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ON THE v FUNCTION OF BROWN AND PEARCY 
AND THE NUMERICAL FUNCTION OF AN OPERATOR 

NORBERTO SALINAS 

1. Introduction. Throughout this paper § will denote an infinite dimen­
sional, separable complex Hilbert space, and © will denote the unit sphere of 
§ (i.e. © = {x 6 § : ||x|| = 1}). Also 8(§) will represent the algebra of all 
bounded linear operators on § , and $ will represent the ideal of all compact 
operators on § . Furthermore $ will denote the set of all (orthogonal) pro­
jections on § and tyf will denote the sublattice of $ consisting of all finite 
rank projections. In most of the cases (especially when limits are involved) 
tyf will be regarded as a directed set with the usual order relation inherited 
from $ . 

Brown and Pearcy in [1] define the non-negative function rj on ? (§ ) by 

(1.1) 7](T) = inf sup | |7#— (Tx,x)x| | . 

They showed [1, Theorem 1] that rj(T) = 0 if and only if T can be written 
as T = X + K where K £ $ and X Ç C (as usual, C denotes the complex 
field). Following the notation of [3], we denote by (T) the set 

(T) = {K + \:K £ $ , X € C}, 

and we denote the complement of (T) in ? ( § ) by (F) [1]. Our first task in 
this paper (§ 2) is to study some of the properties enjoyed by the function rj. 
In particular we prove (§2, Theorem 3) that rj(T) = rj(T*) for every 
T G 8Op), which was conjectured by Brown and Pearcy. In § 3 we define the 
essential numerical range We(T) of an operator T, and we show (Lemma 3.3) 
that our definition is equivalent to the one given by Stampfli and Williams in 
[5]. Also we prove that the diameter de(T) of We{T) is zero if and only if 
T 6 (T) (Theorem 4), which constitutes another characterization of the 
class ( r ) . Finally, in § 4, we introduce the numerical function, $T , of the opera­
tor T. This function is defined by the formula 

<£r(x) = (Tx, x)/| |x| |2 , 0 F̂  x G $ . 

The function <j>T seems to have an important relation with the operator T; 
for example, the range of <j>T is the numerical range W(T) of T. 
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566 NORBERTO SALINAS 

Furthermore, let w(l) (T) (the differential numerical radius of T) be defined 
by 

w{l\T) = sup||Z>MOI|, 

where D<j>T(z) denotes the differential of the function $? at z. Also, set 

we
{l\T) = inf w(1)([l - P]T[1 - P]). 

p&f 

Using some standard techniques provided by the differential calculus on 
Banach spaces [2, Chapter VIII] we prove in Theorem 6 that 

(l/2)de(T) £weW(T) ^2V(T). 

This inequality (in conjunction with Theorem 4) produces an alternative 
proof of the above mentioned theorem of Brown and Pearcy [1, Theorem 1] 
and gives a sharper estimate for the diameter of the essential numerical range 
of T, than that given by [1, Lemma 2.2]. 

In the last part of Section 4 we make some remarks concerning the higher 
order differentials of the numerical function <j>T. 

2. Properties of the r\ function. We begin with some preliminary notation 
and remarks. Since the function Tz — (Tz, z)z plays an important role in the 
definition (1.1) of the function rj, in what follows wre adopt the notation 

ET(z) = Tz — (Tz, z)z. 

The following are some of the properties enjoyed by the function ET(z), for 
any z G ©. 

(i) ET^{z) = ET(z), X € C, 
(ii) ET(z) = 0 if and only if z is an eigenvector of T, 

(iii) \\ET{z)\\ tk \\Tz\\. 
Given any bounded function F : © —» § and any Q £ $ , we will write 

\\F\\Q = supx€©n «$l 1̂ 0*011» a n d simply \\F\\ if Q = l.1 Then formula (1.1) 
takes the form 

77(70 = inf | | £ r | | Q = lim | | £ r |U . 

Let 7T : 8 (§ ) —» 8 0 p ) / $ be the canonical projection onto the (Calkin) quotient 
algebra, and recall that 

lk(D||= inf lir + xn. 

