). Then H := G/7,(G) is elementary abelian of order 2%*!, so by
Lemma 1.3, it is 1-affine complete. Since H is abelian,

Poly(H)={p:H—H,x—h-x|h€ H, 0 <k < exp(H)}.
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By Lemma 2.2 and Corollary 2.5,
| Comp, (G)| = | Pol,(H)| - | {¢ € Comp, (G) | ¢(G) C 12(G)}|
_ 2d+2 . |.A|2
Using (1), we can substitute for |A| and obtain the desired result. [ |

We are now in the position to prove Theorem 1.1 by simply combining Lemma 2.1
and Corollary 2.6.

Proof of Theorem 1.1 Letd > 0be such that A is a direct product of d cyclic groups
of even order and some or no groups of odd order. Let S := {a® | a € A}. Ifd = 0,
then S = A and by Corollary 2.6,

| Comp, (Dih(A))| = 4 - | Comp, (A)[*.
If d > 0, then | Pol;(A/S)| = | Pol;((C;)?)| = 29*! and by Corollary 2.6,

| Comp, (4)] ) 2

1
dr1 7+ | Comp, (4)[*.

X
In both cases, Lemma 2.1 allows us to deduce | Pol; (Dih(A))| = | Comp, (Dih(A))| if
and only if | Pol; (A)| = | Comp, (A)|. [ |

| Comp, (Dih(A))| = 242 . (

3 Direct Products of 1-Affine Complete Groups

The direct product of a finite abelian group with itself is affine complete. In this
section we give an example of a 2-group D, such that D is 1-affine complete, but
D x D is not. We only need one more easy lemma, which describes the compatible
functions mapping into a minimal normal subgroup.

Lemma 3.1 Let G be a finite group and let A be a minimal normal subgroup of G. Let
A* be the sum of all normal subgroups of G having trivial intersection with A. Let o be
a function on G with p(G) C A. Then  is compatible if and only if it is constant on the
cosets of A*. As a consequence, | { € Comp,(G) | ¢(G) C A}| = |A|lG:A7],

Proof Let ¢ be a compatible function with ¢(G) C A. Let us consider a nor-
mal subgroup N of G, with AN N = {1}. For g,h € Gand gh~' € N, we have
o(@ph)™ € NN A = {1}, forcing ©(g) = w(h). So ¢ is constant on the cosets
of every N 4 G with NN A = {1}. Let N; and N, be two such normal subgroups.
Consider S := N|N,. If gh™! € S, then there exist n; € Ny and n, € N, such that
g = mmnyh. Hence p(h) = @p(nyh) = p(ninyh) = ¢(g). Thus ¢ is constant on the
cosets of A*. Conversely, let ¢ be a function mapping G into A and let ¢ be constant
on the cosets of A*. Then ¢ is compatible on G: let I < G. If I > A, then ¢ is
compatible with I, because ¢(G) C A C I. If I 2 A, thenINA = {1}, whence
I < A*. So, ¢ is compatible with I, because ¢ is constant on the cosets of I. Finally,
there are precisely |A|(“*4") functions mapping G into A, which are constant on the
cosets of A*. ]
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Example 3.2 The group D = C, x Dih(C4) = Dih(C, x Cy4) is 1-affine complete,
by Theorem 1.1 and Lemma 1.3. We show that the group G = D x D is not 1-affine
complete. The group A := {1} X 7,(D) is a minimal normal subgroup of G, and
the quotient G/A is isomorphic to D x (C,)* = Dih((C,)* x C,), which is 1-affine
complete by Theorem 1.1 and Lemma 1.3. Every normal subgroup not containing
A is contained in D x (C; x7,(Dih(Cy))), which is a normal subgroup of index 4
in G. Hence the sum of all normal subgroups not containing A has at least index 4
in G. By Lemmas 2.1, 2.2, and 3.1, | Comp, (G)| > |Pol;(Dih((C,)* x Cy))| - 2* =
273 | Pol; ((Cy)* x Cy)[* - 2* = 2. Since G is nilpotent of class 2 and exp G = 4, the
number of polynomial functions can be computed with the help of [3, Thm. 1 and
Prop. 1]. We get | Pol;(G)| = |G| - A(G) - [G: Z(G)] = 28 - 22 - 2* = 2. Thus G is
not 1-affine complete.

4 The Affine Complete Generalised Dihedral Groups

In this last section we are going to prove Theorem 1.2. The following proposition
gives a strong necessary condition for a nilpotent group to be 2-affine complete. It is
inspired by [1, Lemma 2.3], but is not a consequence of this result. Furthermore, we
explicitly construct a 2-ary compatible function which is not polynomial.

