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Abstract

Human activity recognition (HAR) is a vital component of human–robot collaboration. Recog-
nizing the operational elements involved in an operator’s task is essential for realizing this vision,
and HAR plays a key role in achieving this. However, recognizing human activity in an industrial
setting differs from recognizing daily living activities. An operator’s activity must be divided into
fine elements to ensure efficient task completion. Despite this, there is relatively little related
research in the literature. This study aims to develop machine learning models to classify the
sequential movement elements of a task. To illustrate this, three logistic operations in an
integrated circuit (IC) design house were studied, with participants wearing 13 inertial measure-
ment units manufactured by XSENS to mimic the tasks. The kinematics data were collected to
develop the machine learning models. The time series data preprocessing involved applying two
normalization methods and three different window lengths. Eleven features were extracted from
the processed data to train the classification models. Model validation was carried out using the
subject-independent method, with data from three participants excluded from the training
dataset. The results indicate that the developedmodel can efficiently classify operational elements
when the operator performs the activity accurately. However, incorrect classifications occurred
when the operator missed an operation or awkwardly performed the task. RGB video clips helped
identify these misclassifications, which can be used by supervisors for training purposes or by
industrial engineers for work improvement.

Introduction

Industry 4.0 aims to innovate industries through the Internet of Things (IoT), cyber-physical
systems, artificial intelligence (AI), Big Data, cloud computing, and robotics (Iqbal et al., 2022;
Maddikunta et al., 2022; Nahavandi, 2019), with a focus on enhancing fabrication efficiency via
automation (Maddikunta et al., 2022; Nahavandi, 2019). This includes the implementation of
robots to replace human workers in the Industry 4.0 paradigm.

Bringing human workers back to factories

However, Industry 4.0 has not yet been successfully implemented worldwide (Iqbal et al., 2022;
Nahavandi, 2019). The first reason is that Industry 4.0 involves the integration of various advanced
technologies, requiring support from infrastructures that are not yet available in most countries
outside the United States and European Union (Chien et al., 2017). Second, the highly customized
demands of modern businesses (Alves et al., 2023; Gan et al., 2023; Maddikunta et al., 2022) make
fully automated systems prone to failure.Automation systemswith high buildup costs cannot gain an
advantage in the small production quantities of customized orders (Iqbal et al., 2022). The third
reason is that Industry 4.0 does not strongly consider environmental sustainability (Nahavandi,
2019). The reduction of the carbon footprint in manufacturing is receiving greater attention from
public interest groups, international organizations, and governments (Nahavandi, 2019). Consumers
are also increasingly supporting environmentally friendly companies (Nahavandi, 2019). Balancing
environmental protection with high-efficiency production will be a critical issue inmodern industry.

Furthermore, the biggest issue may be the ethical problem of removing human workers from
the production line. In the conceptual framework of Industry 4.0, humans are considered
obstacles to improving productivity. As a result, automation is prioritized over human labor,
leading to a decline in employment rates (Iqbal et al., 2022). This approach faces opposition from
labor unions, congress, and governments (Iqbal et al., 2022; Nahavandi, 2019).

Nevertheless, practitioners have become aware of the drawbacks associated with the original
concepts of Industry 4.0. Consequently, they have revised the interactions between humans and
machines (Romero et al., 2016). The main modification emphasizes a human-centric approach,
as proposed by a nonprofit, industry-driven association in Europe (Romero et al., 2016).
Recently, Industry 5.0, which builds upon the technologies developed in Industry 4.0 (Iqbal
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et al., 2022), has emphasized the vision of creating sustainable,
human-centric, and resilient industries. The most prominent
aspect of Industry 5.0 is the reintegration of human workers into
shop floors, which has garnered significant interest from
researchers (Alves et al., 2023; Cimino et al., 2023; Longo et al.,
2020; Moller et al., 2022; Papetti et al., 2020; Romero and Stahre,
2020). The primary goal is to leverage human creativity and intel-
ligence in smart manufacturing systems (Iqbal et al., 2022), thereby
ensuring the well-being of workers (Moller et al., 2022).

A human-centric solution for the smart factory

A human-centric solution in Industry 5.0 is an autonomous pro-
duction system with humans in and on the loop (Nahavandi, 2019).
Humans and machines coexist and cooperate (Demir et al., 2019;
Johri et al., 2021) based on Industry 4.0, forming a human–cyber-
physical system (HCPS; Romero et al., 2016). The robots in the
HCPS collaborate with human workers, acting as another worker
who stands beside them to assist in finishing a job. These collabora-
tive robots, called cobots, are equipped with human intelligence by
machine learning algorithms. Cobots not only observe and learn
how an operator performs a task but also have machine recognition
(Maddikunta et al., 2022; Nahavandi, 2019). Cobots receive data
fromwearable sensors on humanworkers (Fortino et al., 2015; Kong
et al., 2018; Maddikunta et al., 2022; Montini et al., 2022). The AI
algorithm processes the data so that cobots can locate the operator’s
position, analyze the worker’s posture, know the goal of the ongoing
task, and perceive the human coworker’s expectations. With this
information, cobots autonomously decide what to do and how to
assist human workers (Maddikunta et al., 2022; Nahavandi, 2019).
Accordingly, wearable sensors and wireless communication proto-
cols in IoT, and machine recognition algorithms in AI play essential
roles in the human-centric solution in Industry 5.0.