The following lemma gives another characterization of | |7r(r)| | , which will 
be used without explicit mention. 

xThe notation | | . | | is usually reserved for the norm of a bounded linear transformation. 
However, since we are working with non-linear functions, like the function ET, we extend 
such a notation to any bounded function on © as indicated. 
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LEMMA 2.1. If T G 8 (£ ) , then 

(2.1) l k ( r ) | | = inf | | ( l - P ) r ( l - P ) | | 

Proof. Let 

It is clear that 

= Km ll^lld-p). 
P € $ / 

, (P) = lim | | ; T | | ( 1 - P ) = inf | | P ( 1 - P ) | 
P € $ / P € $ / 

r(P) | | ^ inf | | ( 1 - P ) P ( 1 - P ) | | £v(T); 

thus it remains to prove that v(T) ^ ||7r(P)||. For any K Ç $ , there exists 
an increasing sequence Pw 6 ^3/such that limw_>oo||.K(l — Pn)\\ = 0. Therefore 

v(K) = lim ||X(1 - P ) | | ^ lim | |Z(1 - Pn)\\ = 0. 

Since ^ is a seminorm on £ (§ ) , we observe that v(T + X) = *>(P), for every 
K £ « . Thus ?(P) ^ | |P + X||, X G « and hence *( r ) g | k (P ) | | . 

Now, we list some elementary properties of the function 77, 
(i) 77 is a seminorm on 8 (§ ) , 

(ii) iKr + x) = 7 7 ( P ) , X G C , 

(hi) „(r) ^ |k(r)||, 
and hence 

(2.2) T?(X + K) = 0 for all X G C, X 6 « , 

(2.3) 77 (P + X) = 17 (P) for all K G « . 

We remark that nothing like a power inequality is true for the function 77. 
For example, if 77 (P2) ^ Crj2(T) were valid for some constant C > 0, and 
every P G ?0p), then for every X 6 C, we would have that 77 (P2 + 2XP) = 
vl(T + X)2] ^ G72(P + X) = CT72(P), which is false if we take any P £ 8 (£ ) 
with 77 (P) > 0 and X sufficiently large (the same reasoning applies to higher 
powers). The following result is a geometric lemma, which we will need in the 
sequel. 

LEMMA 2.2. Let W be a (closed) subspace of § . Then 
(a) if U is a unitary operator, U($l)x = [/(S)?-1-), 
(b) if H is a self-adjoint invertible operator, then H($R)± = -H"~"1(SDÎ-L), 
(c) if S G 8 (§ ) w invertible and S = Z77P w its polar decomposition, then 

5(9W)x = [/(if-* (2ftx)). 

THEOREM 1. 7/ P £ 8 (§ ) « invertible, then 

(2.4) ^ ( r ) / | k ( P ) | | 2 ^ 77(P^)||7r(P-i)||2r7(P). 
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Proof. If x 6 © and y = Ja:/||7a;||, we have 

||£r(*)||* = | |rx| |2- |(r*,*)|* 
(2.5) = ||r*||«(i/||r*||» - |(7*f *)|VI|7*||*) 

= \\Tx\\*(\\T-iy\\>-\(T-iy,y)\>). 

On the other hand, given Q G ty with (1 — Q) G $/ , by hypothesis we see that 
x G © H <2£> if a n d o n l y if y = r x / | | r x | | G © H r Ç ê - Therefore, using 
formula (2.5) we obtain 

(2.6) | | £ r | | Q =g \\T\\Q*\\ET\\QT, 

where QT is the projection onto the subspace TQfQ. Employing Lemma 2.2, 
we see that since T is invertible, the mapping Q —» Çr establishes a lattice 
preserving correspondence in $ , and also that (1 — Q)& is finite dimensional 
if and only if (1 — QT)& is so. Therefore, taking limits on both sides of (2.6) 
we conclude that the first inequality of (2.4) is valid. Interchanging T and T~l 

we see also that the second inequality is valid. 

We next state without proof the following characterization of the function 
r] given by Douglas and Pearcy in [3, Theorem 1]. 

LEMMA 2.3. For every T G £ (§ ) , 

77 0 0 = limsup | | P r ( l - P ) | | . 

The following lemma tells us that the rj function is invariant under unitary 
equivalences. 

LEMMA 2.4. For every unitary U G 8 (§ ) and every T G 8 (§ ) , 

(2.7) v(UTU*) = V(T). 

Proof. Let P G ? / . Then 

\\PUTU*(1 - P ) | | = \\(U*PU)T[1 - (U*PU)]\\. 