Proposition 4.1  Let G be a nilpotent group. Suppose that there exist normal sub-
groups S and T of G such that

(i) foreveryl 4 G, either] < Sorl > T,

(i) T £ (G)

(iii) S<G.

Lett € T\ v3(G). Then the 2-ary function ¢ on G defined by

t ifxgSandy &S,
1 otherwise

olx,y) = {

is a compatible but not a polynomial function on G. Thus G is not 2-affine complete.

Proof The function ¢ is compatible (cf. [1, Lemma 2.2]). Suppose that ¢ is poly-
nomial. Employing Hall’s collection process described in [4, Chap. 5], we find unary
polynomial functions p; and p, on G, an integer k, and a 2-ary polynomial function
pon G, suchthat forallx, y € G, ¢p(x, y) = p1(x) - p2(y) - [x, y]k -p(x, y), plx, y) €
v3(G), and p(x,1) = p(1,y) = 1. Since, by definition, ¢(x,1) = ¢(1, y) = 1 for
all x,y € G, both p; and p, must map G to {1}. Now let g € G\ S. Then
t = ¢(g,g) = [g,g]k - plg,g) = p(g,2) € 13(G), a contradiction. Thus ¢ is not
polynomial. ]

In the case where the 2-Sylow subgroup of a generalised dihedral group is (ele-
mentary) abelian, we can obtain positive results. The following lemma generalises
[2, Lemma 2.2 and Cor. 2.3]. In the proof we make use of [2, Lemma 2.1] which we
state here, because it will be used in the proof of Lemma 4.4.
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Notation 4.2 Let Gbe a group and X,Y < G. Then we write X < Y if and only if
X<Y and IZ<G:X<Z<Y.

Lemma 4.3 ([2, Lemma 2.1])  Let G be a finite group, which is a semi-direct product
G = AB (A normal). Let Z := BN Cg(A). Assume that the following conditions are
satisfied:

e Foreachb € B\ Z, the mapping py: A — A, a — b~ 'ab is fixed point free.
e ForallX,Y < BwithX <Y < Z, we have Cp(Y /X) > Z.

Then the function e: G — G defined by

a ifbeZ,

foralla € A, b € B: e(ab) = )
1 otherwise,

is a polynomial function on G.
Lemma 4.4  Let G be a group satisfying the assumptions of Lemma 4.3. Let k € N and
Z :=BNCg(A). Letn:= [B: Z] andletry,...,r, be a transversal for the cosets of Z

in B. Then the following holds.
(i) The mapping V¥ defined by

nk
U: {p € Pol(G) | p(G*) C A} — {plar | p € Polk(G), p(G") C A}
P (Pi)jeft,mpts
where for j = (ji,..., jx) € {1,...,n}%, p;is defined by
pilar,...,a) == plairj,, ..., arj),

is bijective.
(i) Let f be a k-ary function on G such that f(G*) C A. Then f is polynomial if and

onlyifforevery j = (j1,. .., jx) € {1,...,n}* there exists a k-ary polynomial function
pjon Gsuchthat foralla,...,ay € Aandz,...,z € Z, flayrjz1,. .., &1 2z) =
pilai, ..., a).

Proof (i) Let p € Poli(G) such that p(G*) C A. Then each pj defined as above
maps AX into A.

We prove that ¥ is injective. Let p and g be two k-ary polynomial functions,
such that p(Gk) C A, q(Gk) C A and ¥(p) = ¥(gq). Wefixay,...,ar € Aand
bi,....bx € B. Leth = (hy,...,lx) € {1,...,n}* be such that for every i €
{1,...,k}, rhilbi € Z. Then p(arby,...,aby) = p(alrhlrhjlbl, . 7akrhkrh:Ibk) =
plartn,, ... axrn) = pu(ay, ..., ax), since p(G*) C Aand AN Z = {1}. In the same
way we obtain q(a1 by, ..., akbx) = qu(ay, . .., ax). Since U(p) = ¥(q), py and g, are
equal, thus p = q.
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It remains to show that W is surjective. In light of the given hypotheses, Lemma 4.3
ensures that there exists a unary polynomial function e on G such that foralla € A

and forall b € B,
ifb e Z,
e(ab) = a 1be .
1 otherwise.

