
J. Aust. Math. Soc. 99 (2015), 207–236
doi:10.1017/S1446788715000142

AVERAGES OF TWISTED L-FUNCTIONS

JULIA JACKSON and ANDREW KNIGHTLY�

(Received 19 December 2013; accepted 3 March 2015; first published online 24 June 2015)

Communicated by F. Calegari

Abstract

We use a relative trace formula on GL(2) to compute a sum of twisted modular L-functions anywhere in
the critical strip, weighted by a Fourier coefficient and a Hecke eigenvalue. When the weight k or level
N is sufficiently large, the sum is nonzero. Specializing to the central point, we show in some cases that
the resulting bound for the average is as good as that predicted by the Lindelöf hypothesis in the k and N
aspects.

2010 Mathematics subject classification: primary 11F41; secondary 11F70, 11F72.

Keywords and phrases: relative trace formula, L-functions, modular forms.

1. Introduction

In many situations, the central L-values of modular forms encode information about
related algebraic objects. For example, the nonexistence of solutions to certain
Diophantine equations can hinge on the existence of cusp forms with nonvanishing
central twisted L-value (see [El1, BEN]). Techniques from analytic number theory
can then be used to estimate averages of L-values and thereby deduce the existence of
such cusp forms. The standard method, introduced by Duke [Du], uses the Petersson
trace formula together with Weil’s bound for Kloosterman sums. In the present paper,
we use a different trace formula to compute the average of twisted L-functions directly
at any point in the critical strip. The resulting asymptotic formula has a much better
error term (as a function of the level) and follows immediately without any use of
regularization, approximate functional equations, or deep results about Kloosterman
sums.
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208 J. Jackson and A. Knightly [2]

Before stating the main result, we fix the following notation. Let Sk(N, ψ) be the
space of cusp forms h on Γ0(N) = {

(a b
c d

)
∈ SL2(Z) | c ∈ NZ} satisfying

h
(az + b
cz + d

)
= ψ(d)(cz + d)kh(z)

for all z in the complex upper half-plane H and all
(a b

c d
)
∈ Γ0(N), where ψ is a Dirichlet

character modulo N. We normalize the Petersson inner product on Sk(N, ψ) by

‖h‖2 =
1

ν(N)

"
Γ0(N)\H

|h(z)|2yk dx dy
y2 , (1.1)

where
ν(N) = [SL2(Z) : Γ0(N)].

Given h ∈ Sk(N, ψ), write h(z) =
∑

n>0 an(h)qn for q = e2πiz. Fix an integer D with
(D, N) = 1, and let χ be a primitive Dirichlet character modulo D. The χ-twisted L-
function of h is given for Re(s) > k/2 + 1 by the Dirichlet series

L(s, h, χ) =
∑
n>0

χ(n)an(h)
ns .

The completed L-function

Λ(s, h, χ) = (2π)−sΓ(s)L(s, h, χ)

has an analytic continuation to the complex plane and satisfies a functional equation
relating s to k − s, so the central point is s = k/2. Taking χ trivial and D = 1 gives the
usual L-function Λ(s, h). When N = 1, the functional equation takes the form

Λ(s, h, χ) =
ik

D2s−k

τ( χ)2

D
Λ(k − s, h, χ), (1.2)

where
τ( χ) =

∑
m∈(Z/DZ)∗

χ(m)e2πim/D (1.3)

is the Gauss sum attached to χ.
Let n be an integer prime to N, and let Tn be the nth Hecke operator, given by

Tnh(z) = nk−1
∑

ad=n,
a>0

d−1∑
b=0

ψ(a)d−kh
(az + b

d

)
.

Let F be an orthogonal basis for Sk(N, ψ) consisting of eigenfunctions of Tn. We
denote the Hecke eigenvalue by Tnh = λn(h)h, and recall that

an(h) = a1(h)λn(h).