Set Pu — U*PU. Then the correspondence P -* Pv is bijective and lattice 
preserving in tyf (by Lemma 2.2), and therefore using Lemma 2.3, we have 

ri(JJTU*) = limsup \\PuTQ. - Pu)\\ 

= limsup | | P r ( l - P)\\ 

= i ( r ) . 

Hence (2.7) is valid. 

THEOREM 2. If T G 8(£>) awd «S w a» invertible operator, then 
(2.8) i j ( r ) / ( | |5 - i | | | k (5 ) | | ) ^ t,(STS-i) ^ \\S\\ \\T(S-I)\\V(T). 
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7) FUNCTION 5 6 9 

Proof. Let 5 = UH be the polar decomposition of S. Since 5 is invertible, 
U is unitary and H is invertible. From Lemma 2.4, we obtain 

rjiSTS-1) = rj(UHTH-iU*) = niHTH-1). 

Also it is easy to see that 

| | T ( 5 ) | | = ||x(ff)||, | |x(S- ' ) | | = | |x(tf-i) | | , 

l|S|| = ||ff||, II5-1H = ||ff-'||. 

Thus it remains to prove (2.8) in the case that S is replaced by an invertible 
self-adjoint operator H. Let P £ $ / f Q = 1 - P. Then 

HPfTTÏT^II = sup \(HTH~lx,y)\ 

= sup (TH~ x,Hy). 

Î/€© n p£ 

Now, let P#, QH be the projections onto the subspaces HP& and H~lQS£> 
respectively. From Lemma 2.2, we have PH + QH = 1 and P # Ç $ r . From 
(2.9) we deduce that 

(2.10) \\PHTirlQ\\ ^ ||ff11 HIT1!!,, sup | ( r * , y ) | 

= ||ff11 iiff-^uiip^r&ii. 
Now using Lemma 2.2, as in Lemma 2.4 and Theorem 1, wre observe that the 
mapping P —» PH sets up a lattice preserving bijective correspondence in tyfy 

and then taking lim sup in (2.10) we get 

rjiHTH-1) = lim sup WPHTH^QW 

£ ||ff11 lim I^Ha.pj l imsupl lPHr&ll 
<?=1-P 

= I Iff 11 i K f f - 1 ) ^ ) . 

This proves the second inequality of (2.8), the first one follows in a similar way. 

THEOREM 3. For every T 6 £(£>)> 

(2.11) * CO = v(T*). 

Proof. If O is any subset of § we denote by [O] the projection onto the 
subspace generated by 0 . From Lemma 2.3, for any ô > 0 there exists P G $ / 
such that, if P' e Ç „ P g P ' , then | |PT*(1 - P ' ) | | ^ i?(3T*.).+ «. Since 
[P*P§] 6 $ / f setting P i = P V |T*P§] we see that P i 6 $ , . Given e > 0, 

https://doi.org/10.4153/CJM-1971-064-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-064-2


570 NORBERTO SALINAS 

by definition of the function r] there exists x ^ @ H (1 - Pi)& such that 
qCO - e < \\ET(x)\\. Set P 2 = P V [*]. Therefore, P g P 2 and P 2 G $ / . 
Now we observe that [ET(x)] is orthogonal to P 2 . In fact, [E r(x)] is orthogonal 
to [x]; on the other hand [ET(x)] is orthogonal to P , for, 3/ £ P § implies 
(£ r(x), ;y) = (7s, y) = (x, T*y) = 0 (because x 6 (1 - Pi)£>). By the 
above remark, ET(x) £ (1 — P 2 ) § , and then we have 

* ( r ) - 6 < | |Er(*) | | = \\(1 - P*)ET(x)\\ 

= ||(1 - P 2 )E r (P 2 x) | | = ||(1 - P 2 )PP 2x| | 

^ | | ( i - p 2 ) p p 2 | | = | | P 2 r* ( i - P 2 ) | | 

<ry(r*) + ô. 

Since e and 5 are arbitrary positive numbers we conclude that 77 (P) ^ ??(P*). 
Interchanging P and P* in the last inequality we obtain (2.11). 

Remark. The sets (P) and (P) are invariant under similarities, and under 
the maps 5—>5* and S—>S~x (from [1, Theorem 1]). We observe that 
Theorems 1, 2 and 3 show such invariant properties in a more precise fashion. 
On the other hand, (P) (and hence (P)) is not invariant under quasi-similari-
ties.2 In fact Hoover showed [4, Chapter 1, § 4] that there exists a compact 
weighted shift which is quasi-similar to a noncompact one. Thus we cannot 
expect that an analogous property to that of (2.8) holds for quasi-similar 
operators. 