For x € G we define B(x) := (], e(xr; ")) ~'. x. First, we show that for alla € A
and b € B, we have 3(ab) = b. Leta € A, b € B, and let x = ab. Then

if iz,
(%) e(xrfl) = e(abrfl) = {a ifb e r,.
1 otherwise.
SoB(x) =a~lab=b.
Fori € {1,...,n},a € A,and x € G we define ¢;(a, x) := e(aﬁ(x)rfl). Then for
alli € {1,...,n},a € Aand x € G, we have

if iZ
(0 ex(a,2) = el ") = {“ 1A € iz
1 otherwise.
For every j = (ji,..., jk) € {1,...,n}* we fix a k-ary polynomial function p;

from {p| | p € Polk(G), p(G¥) C A}. For 1 < i < k we define

sjoCer, -y x) = pile(ar ), ..., elar; ),

sji(or, oy x0) 1= e (sjim1 (e, - o5 X0, %),

qi(xi, .o xi) = s, o, X))
Let us fix an arbitrary k-tuple j = (j1,..., jx) € {1,...,n}% ai,...,ax € A, and
bi,...,bx € B,and let x; = a;b;, for every i with 1 < i < k. Now we are going to
show that g;(x;,...,x) = pj(ar,...,a), ifforeveryi € {1,... k}, b; € rj,Z, and
q;j(x1,...,x) = 1 otherwise. First, we observe that if for every i € {1,...,n}, b; €
r;,Z, then by (%), sjo(x1,...,x) = pj(ar,...,ar). Nowwe fixaniwith 1 <i <k
By our definition, s;;(x1, ..., x) = ej;(sji—1(x1, ..., %), xi). By (%), this is equal to
sji—1(x1, ..., x), if B(x;) € rj,Z, and equal to 1 otherwise.

We claim that a preimage of (p;)jcqy,... oy under W is

eeny

q(x1, ..., %) 1= H qi(x1, ..o, xp).

je{l,.n}*

J=0nseensji)
Clearly, q is a k-ary polynomial function on G. For fixed x1, ..., x; € G at most one
factor g;(xi, ..., x) is not equal to 1, whence the order of multiplication of the g;

is not relevant. Thus we have constructed a polynomial function g on G such that
Y(gq) = (Pj)je{l,...,n}k-
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(ii) Let f be a k-ary polynomial function on G such that f(G*) C A. Let j =
(jis-- -+ j) € {1,...,n}*. We define a function p; € Polg(G) by pi(gi,..., &) =
f(girj,s ..., &rj). Then for arbitrary a;,...,ax € Aand z, ...,z € Z,

pilay,...,ax) = flairj, ..., axrj) = flarrjzi,. .. a4t z),

sinceANZ = {1}.

Conversely, let f be a k-ary function on G and let (p;)jeqy......p« be a family of
polynomial functions on G, such that for every j = (ji,...,jx) € {1,...,n}*, for
allay,...,ax € Aandforallz,...,z € Z, f(arrjz1, ..., &rjz) = pi(ar, ..., ap).
Then each p; is an element of the set {p[4 | p € Poly(G), p(G*) C A}. Thus by (i),
there exists a k-ary polynomial function q on G, such that g(G*) C A and for all

je{l,....n}5a;,....ap € A,and zy,. ..,z € Z, we have
pilay, ..., a1) = qlairj, ..., axrj,) = qlarrj 21, . . ., AT 2k).
Thus f = g, so f is a polynomial function on G. ]

Proposition 4.5  Let G be a finite group, which is a semi-direct product G = AB, and
letk € N. Let Z := BN Cg(A). Assume that the following conditions are satisfied:

e Foreachb € B\ Z, there exists an e, € 7, such that the mapping pp: A — A,
a — b~ 'ab is fixed point free and py(a) = a®.

e ForallX,Y A BwithX <Y < Z, we have C3(Y /X) > Z.

* A and B are k-affine complete.

Then G is k-affine complete.

Proof Let c be a k-ary compatible function on G. Then the function ¢*: (G/A)F —
G/A, (@A, ..., 5A) — c(g1,...,&)A, is a compatible function on G/A. Since
G/A = Band B is k-affine complete, there exists a k-ary polynomial function g
on G/A, such that ¢* = q,. Lifting the coefficients of g; from G/A to G, we ob-
tain a polynomial function g, on G such that & = q;. Now define a k-ary function
con Gbyc(g,...,q) = cg,---,8)q(g1,...,8)) "L Also, ¢; is a compati-
ble function on G. We show that ¢ is a polynomial function on G. First note that
c1(G) C A, since g} = ¢*. Letn := [B: Z] and let rq,...,r, be a transversal for
the cosets of Z in B. We fix an arbitrary j = (ji,..., jx) € {1,...,n}* and define
the k-ary function ¢; on Gby ¢;(g1, ..., &) = a(gi7j,, - - ., &j,)- Then 6(GH C A,
and ¢, is a compatible function on G. Since every normal subgroup of A is nor-
mal in G by our assumptions, ¢ |4 is a k-ary compatible function on A. Since A
is k-affine complete, there exists a k-ary polynomial function p; on G such that
pjlax = co|ax. Wefixay,...,ar € Aand zy, ...,z € Z. Since Z is normal in G, there
exist z{,...,z € Z such that ¢\(ayrj z1,...,arjz) = claz{ry,...,;zlrj) =
o(aiz], ..., az]). Since (GF) CAandANZ = {1},

olmz],...,az) = clay,...,a) = pilar,. .., a).