Our main result is the following theorem.
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[3] Averages of twisted L-functions 209

Theorem 1.1. With notation as above, assume that k > 2, and let r, n ∈ Z+ with
(rn,D) = 1. Then, for all s = σ + iτ in the strip 1 < σ < k − 1,

1
ν(N)

∑
h∈F

λn(h) ar(h) Λ(s, h, χ)
‖h‖2

=
2k−1(2πrn)k−s−1

(k − 2)!
Γ(s)

∑
d|(n,r)

d2s−k+1ψ
(n
d

)
χ
( rn
d2

)
+ δN,1

2k−1(2πrn)s−1

(k − 2)!
Γ(k − s)

ik

D2s−k

τ( χ)2

D

∑
d|(r,n)

dk−2s+1χ
( rn
d2

)
+ E, (1.4)

where δN,1 ∈ {0, 1} is nonzero if and only if N = 1, and the error term E is an infinite
series involving confluent hypergeometric functions (cf. Proposition 8.1) satisfying

|E| ≤ 2 gcd(r, n)
(4πrn)k−1Dk−σ−1/2ϕ(D)B(σ, k − σ)

Nσ(k − 2)!
cosh

(
πτ

2

)
ζ(k − σ)ζ(σ). (1.5)

Here, B(x, y) = Γ(x)Γ(y)/Γ(x + y) is Euler’s Beta function and ϕ(D) is Euler’s ϕ-
function.

Theorem 1.1 extends first moment estimates of many authors. For prime level
N, Duke estimated the average at the central point in the case k = 2 and r = n = 1
[Du]. Akbary extended his result to allow for arbitrary weight k and summing over
newforms [Ak], and Kamiya treated arbitrary level and weight (with oldforms present)
and s any point on the critical line [Ka]. These references all make use of Petersson’s
formula, and obtain an error on the order of O(N−k/4+ε), whereas (1.5) is O(N−k/2) for
s on the critical line. Ellenberg has shown how to refine Duke’s method to improve the
error bound to O(N−k/2+ε) [El2].

In the case of twisting by a quadratic Dirichlet character when N = 1, a different
method was offered by Kohnen and Sengupta. They gave an asymptotic for the average
in the weight aspect using Waldspurger’s formula relating the central twisted L-values
to certain Fourier coefficients of half-integral weight modular forms [KS].

Here, we prove Theorem 1.1 by direct computation of a GL(2) relative trace formula
involving integration over N × T , where N is unipotent and T is a torus. This method
was introduced in [KL2], in which the untwisted case was treated. The incorporation
of twisting is achieved with an adelic twisting operator, which we define in Section 3.
Results of this nature have been used to bound the ranks of Jacobians of modular
curves (cf. [IS2]).

Several authors have investigated first moments of Rankin–Selberg L-functions, that
is, where χ in (1.4) is replaced with a fixed cusp form h on GL(2). In the case where
h is dihedral, one can do this via a relative trace formula on T × T [RR, FW] or by
appealing to the Gross–Zagier formula [MR]. Averages for more general h have been
studied recently by Nelson [N] and Holowinsky and Templier [HT] (level aspect) and
by Li and Masri [LM] (weight aspect). In several of the above references, a ‘hybrid’
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subconvexity result is obtained, valid for forms whose level is in some range depending
on the level of the fixed form h. Unfortunately, an analogous hybrid subconvexity
result (in N and D) is not possible in the present paper because of the poor control of
the D-aspect in (1.5).

An immediate application of Theorem 1.1 is the nonvanishing of L-functions, as
follows.

Corollary 1.2. Suppose that N > 1 and gcd(r, n) = 1. Then, for any s in the critical
strip (k − 1)/2 < Re(s) < (k + 1)/2, the sum (1.4) is nonzero as long as N + k is
sufficiently large.

(See Section 9, where the required size of N + k as a function of D and s may be
ascertained.) This can be interpreted as a GRH-on-average for the twisted L-functions,
though no distinction is made between points on and off the critical line. When N = 1,
we cannot prove nonvanishing on the critical line Re(s) = k/2, since the first two terms
have the same magnitude there. Indeed, they cancel out at s = k/2 if χ is quadratic
and conditions on k,D conspire in (1.2) to force the L-functions to vanish. However,
by arguments given in [KL2], one can show that when N = 1 and Re(s) , k/2, the
sum (1.4) is nonzero if k is sufficiently large.