3. Some other seminorms on £ ( § ) / $ . Let P G 8(§) . As usual, W(T) 
will denote the numerical range of P, i.e. 

W(T) = {(Tx,x), x G ©}. 

Also, w(T) will represent the numerical radius of P, i.e. 

w(T) = sup \(Tx, x)\, 

and d(T) will denote the numerical diameter of P, i.e. 

d(T) = sup \(Tx9x) - (Ty,y)\. 

In what follows we adopt the following notation: if P E £ Op ) , ( ? £ $ then 
by P Q we mean the restriction of the operator QTQ to the subspace <2£). Thus 

\\TQ\\ = HQrilo. 

2Two operators T and 5 on § are said to be quasi-similar [4] if there exist two dense 
range injective operators X and Y satisfying TX — XS, YT = SY. 
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Now, we define the following two seminorms 

we(T) = inf w(r ( i_P )) 

= inf sup \(Tx, x)\ 
pç$f *€@n( i -p )£ 

= lim w([l -P]T[1 - P ] ) ; 
p&; 

de(T) = inf d(T(i-P)) 
PÇ$f 

= inf sup | (Tx, x) — (Ty, y) \ 
P<z$f x,y£& H (1 -P)# 

= lim d{Ta-P)). 
PÇ$f 

It is easy to verify that the following properties are valid for any T 6 S(§) . 
(ax) we(T) = we(T*); 
(a2) ( l /2 ) | |T ( r ) | | Swe(T) tk | k ( r ) | | ; 

and hence 
(a3) ffl,(X) = 0 if and only if K € ®; 
(o4) a>.(r») g [w,(r)]«; 
(a5) If we(l - P ) < 1, then x(P) is invertible (in S ( § ) / $ ) . Actually, more 

is true, i.e. dim[null P] = dim[null P*]; 
(61) d.(P) = d . ( P * ) ; 
(6,) d6(T+\) = d6(T),\e C; 
(6.) d . ( r ) =S2W e(P); 

and hence 
(64) de(X + K) = 0, X € C, K € « . 

LEMMA 3.1. J / I É 8 (§ ) , $ m 

(i) we(T) = infw(P + X ) ; 

(ii) de(T) = inf d(T + K). 

Proof. From (a3) and (&3), it follows that 

We(P + x) = we(P), d.(r + x) = de(T), K e «. 
Therefore, w,(P) g infK6Kw(P + X) , d,(P) g infK€«rf(P + K). Thus it 
remains to prove the reverse inequalities. But 

w.(P) = inf w([l - P]P[1 - P]) ^ inf w(P + X) , 
i>€$/ ices 

and (i) follows. On the other hand, let Q <E ty be such that (1 - (?) € $/ , 
and let X0 € W(P<,) = {(P*. * ) : * € © O Q©}. Then, 

(3.1) W(QTQ + Xo(l - Q)) = W(TQ). 
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Therefore, d(TQ) = d(QTQ + X0(l - Q)) ^ mîK^d(T + K), and hence 

de(T) ^ inf d(T + K), 

which completes the proof of (ii). 

Next, we introduce a set valued function defined on 8 ( § ) . For T £ 8Op), 

We(T) = O W{T{1-P)) . 

Since {W{T^-P)))P^ f constitutes a filter base of nonempty compact, convex 
sets, We(T) is a nonempty compact, convex set. 

LEMMA 3.2. / / T e %(&),then 

(i) we(T) = sup |X|, 
X€tFe(D 

and 
(ii) d 6 ( r ) = sup |X — n\. 

Proof. I t is clear that we(T) g supx€Pre(r)|X|, d«(r) g supx€fr.(T)|X — M|. 
On the other hand, let C be the boundary of any disk whose interior contains 
We(T). Also, let 8 be the diameter of C, and p = sup\€c|X|. Since 
We(T) C\C = 0, there exists P ^ ; such that W(r ( i_ P ) ) H C = 0. There­
fore we(T) < p and d e ( r ) < 8. These imply that we(T) ^ supx,tf€Wre(r)|X|, and 
de(T) ^ supx,M€TFe(r)|X — M|-

LEMMA 3.3. If T € ? ( § ) , *fte» 

Proof. From (3.1), we see that 

n ^(r + x)c^e(n. 
To prove the other inclusion, let K £ $ and e > 0. I t follows that there 
exists P £ $ / such that 

| |Z ( 1_P ) | | = | |(1 - P ) X ( 1 - P ) | | ^ | |X(1 - P ) | | < e. 
Therefore, W(2£(I_.P)) < € and hence 

We(T) = TFe(r + X - X) C W([T + X](i_P)) + ^ ( ^ ( i - P ) ) 
CW(T + K)+ {X: |X| < e}.3 

Since e is arbitrary, T^e(r) C W(T + i£) and hence 

w.(T) c n w(r + K) , 
which completes the proof. 

