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A COUNTEREXAMPLE IN THE PERTURBATION
THEORY OF C*-ALGEBRAS

BY
B. E. JOHNSON

ABSTRACT. The strongest positive results in the stability theory
of C*-algebras assert that if %, B are sufficiently close C*-subalgeb-
ras of X(H) of certain kinds, then there is a unitary operator U on H
near I, such that UBU=%U. We give examples of C*-algebras
9, B, both isomorphic to the algebra of continuous functions from
[0, 1] to the algebra of compact operators on Hilbert space, which
can be as close as we like, yet for which there is no isomorphism
a:B—>A with ||b—ab||=1/70|b||(beB). Thus the results men-
tioned do not extend to these C*-algebras.

We shall describe, for each ¢’ >0, two C*-subalgebras A and B of £(K), the

algebra of bounded operators on a Hilbert space K whose Hausdorff distance
d®,B) = max(sup inf |la—b)|, sup inf |la— b||>
. ae, beB, beB, ae,

satisfies d(%,B)<e' yet for which there is no isomorphism «:8— U with
lb—a®)|=<1/70|b||(beB). (A,,B; denote the unit balls of the respective
algebras.) The algebras U and B are both isomorphic to the algebra of
continuous functions from [0, 1] into £%(L), the algebra of compact operators
on the Hilbert space L. In fact we show that B has a subalgebra € isomorphic
with £€6(L) so that GC‘)I in the notation of [2; Definition 2.1] yet there is no
homomorphism B:€ — A with |lc —B(c)|=1/70 ||| (c e €). Replacing 707" by
1000~" we get the same result for a subalgebra €, of € isomorphic with ¢,.
Phillips and Raeburn have shown ([7] Theorem 4.22) that there are s,t>0
such that if % is a unital continuous trace C*-algebra and d(2, B) <e <s then
there is a isomorphism « :8— A with ||b—a(b)||<te"*|b|| (b €B). Thus our
example shows that their theorem cannot be extended to non-unital continuous
trace C*-algebras. Christensen [2; Corollary 6.3] has shown that if € is a finite
dimensional abelian C*-algebra and € 9 then there is a * homomorphism
a:€— A with ||c —a(c)]|<22&"?||c|| (c €€). Thus our example also shows that
this result does not extend to the case of an AF algebra €.

We denote the set of strictly positive integers by Z*, L = €*(Z*) and &, &,, . . .
is the standard basis of L. E, is the orthogonal projection onto the span of
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&,...,&. Any Ae Z(L)is given by a matrix A; =(A¢, &). If d={d;, d, .. .}is
a strictly increasing sequence from Z* and A € £(L) we define A, by
(Ag);; =0 if for some k
di1<i=d, and di,<j=d,
=A; otherwise

where d_; =d,=0. If we partition the basis into blocks of length d; —d,_; and
make a corresponding partition of the matrix for A then A, is obtained from
A by replacing the blocks on the main diagonal and the two adjacent diagonals
by zero. Since the diagonal maps

A Z (Ex —E-1)A(Ei 1 —Epyi-1)
k

have norm 1(leZ and we put E, =0 if m=0) we see A, ¥(L) and

lAdll=4 Al
LemMa 1. For each € >0 and each d,<d,<--- there exists a self-adjoint
element A of L(L) with
lAl=1
llAdH =1

|AE,—E,All<e nez".

Proof. Let «, (n€Z) be the Fourier coefficients of the function f(e*)=
i0/m(—m<0=m) in L™(T). Then a, =(—1)"*'/nmw(n#0) and ay=0. However
Y. ay,e™ is the Fourier series of the L? function 27" log |1+ ™| which is not
in L=(T). Thus [4; p. 135] the matrix [a;_;] represents an operator on ¢*(Z) of
norm 1 but [a);_;] does not represent a bounded operator. Thus taking only
i,j>0,[a;_;] is an operator on L of norm 1 [4; p. 139] whereas [a;; ;] is not
because, writing €*(Z) = L@ L* divides [«;;_;] into four blocks of which the off
diagonal blocks are the same as the corresponding blocks in +[a; ;] and so
represent a bounded operator whereas the two blocks on the main diagonal are
in fact the same and so must both represent unbounded operators.