The challenges of human activity recognition (HAR) of human–
robot collaboration

HAR has been recognized as an essential component of human–
robot collaboration (Lucci et al., 2022; Martinez-Villasenor and
Ponce, 2019). However, HAR in the industrial sector differs from
the recognition of activities of daily living (ADL), which has been
well-documented in the literature (Al-Amin et al., 2020). ADL
literature focuses on the recognition of a complete and unsegmented
action. In industry, a human operator’s activity within a task needs
to be divided into fine elements so that the collaborative robot can
respond to each recognized element. One approach is to apply
gesture recognition in human–robot collaboration (Liu and Wang,
2018). However, gestures are subtasks that may impact the oper-
ator’s performance in the main task. Additionally, requiring oper-
ators to memorize gestures may increase their mental workload
(Lucci et al., 2022).

A review of HAR (Wang et al., 2019) has reported that most
research has focused on people’s ADL.With technological advance-
ments, HAR applications have rapidly developed in various fields,
including security and surveillance, smart homes, entertainment,
medical healthcare, and gait analysis (Wang et al., 2019). Unfortu-
nately, these types of HAR have limited impact on human–robot
collaboration, as operators on a shop floor perform tasks with many
continuous elements.

Moreover, most existing public databases are based on ADL
(Anguita et al., 2013; Banos et al., 2014; Chavarriaga et al., 2013;
Micucci et al., 2017; Reiss and Stricker, 2012; Stisen et al., 2015;

Sztyler and Stuckenschmidt, 2016). In comparison to ADL, data-
bases or research focused on manufacturing or standard operating
instructions on a shop floor are relatively limited (Zappi et al.,
2008).

Worker and machine process chart for HAR in human–robot
collaboration

To realize the vision of human–robot collaboration, the cobot must
identify and understand every element being processed by the
human worker. This requires decomposing activities into various
operational elements, similar to how an industrial engineer creates
a worker andmachine process chart (Freivalds, 2009) usingmotion
and time study methods. With this information, the cobot can
perceive which element the operator is working on and autono-
mously decide how to collaborate with the worker, rather than
relying on preprogrammed responses.

An important task for industrial engineers is to establish stand-
ard operating procedures (SOPs) for various production plants,
ensuring high-efficiency performance while considering thewelfare
of workers. By utilizing professional methods from motion and
time study, engineers first observe the sequence of workers’ actions,
breaking them down and categorizing them into a series of sequen-
tial motions. The time required for each sequential motion is then
measured. These sequential motions are further evaluated to deter-
mine if they can be optimized through the principles of elimination,
rearrangement, combination, or simplification. Subsequently,
using a selected benchmark worker, the industrial engineer uses a
stopwatch to measure the time required for each sequential motion
and allows for a certain margin, establishing the standard time for
each task. Production site managers can use this SOP and timing as
training material for new employees. For employees whose per-
formance does not meet the standard, a comparison of their
sequential motions can help identify whether their actions are
correct, and comparing the time taken for each sequential motion
with the standard time can guide them toward improvement.

However, classical motion and time study has some drawbacks.
Industrial engineers traditionally use stopwatches and manual
paper records to observe workers’ actions and timing, which incurs
significant labor and time costs, introduces subjective variations,
and can reduce accuracy due to visual errors. The presence of
engineers in the workplace may make workers uncomfortable,
affecting their performance, and even creating tension or conflict,
leading to a stressful work atmosphere.

This research proposes integrating the concept of motion and
time study with sequential motion recognition in human activity,
which not only promises to realize the human–robot collaboration
envisioned in Industry 5.0 but also helps workers improve their
performance, enables site managers to create more effective train-
ing programs, and assists industrial engineers in completing system
improvements more efficiently.

In short, cobots must be equipped with HAR intelligence that
can recognize processing elements in specific tasks to achieve
effective human–robot collaboration in a smart factory.

Motivation and objective

The vision of smart factories within the Industry 5.0 framework
involves applying human-centric solutions to enable autonomous
human–robot collaboration. Recognizing the operational elements
of a task performed by an operator using HARmethods is essential
to realizing this vision. However, there is relatively little research on
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this topic in the literature. Therefore, before achieving human–
robot collaboration, this study is motivated by the need to fill this
critical research gap.

This study addresses the limitations of traditional methods by
employing machine learning models for HAR with intelligent tech-
nology. As a pilot study combining the concepts of motion and time
study and HAR, this research focuses on sequential motion recog-
nition.Once themotion recognition technology is successfully devel-
oped, the operational time for each sequential motion can be
estimated based on the number of data samples and sampling
frequency, thereby achieving the goal of improving production
performance. If the method proposed in this study successfully
achieves the goal of “sequential motion recognition in human
activity,” it would demonstrate that this innovative concept could
be extended to any manufacturing industry that utilizes SOPs.

The aim of this research is to applymachine learningmethods to
recognize sequential motions in operations, aligning with the vision
of human–robot collaboration in Industry 5.0. Additionally, the
research seeks to assist industrial engineers in developing SOPs,
training personnel, and improving performance in the workplace.
HAR automates information gathering, saving time and avoiding
disputes by replacing time-consuming and potentially controver-
sial traditional motion and time studymethods. Additionally, HAR
results provide valuable feedback for new employee training, enab-
ling supervisors to design programs that improve performance and
productivity on the shop floor.