3If A, B are subsets of C, then A + B = {« + /3: a £ A, 0 £ £ } . 
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In view of the above Lemma and according to [5, § 3], the set We(T) will 
be called the essential numerical range of the operator T. We saw in Lemma 3.2 
that we(T) is the radius of We(T) and that de(T) is its diameter. Furthermore, 
if a(ir(T)) denotes the spectrum of TT(T) (in 8 ( § ) / $ ) , then 

*(*(T)) C WÇT + K), 

for every X f S and therefore, <T(T(T)) C We(T). Also, it can be proved 
(using the relation We(T + S) C We(T) + We(S), which is valid for every 
r , 5 6 %(&)) that We(T) is a continuous set valued function of ir(T). More 
precisely, if 5 j a ( § ) then MWe(T), We(S)) ^ \\ir(T - S)| | , where 
A(. , .) denotes the Hausdorff metric for compact subsets of the complex plane. 

THEOREM 4. For T Ç 8(§) we have 

de(T) = 0 if and only if T G (T). 

Proof, If T 6 ( r ) , it follows from (ô3) that d e ( r ) = 0. Conversely, assume 
de(T) = 0, then TF,(r) = {X}, for some X € C, and hence We(T - X) = {0}. 
Therefore we(T — \) = 0, which, in conjunction with (a3), proves that 
K — T — X 6 $ , completing the proof of the theorem. 

Remark. From 2.3 we see that 

(*) * ( r ) Û inf | |E r + * | | , 

where, as before, | |£ r +x| | = sup| I^Ji=i||JS^+jK (x)11. According to Lemma 3.1 
it is reasonable to raise the following question, the answer to which is still 
unknown to us. Is the reverse inequality of (*) valid? 

4. Some estimates on the numerical function of an operator. Given 
an operator T on § the complex valued function <j>Tt defined on § — {0} by 
the formula 

<j>T(x) = (Tx, x) / |M|2 , 

will be called the numerical function associated with T. The following are 
some of the properties enjoyed by 0 r . 

(a) W(T) = range of <j)T, 
(b) <t>T is a continuous function on § — {0} (with the norm topology), 
(c) <I>T is homogeneous of degree zero, i.e. <j>T(ax) = <J>T(X), for every a > 0. 

Definition, Let U be an open subset of § and let g be a continuous real-
valued function defined on U. We say that g is differentiate on U if for every 
z Ç U, there exists a real linear functional, LZi on § , such that 

(**) lim \\g(z + y) - g(z) - Lzy\\/\\y\\ = 0. 
l l z / I U O 

If such a real linear functional Lz exists, it is the only bounded real linear 
functional satisfying (**), for each z G U, and it is called the differential of g 
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at z, Dg(z). The value Dg(z) at x £ § is denoted by Dg(z ; x). If / is a con­
tinuous complex valued function defined on U, i.e. f = g + ih, where g, h 
are continuous real-valued functions on U, we say t h a t / is differentiate on U 
if g and h are differentiate on U. In this case Df(z) is defined by Df(z) = 
Dg(z) + iDh(z), z £ U. We observe that Df(z) can also be characterized by 

(4.1) lim \\f(z + y)-f(z)-Df(z;y)\\/\\y\\=0, 

where D/(2 ; 3;) = Dg(z ; y) + iDh(z ; 3/). 
We will use the next two lemmas to prove that the numerical function 

(j>T of T G 8Op) is differentiate on § — {0} and to compute D<j)T(z) for 
every 0 ^ 2 G § . 

LEMMA 4.1. Le/ U be an open subset of § and let the functions f : U —> C, 
g : U —> C be differentiate, such that g(x) 7e 0 for all x 6 U. Then the function 
f/g is differentiable on U, and 

(4.2) D(f/g) (*;*) = fe(*)Z>/(* ; x) - /(*)2?g(* ; *)]/g2(s), 

for all z £ U, x £ U. 