By taking m sufficiently large the matrix C=E, [«a;_;]E, represents an
element of #(L) of norm >¢~'. Define S,, T, : £(L)— £(L) by

(S4B);; = By, a,,
(T4B);; = By if i=dy,|j=dy
=0 if (i, j) is not of the form
(dar, d2y)-
T, is an isometry, S, is a contraction and S,T, =identity. Put A =||C|| ' T,C.
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Then A=A*=A, and |A||=1. Also if doy =n<dy .,
|AE, - E, Al =|S4(AE, - E,A)|
=|(S4A)E, — E((S,A)
=l ICE. - ECl|
=|ICII™* max((I - E) CE.|l, |[E.C(I— E,))
=[CI™* max((I - EQEnla; JE Ecl, |EEnle; - ]E,.(I- E)|
=||C|'<e.
We denote the set of self adjoint operators in £(L) by £L(L),, .

LemMA 2. For each € >0 there is a function A :[0, 1]— £(L), ., and functions
A, :[0,1]> %(L),, neZ" such that

L JA.(0)~AX)|=e (nez")

2. J[A)lI=1 (xe[0,1])

3. A is continuous in the weak operator topology and x — A, (x)&§i=1,...,n
are norm continuous.

4. There is no function A,.:[0, 11— £(L), continuous in the strong * operator
topology, for which

[A(x)—AM)|=3 (x€[0,1]).

The strong * operator topology is that determined by the semi norms

Bl IB*£], £ L.

Proof. Consider the set

A, ={A; Ae L(L),., |Al=1,|AE, ~E,Al<e (neZ")}

ES

with the weak operator topology. &, is a weak operator closed bounded
convex subset of #(L) and so is compact. It is also metrisable and so if
X c[0,1] is the Cantor set there is a continuous surjection Aq: X — &,
[6,p.166]. We extend A, to a continuous surjection A :[0, 1]— &, by linear
interpolation on each interval of [0, 1]\ X whose endpoints are in X. For each n
put A,(x)=E,A(x)E,+(I—-E,)A(x)(I—-E,). We have

A, (x)— A(x)|=|-E,A(x)(I-E,)— (I~ E,)A(x)E,|
=max(|E, A (x)(I-E)|, |(I - E,)A(x)E,|)
=|A()E, - EA(x)|=e,

giving 1. 2 is obvious and A is weak operator continuous so x+— A,(x)§
(i=n) is weakly continuous. As its range is in the finite dimensional space E, L,
on which the weak and norm topologies coincide, it is norm continuous.

Suppose a function A., as in 4 existed. For each i the sets {A.(x)&; x [0, 1]}
and {A.(x)*¢; x€[0, 1]} are norm compact. Thus we can define inductively a

https://doi.org/10.4153/CMB-1982-043-4 Published online by Cambridge University Press


file:////C/r
https://doi.org/10.4153/CMB-1982-043-4

314 B. E. JOHNSON [September
sequence 0<d,;<d,<ds - - - of integers such that for each i,
|E4An(x)I-E, )||<(527**)7" and |(I-E,, )A.(x)E,[<(5.2"")".
We then have
Au(x)a =2 (Ey—E4 )AL~ Ey. )+ X (I- By )A(x)(Ey —Ey.)

so that [|A.(x).|<:. As the map A+~ A, has norm =4 we see
lAL(x)y — A(x)all=% so ||A(x)4]| < 1. However by Lemma 1 there are values of
x with ||JA(x),||=1.

We denote the C*-algebra of bounded functions [0, 1]— £(L) by ®© and the
subalgebra of norm continuous functions with values in £€(H) by . Given
e>0let AeD as in Lemma 2 and put U =exp imA/8 and a« =ad U (that is
a(B)=U*BU) and a(x)=ad U(x). We denote the map C— CB-BC by B.
For ce £€(L) let j(c)eA be the constant function with value ¢, that is
jlo)Xx)=c, 0=x=1.

THEOREM 3. Let €'>0. For ¢ <min{3, 3¢’ exp—3m/4} we have d(, a) <&’
and hence € =aj(£4(L)) . There is no homomorphism B:€—A with
llc —BN=7slicll (c € €).

Proof. Let D =8A, ae. Then |D||=2 and E,a(x)E, — a(x) uniformly for
0=x=1 so for some value of n,||E,a(x)E,—a(x)|=¢|all(x<[0,1]). Then
|Da —(8A,)(E,aE,)|=||D(a — E,aE,)|+[|(D —8A,)(E,aE,)|<4¢ |la].  How-
ever, (8A,)(E.aE,)(x)=E,a(x)E,A,(x)—A,(x)E,a(x)E, € because E,A,
and A,E, €. Thus for each a €Y there is b € with ||b — Dal|=4e¢ ||a||. Using
this we can show by induction that for each n there is b, € ¥ with ||b, — D"a||=
6"¢lall and hence dist(a(a),A)=e|allexp3n/4=3¢'|lall.  Similarly
dist(a '(a), A) =dist(a, a(NA))=ie’'||lall and so dQ, a(A))=¢".