Related works

To develop machine learning models for HAR, data on human
movement are collected using various types of devices and then fed
into training models. These devices can be divided into two cat-
egories: vision-based and sensor-based. Preprocessing and feature
extraction are vital for the collected data before it is used for model
training. In this section, we discuss the literature related to these
topics.

Data collecting devices

Vision-based sensors in HAR
In vision-based action recognition, traditional RGB cameras are
popular and affordable for HAR researchers. The relevant literature
has explored various features of RGB images and classification
methods (Aggarwal and Ryoo, 2011; Poppe, 2010; Ramanathan
et al., 2014; Weinland et al., 2011). However, intensive image
processing and computer vision algorithms require considerable
hardware resources, and RGB images, which lack 3D motion data,
need to be processed (Aggarwal and Xia, 2014).

Compared to RGB cameras, three categories of devices providing
3D kinematics information of the human body have been widely
used in HAR research. The first category includes the expensive
optical motion capture (OMC) system. Thismethod involves attach-
ing reflectivemarkers to specific joints on the human body and using
multiple infrared cameras to estimate the 3D coordinates of each
joint. TheOMCmethod is considered the gold standard in biomech-
anics studies, andmanyHAR studies using OMC are available in the
literature (Aurand et al., 2017; Zhu and Wang, 2011).

The second category of equipment utilizes stereo cameras to
obtain 3D data, including depth, through stereo matching and
depth calculation (Argyriou et al., 2010). However, stereoscopic
3D reconstruction algorithms are computationally intensive and

extremely sensitive to the illumination and complexity of the
background environment (Aggarwal and Xia, 2014), which makes
them less prevalent today.

A third approach is based on distance or depth sensors. In the
last decade, low-cost RGB depth cameras have become highly cost-
effective and have been used for real-time 3D motion capture in
HAR studies (Jalal et al., 2017; Khan et al., 2022; Qi et al., 2022;
Yadav et al., 2021). Compared to traditional RGB images obtained
by conventional cameras, the depth images generated by depth
cameras are less sensitive to changes in illumination, and the
performance of HAR is higher since the 3D kinematics of joints
are utilized (Shotton et al., 2013).

Although vision-based methods are still popular in HAR stud-
ies, they face several challenges that limit their performance. For
example, obstructions between the human body and the camera,
variations in movement between different individuals, and clut-
tered backgrounds can all hinder effectiveness (Vrigkas et al., 2015).
Furthermore, vision-based methods are limited by the camera’s
field of view and the effective space of the camera setup. These
limitations make it difficult for vision-based HAR to be applied
outside the laboratory.

Sensor-based sensors in HAR
To overcome vision-based device limitations, recent years have
seen the development of wearable inertial sensors equipped with
accelerometers and gyroscopes. These sensors not only provide 3D
acceleration and angular velocity data but also derive 3D joint
coordinates, similar to depth cameras. This shift has gained traction
in the HAR community, offering a notable advantage for field
studies (Xu et al., 2017). Numerous studies leverage portable
devices such as smartphones, smartwatches, and inertial measure-
ment units (IMUs) with embedded inertial sensors for data collec-
tion and analysis (Baldominos et al., 2019; Burns andWhyne, 2018;
Reyes-Ortiz et al., 2016; San-Segundo et al., 2016; Shoaib et al.,
2016; Xu et al., 2017).

The sensor technology efficiently addresses broader areas and
dynamic lighting conditions. Advancements in low power con-
sumption and computational capabilities empower inertial sensing
for long-term recording, computation, and continuous interaction
with individuals. In addition to three-axis acceleration and angular
velocity, wearable inertial sensors can also derive human joint 3D
coordinates, similar to those obtained from depth cameras.

Data preprocessing and feature extraction

HAR involves a sequential chain of activities, beginning with
capturing raw data from various sensors, followed by preprocessing
to eliminate discomfort and noise, segmenting time-series data for
target recognition, extracting features based on data attributes,
reducing data dimensionality for feature refinement, building and
training the classification model, and finally, verifying model per-
formance (Bulling et al., 2014).

Sliding windows play a crucial role in time series data classifi-
cation and are commonly used in segmentation methods. These
windows can be nonoverlapping or have fixed-size overlapping
structures. Determining the optimal window size is vital, consider-
ing variations in sensor placement and activity periods. Empirical
determination of window length is a practical approach (Burns and
Whyne, 2018; Jalal et al., 2017; Janidarmian et al., 2017).

Human activities form a time series data set, necessitating
analysis through time windows rather than individual data frames.
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Feature extraction is essential for comparing activity differences,
with widely applied time-domain features, such as median, mean,
standard deviation, entropy, kurtosis, and skewness. Frequency
domain features, including spectral entropy, peak power, and peak
frequency, have gained popularity. Additionally, wavelet domain
features derived through wavelet transform are explored in the
literature (Burns and Whyne, 2018; Hassan et al., 2018; He et al.,
2018; Ignatov, 2018; Wang et al., 2017).