We have not made any attempt to go further and address the question of how many
forms give a nonvanishing L-value. However, we note that by using estimates for
mollified first and second moments, Iwaniec and Sarnak have shown that a positive
proportion of cusp forms (in fact 50% in certain families) have nonvanishing quadratic-
twisted central L-value [IS1].

According to the generalized Lindelöf hypothesis, for a newform h,

L
( k
2
, h, χ

)
� (D2Nk)ε. (1.6)

Let Fk(N)new be any orthogonal basis for the span Sk(N)new of the newforms with
trivial character. Using the fact [Ser, page 86] that dim Sk(N)new ∼ ((k − 1)/12)ν(N)new,
where N1−ε � ν(N)new ≤ N, (1.6) implies the following ‘averaged’ Lindelöf
hypothesis: ∑

h∈Fk(N)new

L
( k
2
, h, χ

)
� Dε(Nk)1+ε. (1.7)

(This bound can only be expected to be an accurate prediction of the magnitude of the
sum when the L-values are nonnegative.)

One can use Theorem 1.1 to prove certain instances of (1.7) unconditionally,
although from (1.5) it is clear that we cannot achieve adequate bounds in the D-aspect.
The idea is to set n = r = 1 in (1.4) and use well-known bounds for the Petersson norm,
along with positivity of the L-values when χ is real. If oldforms are present, the method
apparently grinds to a halt because a1(h)Λ(k/2, h, χ)/‖h‖2 may be negative. Indeed,
even in the simplest case where N = p is prime, if h is a newform of level 1, and hp

is a nonzero basis element (unique up to scaling) orthogonal to h in Span{h(z), h(pz)},
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then using [ILS, (2.45)–(2.46)] it is not hard to show that

a1(hp)Λ
( k
2
, hp, χ

)
= µ ·

( λp(h)2

(p + 1)2 −
λp(h)χ(p)
p1/2(p + 1)

)
Λ

( k
2
, h, χ

)
(1.8)

for some constant µ > 0 depending on the choice of hp
1. The above can clearly be

negative, for example if χ(p) = 1 and the real eigenvalue λp(h) is close to 1. Therefore,
we have to content ourselves here with cases in which oldforms are not present. We
highlight two such cases, one in the k-aspect and one in the N aspect, though the proof
applies more generally.

Corollary 1.3. Let Fk(1) be an orthogonal basis for Sk(1) consisting of newforms,
normalized with first Fourier coefficient equal to 1. Then, for any real primitive
Dirichlet character χ, ∑

h∈Fk(1)

L
( k
2
, h, χ

)
�ε,D k1+ε. (1.9)

Let 4 ≤ k0 ≤ 14 be an even integer not equal to 12, let N be a prime not dividing
the conductor of χ, and let Fk0 (N)new be an orthogonal basis for S k0 (N)new = S k0 (N)
consisting of normalized newforms. Then∑

h∈Fk0 (N)new

L
(k0

2
, h, χ

)
�ε,D N1+ε. (1.10)

Remarks 1.4. The estimate (1.9) was first proven by Kohnen and Sengupta by different
means [KS]. The case of trivial χ was proven earlier by Sengupta by essentially
the same method we use here [Sen]. The analog of (1.10) for the second moment
was established by Fomenko in case of trivial χ [Fo]. (By Cauchy–Schwarz, the
estimate (1.10) is a consequence of its second moment analog.)

Proof. In Theorem 1.1, suppose that the central character ψ is trivial and that χ is real.
We assume that there are no oldforms, so F can be chosen to consist of newforms h,
normalized with a1(h) = 1. By the hypotheses on ψ and χ, we have L(k/2, h, χ) ≥ 0 for
all h ∈ F [Gu]. Furthermore, we have the bound

(4π)k−1

(k − 2)!
ν(N)‖h‖2 � (kN)1+ε

for all newforms h ∈ F (see [IM, (2.29)]). Therefore, due to the nonnegativity of the
L-values, ∑

h∈F

L
( k
2
, h, χ

)
�

(kN)1+ε(k − 2)!
(4π)k−1ν(N)

∑
h∈F

L( k
2 , h, χ)
‖h‖2

=
(kN)1+ε(k − 2)!