LEMMA 4.2. For <2?ry JT Ç 2(&), let \[/T : § —» C fre the function defined by 

(4.3) ^ r ( s ) = (Fx, x). 

!T&ew i/'r is differ entiable on § a?zd 

(4.4) DypT(z\x) = (7s, x) + (x, r*2), 2, x 6 § . 

Proof. The statement follows from (4.1) and the following identity 

( r ( s + y), z + y) - (Tz, z) - [(7*, y) + (y, T*z)] = (Ty, y), 

valid for 7̂  6 8($) , :y , s £ £• 

THEOREM 5. For awy T 6 2(§>) the numerical function <t>T is differ entiable on 
& — {0} awd £/ze m/«e 0/ ite differential at 0 5* z £ § , x Ç § « gw/ew fry 

(4.5) Zty r(* ;x) = [(ET(z/\\z\\),x) + (xt ET*(z/\\z\\))]/\\z\\. 

Proof. Using formula (4.3) we see that <j>T(x) = ^T(X)/\PI(X). Therefore 
from Lemma 4.1 and Lemma 4.2, <t>T is differentiate in § — {0}, and 

£>4>r(z ;x) = DtyT/}l/i)(z ;x) 

= [MZWT(Z ;X) - *T(z)DMz ;*)]/*i2(«) 
= [(r*,*) + (x, r**) - *,.(*)(*,*) - **(*)(*, *0]/ll*ll2, 

from which (4.5) follows. 

COROLLARY 4.3. For T € 8 ( § ) , D</>^ = 0 if and only if z is an eigenvector 
of both, T and T*. 

Proof. The statement is a consequence of (4.5) and the following fact. Let 
%u 2̂ ê § such that (zu x) + (x, z2) = 0 for all x £ § . Then zx = z2 = 0. 
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Now it is natural to introduce the following terminology. Given r Ç 8 ( § ) 
we define the first differential numerical radius of T by 

wa)(T) = sup \\D<l>T(z)\\. 

We observe that if Q Ç $, then 

w{1\TQ)=wm(QTQ)= sup | |D*P(*)|lo, 

where ||£>0r(z)||e = sup l£©n Q$\D<I>T(Z ; x)\, and as before r 0 = <2 l̂os>-
Next we define a new seminorm on S(§) by setting 

w. w ( r ) = inf w(1)(rQ). 
(1-0) €*/ 

I t is easy to verify that we
m has the following properties: 

w.<»(r) = we
( 1 )(r*), 

w / » ( r ) ^2| |x(r) | | , 

(4.6) w.<» ( r + X) = w,«) ( r ) , X € C, 

(4.7) w.<» (K + X) = 0, X € C, X € fl. 

THEOREM 6. .For any r £ ? ( § ) œ e toe 

(4.8) (l/2)de(T) g œ.<»(r) g MT). 

Proof. From (4.5) we see that, for any z £ ©, 

||Ityr(*)ll ^ H£r(s)|| + Pr*(s)||. 
Taking supremum on z £ © P\ (1 — P ) § and then infimun over P G $ / 
we get 

^e
(1)(n £r,(T) + r,(T*). 

Using Theorem 3, we conclude that the second inequality of (4.8) is valid. To 
prove the left inequality of (4.8), let P £ $ / and let \ , / i Ç W(T(1-P)). There 
exists x j G @ H ( 1 - P)£> such that <t>T(x) = A, <t>T(y) = ju. Furthermore 
(replacing y by —3/, if necessary) we may assume that 

(4.9) ||x - y\\ S V2. 

Therefore the segment [x, y] joining x and y lies entirely in (1 — P ) § — {0} 
and we can apply the Mean Value Theorem of Differential Calculus 
[2, Chapter VIII, Theorem 8.5.4] to obtain 

(4.10) |x - n\ = \4>T(pc) - <t>T(y)\ S sup ||*r(2)||(i_p)||* ~ y\\. 
z£[x,y] 

On the other hand, from an elementary geometric fact, 

(4.11) sup (1/ | |S | | ) = l / ( inf | |s| |) 
zÇ.[x,y] z£[x,y] 

= 2/\\x + y\\. 
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Also, from (4.9) and the parallelogram law, we get 

(4.12) \\x + y\\ ^ V2. 