In summary, the literature highlights the significance of sliding
windows in HAR research, discussing their use, distinctions
between nonoverlapping and fixed-size overlapping windows, the
critical importance of determining the optimal window size for
effective data classification, and the impact of window overlap on
model performance.

Machine learning models for HAR

HAR involves understanding and classifying actions based on data
from humanmovement, typically framed as a pattern classification
problem solvable by machine or deep learning models (Konar and
Saha, 2018).

AI algorithms used in HAR are divided into traditional machine
learning-based and deep learning-based methods. Recent review
papers have surveyed the models used in the literature (Bozkurt,
2021; Dua et al., 2022; Kulsoom et al., 2022). Frequently utilized in
research studies are support vectormachine (SVM), k-nearest neigh-
bor (kNN),Gaussianmixedmodel (GMM), decision tree (DT), naïve
Bayes (NB), random forest (RF), andhiddenMarkovmodel (HMM).
Moreover, developing new deep learning-based models is a hot
research topic in related communities. For deep learning-based
methods, researchers often implement convolutional neural net-
works (CNN), deep neural networks (DNN), recurrent neural net-
works (RNN), deep belief networks (DBN), and long short-term
memory (LSTM) in their investigations. Combining two algorithms
to improve the model’s performance is also common. For example,
LSTM is frequently embedded inCNNorRNN, and hybridmethods
with SVM, HMM-SVM, or kNN-SVM are regularly adopted in
machine learning models.

The field of HAR has witnessed significant advancements in
recent years, driven by the proliferation of wearable sensors and the
remarkable capabilities of deep learning algorithms. Deep learning
has emerged as a powerful tool for extracting meaningful features
from sensor data and accurately classifying human activities.

Studies on sequential motion recognition in human activity

The majority of HAR research has traditionally focused on ADL
(Wang et al., 2019). However, recent studies have shifted toward
decomposing and recognizing elements within individual activities.
One study proposed an HMM-based classification system for
online classification of IMU and force sensor data from a lower
limb exoskeleton, achieving an average accuracy of 84.5% in walk-
ing motion element recognition (Beil et al., 2018).

In a study on industrial lifting operation involving three elem-
ents, accelerationmeasurements were captured and used to develop
a classifier within the HMM framework, achieving an impressive
average accuracy of 99.8% (Ishibashi and Fujii, 2021).

Another study assessed the recognition of eight elements in
martial arts using motion data from IMUs. Among various
sequence-based methods, the features of kinematics data extracted
by a dynamic time warping (DTW) algorithm with kNN classifier
achieved the highest accuracies 99.6% (Li et al., 2022).

A separate study proposed a method for recognizing a nine-
element industrial assembly activity by combining CNN and LSTM
techniques with IMU and video data. The model achieved accur-
acies of 88% for IMU-based skeleton data, 77% for RGB spatial
video, and 63% for RGB video-based skeleton (Tuli et al., 2022).

In a follow-up study of Tuli et al. (2022), a method was intro-
duced for automatically generating process time analyses ofmanual
assembly processes with five elements. This method detected
approximately 76% of manual operations in a proposed use case
scenario (Jonek et al., 2023).

In contrast to recognizing entire elements, human–robot col-
laboration often relies on time stamp-based activity recognition, as
validated by a single participant. One study introduced a general
library of atomic predicates, which can be combined with first-
order logic for modeling general industrial assembly processes in
human–robot collaboration using RGBD data. The methodology
achieved average accuracies of 99.3% in a complex collaborative
assembly use case involving seven elements (Lucci et al., 2022).

Another study presented an innovative operator advice model
utilizing deep learning. Thismodel incorporated three independent
cameras and a decision tree classifier as a motion recognition
mechanism. Applied to a human–robot collaborative task with five
manual and four robot elements, the model demonstrated prom-
ising performance with an accuracy of 95.1% across the fivemanual
elements (Wang and Santoso, 2022).

In summary, breaking down a human operator’s task into finer
elements is essential for efficient analysis by industrial engineers.
Within the framework of Industry 5.0, research related to the
decomposition and recognition of operators’ actions is particularly
important.

Materials and methods

This study simulates actual semiconductor IC product shipment
manual operations to validate the effectiveness of theHARmachine
learning model. Participants, wearing IMUs in the laboratory,
completed three tasks according to the SOP. The kinematics data
collected during this process follow the activity recognition devel-
opment process proposed by Bulling et al. (2014), which includes
preprocessing raw data from motion capture devices, segmenting
time-series data, extracting features based on data attributes, estab-
lishing and training an activity classification model, and verifying
its performance.

Participants

Sixteen participants (8 males, mean height = 174.6 cm, SD = 5.3 cm;
8 females, mean height = 161.6 cm, SD = 4.7 cm), aged 18–50,
underwent simulated tasks.Wearable sensors (XSENS)with 13upper-
body sensors collected acceleration, angular velocity, and quaternion
data at 60 Hz (Figure 1). Supplementary spatial coordinates were
obtained from OMC and Microsoft Kinect V2, placed 3 m in front
of participants at a height of 1.5 m, with sampled at 30 Hz.

The movements of three laboratory members, who were trained
as benchmark workers according to the SOP, serve as the training
dataset for the machine learning model.