2k−1(2π)k/2−1Γ( k
2 )ν(N)

∑
h∈F

Λ( k
2 , h, χ)
‖h‖2

.

1By [ILS, (2.45)], hp = w(−(λp(h)/(p + 1))h(z) + p(k−1)/2h(pz)) for some nonzero w ∈ C; by
(2.46), a1(hp) = −w(λh(p)/(p + 1)); by an easy manipulation, L(s, h(pz), χ) = (χ(p)/ps)L(s, h, χ), so
L(k/2, hp, χ) = w(−λp(h)/(p + 1) + χ(p)/p1/2)L(k/2, h, χ). Then (1.8) holds with µ = |w|2.
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Applying the theorem with n = r = 1,∑
h∈F

L
( k
2
, h, χ

)
� (kN)1+ε

(
1 + δN,1

ikτ( χ)2

D
+

(k − 2)!
2k−1(2π)k/2−1Γ( k

2 )
E
)
.

It is clear from (1.5) that the third term in the parentheses tends to 0 as N →∞. Using
Stirling’s approximation, it is not hard to show that the same is true as k→∞ (see
Section 9 for details), and the corollary follows. �

2. Notation and preliminaries
Let A and Afin be the adeles and finite adeles of Q, respectively. Fix a positive

integer N. For x ∈ A∗, we let xN denote the idele whose pth component is xp for all
p|N and 1 for all p - N. For any integer d, we also write dp = ordp(d) (the p-adic
valuation of d). It should be clear from the context which meaning we take when a
subscript p appears.

Let ψ be a Dirichlet character modulo N, extended to Z by ψ(d) = 0 if (d,N) > 1.
We let ψ∗ denote its adelic counterpart (a Hecke character), defined via strong
approximation A∗ = Q∗(R+ × Ẑ∗) by the pullback

ψ∗ : A∗ −→ Ẑ∗ −→ (Z/NZ)∗ −→ C∗, (2.1)

where the first arrows are the canonical projections, and the last arrow is ψ. We drop
the * from the notation for the local constituents. Thus, ψp : Q∗p → C∗ is given by
restricting ψ∗ to the embedded image of Q∗p in A∗. Note that if d is an integer prime to
N, then

ψ(d) =
∏
p|N

ψp(d) = ψ∗(dN). (2.2)

Later we will consider a character χ of modulus D, and all of the above notation will
apply equally with D in place of N.

We let θ : A −→ C∗ denote the standard character of A, given locally by

θp(x) =

e−2πix if p =∞ (x ∈ R),
e2πirp(x) if p <∞ (x ∈ Qp),

where rp(x) ∈ Q is the p-principal part of x, a number with p-power denominator
characterized up to Z by x ∈ rp(x) + Zp. The global character θ =

∏
p≤∞ θp is then

trivial on Q and, for finite p, θp is trivial precisely on Zp. For r ∈ Q, we define

θr(x) = θ(−rx) = θ(rx). (2.3)

Every character of Q\A is of the form θr for some r ∈ Q.
Let G denote the algebraic group GL2, with center Z, and let G denote G/Z. The

group G(Afin) has the following sequences of open compact subgroups of K = G(Ẑ):

K0(N) =

{(
a b
c d

)
∈ K

∣∣∣∣∣ c ∈ NẐ
}
,

K1(N) =

{(
a b
c d

)
∈ K0(N)

∣∣∣∣∣ d ≡ 1 mod NẐ
}
.
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Because det K0(N) = det K1(N) = Ẑ∗, strong approximation holds for both of these
and, in particular,

G(A) = G(Q)(G(R)+ × K1(N)), (2.4)

where G(R)+ = {g ∈ G(R) | det g > 0}.
Let L2(ψ∗) = L2(G(Q)\G(A), ψ∗) be the space of measurable C-valued functions φ

on G(A) satisfying φ(zγg) = ψ∗(z)φ(g) for all z ∈ Z(A), γ ∈ G(Q), g ∈ G(A), and which
are square integrable over G(Q)\G(A). Let L2

0(ψ∗) denote the subspace of cuspidal
functions.