By Lemma 4.4(ii), ¢; is a polynomial function on G. By our definition, c(g, . . ., gk) =
ci(gry---,8)9(g1,-..,8) forall g1, ...,g € G, hence c is a polynomial function
on G. |
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For the proof of Theorem 1.2, we need one more lemma, which, in particular,
tells us that for any k € N, the 2-Sylow subgroup of a k-affine complete generalised
dihedral group is k-affine complete.

Lemma 4.6 Let A = PQ be the direct product of the groups P and Q, and let G be a
semi-direct product of A with the group C, such that both P and Q are normal in G. Let
k € Nand S := PC. Assume that forall s € S and q € Q, we have s € [sq]. If S is not
k-affine complete, then G is not k-affine complete.

Proof Let ¢ be a k-ary compatible function on S, which is not polynomial. We
extend ¢ to a k-ary compatible function on G, which is not polynomial on G. To this
end we definee: G — G, pqc — pc. We show that e is a unary compatible function
onG. Let p;,ps € P, q1,q2 € Qand ¢, ¢; € C. Then s := e(p1qic1)e(pagacy) ™! =
plclcjlpzl € S. Since [P,Q] = {1}, we have p1qici(prqac2) ™! = qlsqgl. There
exists ¢’ € Q, such that q;sq,' = sq’. Since by our assumptions, s € [sq’], we
obtain e(pqic1)e(p2g262) ™" € [p1gici(p2gac2) ], thus e is compatible. Now define
(g1, .-, q) = Ple(gr), - .., e(g)). Then ) is a k-ary compatible function on G and
¥(G*) C S. Suppose that ) is a polynomial function on G. Then there exist r € N
and qo € Q, sp € S, and for every i with 1 < i < rand every j with 1 < j < k there
existg; j € Q,s;,; € S,and ¢; ; € Zsuch that forallxy,...,x € G,

r k
(X1, ...y XK) = qoSo (H Hx?’jqi,jsi»j) :

i=1 j=1

Now we prove that for all (1, ..., #) € S5, we have

ety tk) = SO(ﬁﬁt?’jsi’j) )

i=1 j=1

To this end we fix a k-tuple (¢1,...,t) € Sk. The subgroup Q is normal in G. So
forallg € Gand q € Q there exists an element g’ € Q such that gg = g’¢. So we
can find a g € Q, such that gosp ( [T, ]_[];-:1 t?dq;}jsiﬁj) =q-% ( [T, Hl;zl t?']Si,j) .
Since ¥(ty,...,t) € Sand QN S = {1}, we must have g = 1.

So, |4 is induced by a polynomial over S. But ¢)|g« = ¢, and ¢ is not a polynomial
function on S, a contradiction. |

It remains to arrange the results obtained in this section.

Proof of Theorem 1.2 Remember that Dih(A) is the semi-direct product of A with
a group C of order 2.

(i) = (ii): by definition.

(ii) = (iii)(b): if Q is not affine complete, then A is not 1-affine complete by
Lemma 1.3, and by Theorem 1.1, Dih(A) is not 1-affine complete. Hence Dih(A) is
not 2-affine complete.
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(ii) = (iii)(a): if |A| = 1, then |G| = 2, hence G is not 2-affine complete. Next,
we consider the case A = P. If expA > 2, then G is a non-abelian nilpotent group.
For every normal subgroup N of G we either have N < A or N > +(G). So by
Proposition 4.1, G is not 2-affine complete. It remains to check the case P < A. If
exp(P) # 2, then by Lemma 1.3 and Lemma 4.6, G is not 2-affine complete.

(iii) = (i): If A = P, then Gis an elementary abelian 2-group, which by Lemma 1.3
is affine complete. It remains to check the case P < A. Then PC is a subgroup of G
isomorphic to the elementary abelian group Dih(P) and G is a semi-direct product
of Q with PC. Since G satisfies the conditions of Proposition 4.5 for every k € N, G
is affine complete. ]

Example 4.7 The group Dih(C, x(Cs)?) is affine complete and solvable, but not
nilpotent.
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