Logistic tasks

Inspired by the author’s previous work experience, this study uses
the shipping operations of a semiconductor design company as a
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case study to preliminarily verify the feasibility of the proposed
research idea. Among the various operations involved in shipping
to end customers, preparing and folding large and small cardboard
boxes, placing goods inside, and sealing the boxes represent the
basic building blocks of logistics operations, which are often per-
formed manually. This study mimicked logistics operations in
semiconductor design houses, specifically focusing on adherence

to the JEDEC packaging standard for shipping. The standard
involves using a JEDEC-6A outer carton containing six JEDEC-
6B inner boxes, each housing ICs. The research simulated tasks
such as the assembly of inner boxes (T1), outer carton assembly
(T2), and final carton packing for shipment (T3). Although these
operations are relatively simple, they reflect real-world tasks
encountered by the author during industrial work, and the boxes
used are identical to those in real-world applications.

The SOP for assembly of inner boxes comprises four elements
(Figure 2): Element 1 (S1) is “fixed inner box material,” Element
2 (S2) is “assemble the left side of the inner box,” Element 3 (S3) is
“assemble the right side of the inner box,” and Element 4 (S4) is
“close the top cover.” Outer carton assembly consists of three
elements in the SOP (Figure 3): Element 1 (S1) is “fixed outer
carton material,” Element 2 (S2) is “sealing the carton bottom,”
and Element 3 (S3) is “turn the bottom of the carton facing
upward.” Final carton packing consists of two elements in the
SOP (Figure 4): Element 1 (S1) is “placing the inner boxes into
the carton,” and Element 2 (S2) is “sealing the carton.” Participants
executed T1, T2, and T3 sequentially, following instructions from
the experimental controller. They maintained a natural stance with
hands hanging down for 1–2 s at the beginning and end of each task.

Data preprocessing

Research by Wang and Santoso (2022) and Hashemi (2019) sug-
gests that maximum absolute (MA) scaler normalization yields
higher recognition accuracy than min–max (MM) normalization.
Therefore, this study employs both normalization methods and
compares their outcomes.

In the segmentation phase, the commonly used sliding window
method is employed, which involves distinguishing between non-
overlapping and fixed-size overlapping slidingwindows. Determin-
ing the optimal window size is crucial, with studies by Janidarmian
et al. (2017) indicating that this varies based on body sensor
locations. Increasing the overlap in the sliding window improves
model performance, as noted by Burns and Whyne (2018). Add-
itionally, some literature suggests empirically determining the win-
dow length (Jalal et al., 2017).

After segmentation, a dimensional reduction procedure using
principal components analysis is applied, retaining sensor data
from both hands. Three window lengths, one-third, one-half, and
two-thirds of the average length of training samples, are employed
with a 75% overlap for window segmentation and optimal size
determination. Zero padding, a standard method during insuffi-
cient sample length, is used, following recommendations
(Hashemi, 2019; Um et al., 2017).

Feature selection and machine learning model training

In the feature extraction phase, the study selects quaternions, three-
axis accelerations, and three-axis angular velocities from the IMUs
during the operation process to derive 11 commonly used time-
domain features (see Table 1 for details).

Four machine learning algorithms – SVM, RF, NB, and LSTM –

are applied in this research. NB is frequently used as a baseline for
comparison with other algorithms in practice. The training and
prediction time of NB is rapid because it is a parametric classifier.
Many related studies, such as those by Sefen et al. (2016) and Liu
et al. (2016), have used this classifier for HAR.

SVM is another popular parametric classifier. Its advantages
include insusceptibility to outliers, as classification is determined byFigure 2. Operational elements decomposition of the assembly of the inner box (T1).

Figure 1. The positions of 13 XSENSs on the front and back of the human body.
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the support vector, and support for both linear and nonlinear
separation through different kernel tricks. SVM is also commonly
applied in HAR research, such as in studies by Burns et al. (2018)
and Subasi et al. (2018), and has achieved good accuracy.

RF is a classification model composed of many decision trees,
based on ensemble learning. The final output class of the random
forest is determined by the majority vote of the output classes of the
many decision trees, which helps avoid the overfitting problem. The
random forest algorithm often achieves the highest accuracy in
HAR literature, as seen in studies by Baldominos et al. (2019), Xu
et al. (2017), and Chetty and White (2016).

In recent years, deep neural networks withmore than four layers
have sparked a new wave of AI research and applications in deep
learning. Among the various deep learning models, CNNs imitate
the neural circuits of the visual processing area of the human brain,
enabling them to recognize and classify objects in static images with
excellent performance. RNNs, a type of neural network that pro-
cesses sequential data such as sound, language, and video, can use
previous outputs as inputs for the next time step, making them a
neural network with short-term memory. LSTM improves upon
RNN by using a conveyor belt-like memory line and multiple gates
to filter and process data requiring long-term memory, making it
similar to the hippocampus of the human brain, responsible for
processing both short-term and long-term memory. The research
topic of this study involves the decomposition and recognition of
themovements of industrial operation personnel, which falls under
the analysis of sequential data. In the literature, Pienaar and Mal-
ekian (2019) used LSTM for HAR and achieved excellent results.
Therefore, this study chose LSTM as the representative method in
deep learning.