We now normalize Haar measure on each group of interest. Everything is the
same as in [KL1, Section 7], where more detail is given. On R we take Lebesgue
measure dx, and we take dy/|y| on R∗. We normalize the additive measure dx on Qp

by taking meas(Zp) = 1, and likewise d∗y on Q∗p is normalized by meas(Z∗p) = 1. These
choices determine Haar measures on A and A∗ in the usual way, with the property that
meas(A/Q) = 1. We give the compact abelian group K∞ = SO(2) the measure dk of
total length 1, and use the above measures to define measures on N(R) = {

(1 x
0 1

)
} � R

and M(R) = {
(y

z
)
} � R∗ × R∗. These choices determine a Haar measure on G(R) by

the Iwasawa decomposition: dg = d(mnk) = dm dn dk. In the same way, our fixed
measures on Qp and Q∗p determine measures on N(Qp) and M(Qp), respectively. We
take the unique measure on G(Qp) for which the open compact subgroup Kp = G(Zp)
has measure 1. On G(R) we take the measure dm dn dk, where dm is the measure dy/|y|
on M(R) � {

(y
1
)
} � R∗. These local measures determine a Haar measure on G(A) for

which meas(G(Q)\G(A)) = π/3.
Having fixed the measure, we note the following lemma.

Lemma 2.1. Let D > 0 and let χ be a Dirichlet character modulo D (not necessarily
primitive), with Gauss sum τ( χ) as in (1.3). Let χ∗ be the adelic realization of χ as
in (2.1). Then, for any integer n prime to D,∫

Ẑ∗
χ∗(u)θfin

(nu
D

)
d∗u =

χ(n)
ϕ(D)

τ( χ), (2.5)

where ϕ is Euler’s ϕ-function and θfin =
∏

p<∞ θp.

Proof. The integrand in (2.5) is invariant under the subgroup

UD = (1 + DẐ) ∩ Ẑ∗ =
∏
p|D

(1 + DZp)
∏
p-D

Z∗p.

Note that Ẑ∗/UD � (Z/DZ)∗, so meas(UD) = ϕ(D)−1. Therefore,∫
Ẑ∗
χ∗(u)θfin

(nu
D

)
d∗u =

1
ϕ(D)

∑
m∈(Z/DZ)∗

χ∗(mD)θfin

(nm
D

)
=

1
ϕ(D)

∑
m mod D

χ(m)e2πinm/D = χ(n)
τ( χ)
ϕ(D)

. �
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214 J. Jackson and A. Knightly [8]

For g =
(a b

c d
)
∈ G(R)+, we set

j(g, z) = det(g)−1/2(cz + d).

Recall that j(g1g2, z) = j(g1, g2z) j(g2, z). The group action of G(R)+ on the complex
upper half-plane H by linear fractional transformations extends to a right action on the
space of functions h : H −→ C via the weight k slash operator

h|g(z) = j(g, z)−kh(g(z)) (g ∈ G(R)+, z ∈ H).

Fix a Dirichlet character ψ of modulus N, a positive integer k satisfying

ψ(−1) = (−1)k, (2.6)

and let Sk(N, ψ) denote the space of cusp forms of level N, weight k, and character ψ.
Thus, h ∈ Sk(N, ψ) satisfies

h|(a b
c d

) = ψ(d) h (2.7)

for all
(a b

c d
)
∈ Γ0(N) and z ∈ H.