If B is as stated then @ and Ba are homomorphisms j(F€(L)) — D with
la —Ba | j(£(L)|<=70"". For each xe[0, 1], y(x)(c)=Baj(c)x defines a
homomorphism  y(x); E(L)—> £L6(L) with |a(x)—vy(x)||=70"'. As
llo —idD||=2 sin #/8 < this implies |y(x)—idL%€|| <% so y(x) is an isomorph-
ism. As x +— y(x)(c) = Baj(c)(x) defines an element of YA the map x > y(x) is
continuous with respect to the point-norm topology (that is the topology
defined by the semi-norms A — |[A(C)||, Ce L€(L)). Let w(x)=1log y(x) (using
the principal value). Then w(x) is a derivation on £6(L) [3;p.313]. If p is a
polynomial in one variable then A+~ p(A); L(L€(L)) — L(LE(L)) is point-
norm continuous on bounded sets and so x> w(x) is point-norm continuous. We
have log a(x)=8(x) where 8(x)(a)=im(aA(x)— A(x)a)/8. Also [|8(x)— u(x)||
=|log a(x) = log y(x)| = Xuzo n Y| (a(x) — id £€)" ~ (y(x) — id LE)"|| =
Y=o @ Hla(x) = y(x)|| =596 < m/40. For each x €[0, 1] define B(x)e £(L) by
B(x)c& =(8(x)— w(x))(ce)é(ce £€(L)). Then as in [5; Theorem 3.1],
(8(x)— w(x))c = cB(x)— B(x)c, |B(x)||= #/40 and (B(x)&,, £&,)=0. Put A.(x)=
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A(x)—8B(x)/mi. Then |AL(x)— AX)|=% and pn(x)a =im(aA(x)— A.(x)a)/8.
For m, e L let n®{ be the rank one operator £+ (¢ {)n and put e; = &R &,
We have

e (x)(e;) = imé @ (AL(X)E — (Au(x)i) &)
Bu(x)(ey)e; = im(Au(x)ué — Au(x)6)® &
Beup(x)(e;)e; = im(AnL(x); — Au(x)i)e;
A(x)11= Ac(X)1;

Since the left of the first three equations is a norm continuous function of x
and A(x),; is continuous we see that all the A.(x); are continuous and
x+—> A.(x) is strong * continuous. This contradicts the properties of A in
Lemma 2.

By identifying a diagonal matrix with its diagonal sequence we can consider
coS LE(L).

CoROLLARY 4. Let Cy=aj(c,) and &'<(10007'). Then there is no *
homomorphism Bq: €y — A with ||c — Bo(c)||= 10007 ||c|| (c € Cy).

Proof. We shall use the method of [2; Theorem 6.4] to extend B, to €.
Consider & as an algebra of operators on the Hilbert space K = ¢7[0, 1]. Then
there is a unitary operator W on K with ||[I— W|[<9997" [1; Theorem 5.4] and
Bo(c)= W¥cW (c€G,). Put €, = W*EW. Then €, S where &”=3(999)"
and Bo(€y) =€, NA. Put p; = W*aj(E;)W. For each neZ"’ let f,e with
Ip1n —fl=3327" and put f, = py1fuPun 30 |P1, — | <3327". Thus |If,.f} - pul=
Ifalllp1n = full +lIp1n = £ <1657" and so (f,f¥)~"? exists in the algebra p,;2p;,
and we have |p,—(f.fH " <(1-1651""2-1<328"' so that g,=
(f.f57'2f, has |g.—f.|=328""(1+33271)<327'. Also g,ep;Ap,.. and
g.2¥=p,, so g¥g, is a projection in p.,UAp.. with |g¥g, —p.ll<
lgulllgn —pinll+lign = P1all<4.3277" and so gig, =pu. Put V=3, p..g., the
series converging because for each n the nth term is a unitary operator on
PnK. As Y, j(e.,) converges weakly to I on K we see Y. p,, converges weakly
to I and so V is unitary and |[[I— V| =sup, |pu — P18l =sup, 1. — gl <
2.327°'. Now put B(c)=V*W*WV (ce€). Then Balj(e;))=V*p;,V=
g¥p11g €4, so that

B
and
le—B)=2[1- WV |cl|=2([T- W[+[II- V) [c[=707" |lc]| (c € €).

Although K is not separable the subalgebra of © generated by ¥ and a¥ is
and so could be represented on a separable Hilbert space. The algebras 2 and
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() do not have units but we could adjoin the identity on K to ¥, a(¥) and €
and the identity on L to £%(L) and the proofs would apply. The algebra
obtained by adjoining a unit to ¥ is postliminal but does not have continuous
trace.
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