Results

Due to cardboard boxes obstructing participants’ bodies, the
Microsoft Kinect V2 produced distorted postures (Fig. 5), leading
to the exclusion of its kinematic data from this study. Therefore,
only RGB images were retained for the analysis of misclassification
by the machine learning models.

Data preprocessing

After normalizing the XSENS-collected variables, samples were
segmented using time windows (TW) with lengths 1/3 (L1), 1/2
(L2), and 2/3 (L3) of the average training sample length, incorpor-
ating a 75% overlap. Table 2 displays the determined optimal time
window size.

Figure 3. Operational elements decomposition of the assembly of outer carton (T2).

Table 1. Time-domain features applied in this study

Description

The average of each variable

The median value of each variable

The sum of square of each variable

The standard deviation of each variable

The variance of each variable

The minimum value of each variable

The maximum of each variable

The skew of each variable

The Kurt of each variable

The mean square error of each variable

The number of mean crossings for each variable

Figure 4. Operational elements decomposition of the final packing of the carton for
shipment (T3).
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Models training and implementation

The study divided the data into two parts: testing data reserved for
participants P1–P3 to verify model performance and training data
using the remaining participants for learning. During the experi-
ment, the researchers observed that three participants (P1–P3)
exhibited movements inconsistent with the standard actions we
set, so their data were excluded from the training set to ensure the
accuracy of the trained models. However, we utilized the imperfect
data when testing our models to determine whether the models
could recognize incorrect and inefficient operational elements per-
formed by workers. The validation results showed that nonmatch-
ing elements were accurately identified. This provided strong
evidence that our research objective of developing machine learn-
ing models to aid industrial engineers in improving workforce
productivity on the shop floor was met.

Classification of operational elements in inner box assembly (T1)
In the assembly of inner boxes, four operational elements were
identified. Posttraining, the optimal classification model for each

algorithm was determined (Table 3), with all four algorithms
achieving peak accuracy at a time window length (WL) of
287 frames (L3). SVM and RF exhibited improved accuracy
(Accu.) with MA normalization, while NB and LSTM demon-
strated enhanced accuracy with MM normalization. Notably,
SVM attained the highest accuracy at 96.1% and an F1 score at
0.910, with a model training time (TT) only slightly exceeding
0.05 seconds compared to NB.

Figure 6 shows the confusion matrix of the SVM model classi-
fication results. Participants 1 and 3 accurately classified the oper-
ational elements. However, for Participant 2, the confusion matrix
indicates that the actual left side of the assembled box (S2) was
predicted as the operational element of closing the cover (S4).

Figures 7 and 8 display images of operational elements S2 and S4
performed by Participant 2. Participant 2 exhibited confusion and a
lack of proficiency in these two actions. These figures illustrate that
assembling the inner box relies heavily on the use both hands,
requiring more delicacy than the other tasks. Therefore, when
training the classification model, the weight of hand motion data
in the assembly of the inner box task can be increased prior to
training the model.

Classification of operational elements in outer carton assembly
(T2)
Table 4 illustrates the best classification model for assembling outer
cartons for each algorithm. Except for LSTM, all other algorithms
achieved identical accuracy and F1 scores with both normalization
methods. When different algorithms achieved the same accuracy
and F1 scores with varying normalization methods, the model with
the shorter training time was selected as the best model. In this
study, the NB algorithm had the fastest training time and achieved
the highest accuracy of 97.9%with a window size of 441 frames (L3).

Figure 9 presents the confusion matrix of the classification
results. Participant 2 experienced confusion between fixing the
outer carton (S1) and turning the bottom of the carton up (S3).
However, Participants 2 and 3 were accurately classified into their
respective operational elements.

Figures 10 and 11 showcase the video frames of the two subsets
of operational elements performed by Participant 1 while executing
fixing the inner box (S1) and turning the bottom of the carton up
(S3). For S3, participants were only required to rotate the carton
from the bottom to the top so that the opening of the carton faced
upward, finally of Participant 1 during the carton facing upward
(S3), it can be observed that Participant 1 performs a movement of
tidying up the opening of the carton. It is speculated that this
additional movement contributed to the misclassification of the
operational element.

Classification of operational elements in packing task (T3)
Table 5 illustrates the top-performing model among various clas-
sification algorithms for the packing operation. Apart from LSTM,
the other algorithms exhibited identical accuracy and F1 values
with both normalizationmethods (see Table 5). Likewise, themodel
with the shorter training time was chosen as the optimal one.
Throughout this study, all four algorithms achieved 100% accuracy
and an F1 value of 1. Notably, both SVM and RF attained 100%
accuracy and an F1 value of 1 across three different window lengths
of training, with the results from the shortest window length being
considered representative. While NB reached the highest accuracy
solely at the window length of 795 frames (L2), it incurred add-
itional time. Although LSTM did not achieve the highest accuracy
and F1 value at window lengths 795 frames (L2) and 1060 frames

Figure 5. The Microsoft Kinect Skeleton diagram reveals significant distortions in body
posture compared to the actual body position.

Table 3. The best model for the inner box assembly (T1)

Model Normalization WL Accu. F1 TT (s)

SVM MA 287 (L3) 0.961 0.910 1.375

RF MA 287 (L3) 0.933 0.873 2.078

NB MM 287 (L3) 0.867 0.772 1.312

LSTM MM 287 (L3) 0.683 0.494 305.847

Table 2. The determined optimal time window size for tasks in this study

Tasks TW L1 TW L2 TW L3

T1 143 215 287

T2 221 331 441

T3 530 795 1060

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7
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Figure 7. The video clip of Participant 2 performing the S2 element of the assembly of the inner box (T1) from (a) to (c) in order.