The adelization of h is the function φh ∈ L2
0(ψ∗) defined using strong

approximation (2.4) by

φh(γ(g∞ × gfin)) = j(g∞, i)−kh(g∞(i)) (2.8)

for γ ∈ G(Q), g∞ ∈ G(R)+, and gfin ∈ K1(N). The modularity of h makes φh well
defined, and one checks readily that the central character is indeed ψ∗ (see for example
the proof of Proposition 4.5 [KL3]; the complex conjugate is needed here because
we have not included it in (2.7)). With the choice of Haar measure on G(A) given
above, and the normalization (1.1), the map h 7→ φh is an isometry, that is, ‖h‖ = ‖φh‖

(cf. [KL1, (12.20)]).
We recall the meaning of the following ‘period integrals’.

Lemma 2.2. For r ∈ Q and h ∈ Sk(N, ψ),∫
Q\A

φh

((
1 x

1

))
θr(x) dx =

e−2πrar(h) if r ∈ Z+,

0 otherwise,

and ∫
Q∗\A∗

φh

((
y

1

))
|y|s−k/2 d∗y = Λ(s, h).

Proof. See for example [KL1, Corollary 12.4] and [KL2, Lemma 3.1], respectively. �
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3. The twisting operator

From now on, we assume that χ is a primitive Dirichlet character modulo D, with
(D,N) = 1. Recall that L(s, h, χ) = L(s, hχ), where hχ ∈ Sk(D2N, χ2ψ) is given by

hχ(z) =

∞∑
r=1

χ(r)ar(h)e2πirz

or, equivalently,

hχ =
1

τ( χ )

∑
m mod D

χ(m)h|(1 m/D
0 1

) (3.1)

(see for example [Bu, page 59]). Likewise, it follows from the definitions that for
g∞ ∈ G(R)+,

φhχ(g∞ × 1fin) =
1

τ( χ )

∑
m mod D

χ(m)φh

((
1 m/D
0 1

)
g∞ × 1fin

)
. (3.2)

Because χ is assumed to be primitive, we have |τ( χ )| =
√

D.
We now define a test function f χ : G(Afin) −→ C which essentially realizes the

twisting map h 7→ hχ adelically (see also [RR]). It will be supported on the disjoint
union

Supp( f χ) =
⋃

m mod D,
(m,D)=1

(
1 −m/D
0 1

)
Z(Afin)K1(N), (3.3)

where the rational matrix is embedded diagonally in G(Afin). The value of f χ on the
coset indexed by m is defined to be

f χ
((

1 −m/D
0 1

)
zk

)
=
ν(N)χ(m)ψ∗(z)

τ( χ )
. (3.4)

Here, as before,

ν(N) = [K : K0(N)] = [K : K1(N)] = meas(K1(N))−1. (3.5)

Lemma 3.1. Consider the open compact subgroup

J =

{(
a b
c d

)
∈ K1(D2N)

∣∣∣∣∣ a ≡ 1 mod DẐ
}
.

The function f χ is right K1(N)-invariant and left J-invariant.

Proof. The first claim is obvious from the definition of f χ. The second claim follows
from the fact that(

a b
cD2N d

) 1 −
m
D

0 1

 =

1 −
m
D

0 1


a + mcDN b + (d − a)

m
D
− m2cN

cD2N d − mcDN

 ,
noting that if a ≡ 1 mod D and d ≡ 1 mod D2N, the matrix on the right belongs to
K1(N). �
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Note that because f χ has compact support modulo the center, and transforms under
Z(Afin) by ψ∗, it defines an operator on L2(ψ∗) by

R( f χ)φ(x) =

∫
G(Afin)

f χ(g)φ(xg) dg. (3.6)

This operator is closely related to the twisting function h 7→ hχ, as we now show.

Proposition 3.2. Let h ∈ Sk(N, ψ) and let χ∗ be the Hecke character attached to χ as
in (2.1). Then, for all x ∈ G(Afin),

R( f χ)φh(x) = χ∗(aD)φhχ(x), (3.7)
where a is determined from x using strong approximation by writing

x = xQ

(
x∞ ×

(
a b
c d

))
for xQ ∈ G(Q), x∞ ∈ G(R)+, and

(a b
c d

)
∈ K1(D2N), and aD is the finite idele with local

components (aD)p = ap (respectively 1) if p|D (respectively p - D).