Now from (4.9), (4.10), (4.11), (4.12) and the fact that ||z|| | |£>^r(z)|| is 
homogeneous of degree zero, we can obtain 

|X - M| ^ sup \\DM*)\\a-e> sup (1/IMDII* - y\\ 

S 2 sup \\D4>T(z)\\a-ph 
z£®n a-p)£ 

and thus 

(4.13) d(r ( i -P)) ^ 2 ^ > ( r ( 1 _ P ) ) . 

The proof of (4.8) can be completed by taking limits in (4.13), when P Ç tyf. 

The next corollary is a consequence of (2.2), Theorem 4, and (4.8). 

COROLLARY 4.4 (Brown and Pearcy). For any T 6 S Op), y(T) = 0 if and 
only tfT = \ + K,\eC,Ke®. 

We observe that | |7r(r)| |2 ^ y2(T) + we
2(T) (recall that | | rz | | 2 = 

\\ET(Z)\\2 + \(Tz, z)\\ for every z G ©) implies that 

lk(r - x)||2 ^ ^2(r - x) + we*(T - x) 
^ n W + i ^ r u e we(T) 

and therefore, using (4.8) we obtain 

(4.14) H*(r - X)||2 S W ( r ) , X 6 W6(T), 

which constitutes a sharper estimate than that given in [1, Lemma 2.3] (in the 
limit). 

Remark. As we did previously for n = 1, we define the nth differential 
numerical radius of an operator T by 

w(n\T) = sup \\Dn(t>T(z)\ 
2€® 

Jn) 

Also we set 

din\T) = sup \\Dn4>T(x) - Dnct>T(y)\\. 

Here Dn<j>T(z) denotes the nth differential of the function <j>T at z (for definition 
and properties of higher order differentials of a function, see [2, Chapter VIII , 
§ 12]). Now, we define the following essential quantities 

we
in\T) = inf W{n)(Ta-P)), 

and 

d*»(T) - inf dM(Ta.P)). 
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Obviously, 
deW(T) g 2wew(T),n = 0 , 1 , 2 , . . . . 

Next, we observe that since <j>T is an even function, i.e. (j>T(z) = <I>T(—Z), 

z ?£ 0, D2k(j>T is also an even function, and D2lc+l<j>T is an odd function (i.e. 
D2k+1<l>T(-z) = -£>2*+Vr(*)). Thus 

deW+»(T) = 2weW+»(T), k = 0, 1, 2, . . . . 

On the other hand, since <j)T is homogeneous of degree zero, JDw0r is homo­
geneous of degree — n, and hence ||j3||wDw<£r(2;) is homogeneous of degree zero, 
n — 0, 1, 2, . . . . I t can be proved (with arguments similar to those used to 
show (4.13)) that for Q G $ we have 

dw(TQ) S 2^wW+»(TQ), 
and hence 

de(W(T) S 2(1+^W2fc+1)(r), k = 0, 1, 2, . . . . 

Also it is not difficult to see that for each n = 0, 1, 2, . . . there exists a con­
stant Cn > 0 such that 

W'(n é cœ|k(r)||. 
Therefore for any n = 1, 2, . . . 

Ww)(x + ^) = o, x e c, K e si. 
Thus it is natural to pose the following problem. 

Problem. Let n ^ 1 and T £ £ (§ ) such that ^e
(w) ( r ) = 0. Do there exist 

X G C and K G $ such that r = X + Kl Observe that from (2.2), Theorem 4, 
and (4.8), Corollary 4.4 may be stated 

w -d) ( r ) = 0 if and only if T = X + K, X G C, X G $ . 

Hence Corollary 4.4 tells us that the answer to this problem is yes, in case 
n = 1. On the other hand, it can be shown that if D2<t>T(z) = 0, for every 
z G @, then T is a scalar operator. Thus if w^2) ( r ( i_P )) = 0 for some P G $,, 
then r = X + X for some X 6 C, X G $. 

iVtf/e. Let @ be any nonseparable Hilbert space, and let K« be any (infinite) 
cardinal number such that K« ^ dim ©. We denote by tya the set of all 
(orthogonal) projections P G 8(©) such that, dim P® < K*, and we let 3« be 
the uniform closed ideal generated by tya» Then all the definitions and results 
of §§ 2, 3, and 4 can be extended, without any modifications, to nonseparable 
spaces, if we replace (in all the cases) tyf and $ by S$a and 3a, respectively. 
We omit the details of such extensions to avoid irrelevant repetitions. 
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