Figure 8. The video clip of Participant 2 performing the S4 element of the assembly of the inner box (T1) from (a) to (c) in order.

Figure 6. The confusion matrix of the best SVM model with MA normalization and a window width of 287 frames for T1 in the participant-independent validation phase.

Table 4. The best model for the outer carton assembly (T2)

Model Normalization WL Accu. F1 TT (s)

SVM MA 441 (L3) 0.979 0.880 1.656

RF MM 441 (L3) 0.979 0.880 1.887

NB MM 441 (L3) 0.979 0.880 1.625

LSTM MM 441 (L3) 0.824 0.800 529.890
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(L3), it matched the 100% accuracy and F1 value of 1 achieved by
other algorithms at window length 530 frames (L1).

Figure 12 demonstrates the SVMmodel’s accurate classification
of the two operational elements in the packing operation – placing
the inner box into the outer carton (S1) and sealing the carton (S2) –
as performed by all three participants.

Discussion

Although this study also attempted to use vision-based devices to
collect kinematic data, the highly distorted skeleton diagram in
Figure 5 raised concerns about the reliability of the data. We found
that when an object is positioned between the vision-based device
and the operator, accurate data cannot be obtained. This result is
consistent with findings in the literature (Vrigkas et al., 2015).
However, RGB images are helpful in analyzing misclassifications

(see Figures 7, 8, 10, and 11). Therefore, sensor-based and vision-
based devices should be used together whenever possible.

Table 6 compares the best performance between the literature
and the current study. Several factors can affect the performance of
predictionmodels. The first factor is the type of study. In theory, the
prediction accuracy of participant-dependent studies tends to be
higher than that of participant-independent studies because in
participant-dependent studies, the training and testing data come
from the same participants. In other words, the trained model has
already “seen” the data. Therefore, in Table 6, the accuracy of
participant- dependent studies is nearly perfect, except for the study
by Beli et al. (2018). If the data come from a small number of
participants or even just one (Lucci et al., 2022; Wang and Santoso,
2022), the results are also outstanding. After all, the more partici-
pants there are, the greater the variability, and thus, accuracy
decreases.

Figure 10. The video clip of Participant 1 performing the S1 element of the assembly of the outer carton (T2).

Figure 9. The confusion matrix of the best NB model with MM normalization and a window width of 441 frames for T2 in the participant-independent validation phase.
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The second factor is the degree of distinction between the
classification targets. For example, Ishibashi and Fujii (2021) stud-
ied the lifting of a box from the floor to a workbench, while Li et al.
(2022) focused on martial arts movements. These actions are larger
and more distinct, unlike the fine hand movements targeted in this
study, which are more difficult to distinguish.

The third factor is the algorithm. Lucci et al. (2022) utilized the
logic of the positions of the workpiece and the operator’s hands,
along with the sequence of the machine’s operations, rather than a
machine learning algorithm. Although the programming is more
complex, if the algorithm is well-designed, the accuracy can also be
nearly perfect.

Figure 11. The video clip of Participant 1 performing the S3 element of the assembly of the outer carton (T2).

Figure 12. The confusion matrix of the best SVM model with MM normalization and a window width of 530 frames for T3 in the participant-independent validation phase. All
predictions are correct.

Table 5. The best model for the packing task (T3)

Model Normalization WL Accu. F1 TT (s)

SVM MM 530 (L1) 1.000 1.000 1.883

RF MM 530 (L1) 1.000 1.000 2.042

NB MM 795 (L2) 1.000 1.000 2.125

LSTM MM 530 (L1) 1.000 1.000 1330.204
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In the three tasks of this study, the hand movements were
smallest in the inner box assembly, larger in the outer carton
assembly, and largest in the packing task. Consequently, the degree
of distinction between the movements increased from low to high.
This result also explains the differences in accuracy shown in
Tables 3, 4, and 5.

Another interesting finding of this study is that the performance
of simple, traditional machine learning models was better than that
of the deep learning LSTMmodel (Tables 3, 4, and 5). The training
time for LSTM exceeded 1,000 seconds, whereas the training times
for SVM, RF, and NB were all under 3 seconds. Moreover, SVM
achieved the highest accuracy, with a minimum value of 0.961
occurring in the task with the lowest distinction, the inner box
assembly (Table 3). Although the accuracy of RF and NB was
slightly lower in the inner box assembly, they performed as well
as SVM in tasks with higher distinction, such as the outer carton
assembly (0.979 in Table 4) and the packing task (1.000 in Table 5).
Our findings for SVM, RF, and NB align with the results in the
literature (Baldominos et al., 2019; Burns et al., 2018; Chetty and
White, 2016; Liu et al., 2016; Sefen et al., 2016; Subasi et al., 2018; Xu
et al., 2017).