Remark 3.3. If a ∈ Ẑ∗, then χ∗(aD) = χ∗(a).

Proof. Clearly, R( f χ)φh inherits the left G(Q)-invariance from φh. Hence, we can
assume that xQ = 1. It is an easy consequence of the above lemma that R( f χ)φ is right
J-invariant. Therefore, we may modify xfin on the right by an appropriate element of
J to reduce to the case where xfin =

(aD
1
)
. Hence, it suffices to prove that

R( f χ)φh

(
x∞ ×

(
aD

1

))
= χ∗(aD)φhχ(x∞ × 1fin).

Let αm =
(1 m/D
0 1

)
. From the preceding definitions and the right K1(N)-invariance of

φh, for any x ∈ G(A),

R( f χ)φh(x) =
∑

m mod D

∫
α−1

m K1(N)
f χ(g)φh(xg) dg

=
∑

m mod D

φh(xα−1
m )

ν(N)χ(m)
τ( χ )

∫
α−1

m K1(N)
dg

=
1

τ( χ )

∑
m mod D

χ(m)φh(xα−1
m ).

Taking x = x∞ ×
(aD

1
)
,

φh(xα−1
m ) = φh

x∞ ×
(
aD

1

) 1 −
m
D

0 1




= φh

x∞ ×

1 −
aDm

D
0 1

 (aD

1

)
= φh

x∞ ×

1 −
aDm

D
0 1



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by the right K1(N)-invariance of φh. Fix an integer z relatively prime to D such that
z ≡ aD mod DẐ, and multiply through on the left by αzm. By the left G(Q)-invariance
this has no effect, so the above is

= φh


1 zm

D
0 1

 x∞ ×

1 (z − aD)m
D

0 1


 = φh(αzmx∞ × 1fin),

again by right K1(N)-invariance. Therefore,

R( f χ)φh

(
x∞ ×

(
aD

1

))
=

1
τ( χ )

∑
m mod D

χ(m)φh(αzmx∞ × 1fin)

=
χ(z)
τ( χ )

∑
m mod D

χ(m)φh(αmx∞ × 1fin) = χ(z)φhχ(x∞ × 1fin)

by (3.2). This gives the desired result, since χ(z) = χ∗(aD) by (2.1) and (2.2). �

It will be useful to define local components for f χ. For any prime p, we have defined
χp to be the character of Q∗p attached to the Hecke character χ∗. When p|D,

χp : Z∗p −→ (Zp/DZp)∗ � (Z/pDp Z)∗ −→ C∗.

Still assuming that p|D, a local version of (2.5) is the following:∫
Z∗p
χp(u)θp

(nu
D

)
d∗u =

χp(n)
ϕ(pDp )

τ( χ)p, (3.8)

where

τ( χ)p = χp

( D
pDp

)
τ( χp) (3.9)

for τ( χp) =
∑

m∈(Z/pDp Z)∗ χp(m)e2πim/pDp , the Gauss sum of the character χp. Then,
by (3.8) and (2.5),

τ( χ) =
∏
p|D

τ( χ)p. (3.10)

Given a prime p, we define a local function f χp : G(Qp) −→ C as follows. If p|D,
we take

Supp( f χp ) =
⋃

m mod DZp
p-m

(
1 −m/D
0 1

)
ZpKp (3.11)

(a disjoint union), and define f χp =
∑

m f χp,m, where f χp,m is supported on the coset
indexed by m in (3.11), and is given by

f χp,m

((
1 −m/D
0 1

)
zk

)
=
χp(m)ψp(z)
τ( χ )p

(3.12)
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for τ( χ )p as in (3.9). The value is independent of the choice of representative for
m ∈ (Zp/pDp Zp)∗, since χp has conductor pDp . If p - D, then f χp is supported on
ZpK1(N)p, and we define it by

f χp (zk) = νp(N)ψp(z),

where νp(N) = [Kp : K0(N)p] = ν(pNp ). It is easily verified using (2.2) (applied to χ∗)
and (3.10) that f χ =

∏
p f χp .