Although the accuracy of LSTM in this study was not as high as
that of SVM, RF, and NB, its accuracy across the three tasks was
0.683, 0.800, and 1.000, respectively. Compared with the two stud-
ies in Table 6 that used CNN for feature extraction and LSTM as the
classifier – 760 in Jonek et al. (2023) and 0.880 in Tuli et al. (2022) –
these results are quite comparable. However, the reason for LSTM’s
relatively lower accuracy remains unknown and requires further
investigation in future studies.

The results of this study (Tables 3, 4, and 5) demonstrate that
operational motion analysis can be performed without expert
knowledge and significant manual effort. This approach provides
insights into the process, which can be used to identify novices’
awkward operations (Figures 7, 8, 10, and 11). Therefore, HAR has
the potential for optimization to increase productivity, supporting
the argument of Jonek et al. (2023), and can help junior workers
follow SOPs, consistent with the claim ofWang and Santoso (2022).

Recently, Industry 5.0, inheriting all the advanced technologies
from Industry 4.0 (Iqbal et al., 2022), emphasizes the vision of
building sustainable, human-centric, and resilient industries. The
critical focus of Industry 5.0 is reintroducing human workers to the

shop floors, which has attracted significant interest from
researchers (Alves et al., 2023; Cimino et al., 2023). The primary
objective is to enhance human creativity and intelligence in smart
manufacturing systems (Iqbal et al., 2022), while ensuring the well-
being of workers (Moller et al., 2022). Therefore, the application of
time series-based HAR in human–robot collaboration is crucial for
Industry 5.0, and the emergence of related research (Lucci et al.,
2022; Wang and Santoso, 2022) aligns with this trend. However,
future studies in this domain should consider using a more diverse
set of participants to develop and validate models.

Conclusions

The primary objective of this study was to develop machine learn-
ing models for HAR tailored to manufacturing tasks, diverging
from traditional HAR in ADL. Focusing exclusively on recognizing
detailed operational elements provides a crucial foundation for
enhancing work efficiency. To achieve this goal, the machine
learning model must identify the specific operating elements of
tasks performed by workers rather than the entire operation.

The training dataset from three benchmark workers consists of
thousands of data points with specific motion trajectory patterns,
ensuring the trained model’s robustness to recognize movements
performed by different participants.Withmachine learningmodels
capable of recognizing sequential motions, industrial engineers in
Industry 5.0 can adopt intelligent methods to replace traditional,
manual motion and time study approaches, enabling more rapid
and objective improvements in production efficiency.

This study replicated shipping logistics operations in a semi-
conductor design house to build, train, and validate machine learn-
ing models. Results indicate that

1. SVM, RF, and NB machine learning models developed in this
study accurately classify various operational elements in three
tasks using time window segmentation, overlapping, and nor-
malization techniques.

2. In cases of misclassifications, RGB clips can be used to scru-
tinize the effectiveness and correctness of employee move-
ments. This enables supervisors to devise targeted training
plans and assists industrial engineers in conducting motion
and time studies with modern tools. The method proposed in

Table 6. The comparison of the best models in the literature and the current study

Study Target Sector Device Number of elements Accuracy (%) Algorithm Type Number of participants

Beli et al., 2018 EE ADL IMU 9 84.5 HMM-based PD 10

Ishibashi and Fujii, 2021 EE Ind. IMU 3 99.8 HMM-based PI 29 + 1

Li et al., 2022 EE SP IMU 8 99.6 DTW-based PD 54

Tuli et al., 2022 EE Ind. RGB + IMU 9 88.0 CNN + LSTM PI Unknowna + 1

Jonek et al., 2023 EE Ind. RGB + IMU 5 76.0 CNN + LSTM PI Unknowna + 1

Lucci et al., 2022 ETS Ind. RGB 7 99.3 Logic PD 1

Wang and Santoso, 2022 ETS Ind. RGB 5 95.1 YOLO v3 PD 1

This study EE Ind. IMU 4 (T1) 96.1 SVM PI 13 + 3

3 (T2) 97.9 SVM, RF, NB

2 (T3) 100 SVM, RF, NB

aThe number of participants for the model development was not reported.
Note: EE = entire element; ETS = elements in timestamp; ADL = activity of daily living; Ind. = industrial operation; SP = sport; HMM = hidden Markov model; DTW = dynamic time warping;
Logic = applying pure logic but not any machine learning model; YOLO = you only look once; PD = participant-dependent; PI = participant-independent.
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this study can improve the efficiency of industrial engineers
and on-site supervisors, reduce workloads, and mitigate con-
flicts stemming from workers feeling surveilled and dissatis-
faction from feeling disrespected.

Despite favorable outcomes, there are limitations:

1. Although the research meets the theoretical functional
requirements of traditional industrial engineering in motion
and time studies, amore detailed decomposition of operational
elements may be necessary for realistic applications in today’s
highly complex manufacturing tasks. For example, the current
research decomposed a single operation into only four simple
assembly steps, but in actual industrial settings, these hand
operations are often broken down into more than 10 subac-
tions, with a need to differentiate between left- and right-hand
movements.

2. Operation completion time is an objective indicator of work
efficiency improvement. Comparing the completion time of
each step to the standard operation time would be useful and
should be investigated in future research.

3. The decomposition of motion elements still relies on human
intervention. Future integration of unsupervised learning may
cluster motions of standard workers into operational elements
for each task, reducing the workload on industrial engineers.
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