4. The Hecke operator

We refer to [KL1, Section 13] for a more detailed account of the adelic Hecke
operator defined here. Fix a positive integer n with (n,DN) = 1. Define

M(n,N) =

{
g =

(
a b
c d

)
∈ M2(Ẑ)

∣∣∣∣∣ det g ∈ nẐ∗, c ∈ NẐ
}
.

Define a function f n : G(Afin) −→ C with

Supp( f n) = Z(Afin)M(n,N) = Z(Q+)M(n,N)

by

f n(zQm) = ν(N)ψ∗(dN)
(
zQ ∈ Z(Q+),m =

(
a b
c d

)
∈ M(n,N)

)
.

One shows easily that f n is bi-K1(N)-invariant.
For any prime p, let

M(n,N)p =

{
g =

(
a b
c d

)
∈ M2(Zp)

∣∣∣∣∣ det g ∈ nZ∗p, c ∈ NZp

}
.

Notice that if p - n, then M(n, N)p = K0(N)p. Define a function f n
p : G(Qp)→ C,

supported on Z(Qp)M(n,N)p, by

f n
p (zm) = νp(N)ψp(z)ψp((dN)p)

(
z ∈ Z(Qp),m =

(
a b
c d

)
∈ M(n,N)p

)
. (4.1)

Then it is straightforward to check that f n(g) =
∏

p f n
p (gp) for g ∈ G(Afin).

Proposition 4.1. For h ∈ Sk(N, ψ),

R( f n)φh = n1−k/2φTnh. (4.2)

Proof. See [KL1, Proposition 13.6]. �
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5. The global test function

We take f∞(g) = dk〈πk(g)v0, v0〉, where πk is the weight k discrete series
representation of GL2(R) with formal degree dk = (k − 1)/4π, central character

(x
x
)
7→

sgn(x)k, and lowest weight unit vector v0. Explicitly,

f∞

((
a b
c d

))
=

(k − 1)
4π

det(g)k/2(2i)k

(−b + c + (a + d)i)k

if ad − bc > 0, and it vanishes otherwise (see [KL1, Theorem 14.5]). This function is
self-adjoint, meaning that

f∞(g) = f∞(g−1). (5.1)

It is integrable if and only if k > 2 [KL1, Proposition 14.3].
Given two functions f1, f2 ∈ L1(ψ∗), we define their convolution

f1 ∗ f2(x) =

∫
G(A)

f1(g) f2(g−1x) dg =

∫
G(A)

f1(xg−1) f2(g) dg.

It is straightforward to show that

R( f1 ∗ f2) = R( f1) ◦ R( f2) (5.2)

as operators on L2(ψ∗), where

R( f )φ(x) =

∫
G(A)

f (g)φ(xg) dg.

Fix an integer n > 0 relatively prime to DN, and set

f = ( f∞ × f χ) ∗ ( f∞ × f n). (5.3)

Local components for f can be defined as follows.

Proposition 5.1. With notation as in the previous two sections, define

fp =


f χp = f n

p if p - nD,
f χp if p|D,
f n
p if p|n.

Then f = f∞
∏

p fp.

Proof. Because f∞ × f χ and f∞ × f n are both factorizable and identically 1 on Kp for
almost every p, the integral defining their convolution is factorizable and hence

f = ( f∞ × f χ) ∗ ( f∞ × f n) = ( f∞ ∗ f∞)
∏

p

( f χp ∗ f n
p ).
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It follows directly from the orthogonality relations for discrete series that f∞ ∗ f∞ = f∞.
Indeed,

f∞ ∗ f∞(x) = d2
k

∫
G(R)
〈πk(g)v0, v0〉〈πk(g−1x)v0, v0〉 dg

= d2
k

∫
G(R)
〈πk(g)v0, πk(x)v0〉〈πk(g)v0, v0〉 dg

= d2
k
〈v0, v0〉〈πk(x)v0, v0〉

dk

= f∞(x).
Likewise, simple direct computation shows that for finite primes p, f χp ∗ f n

p = fp, as
given. �

Globally, the support of f is

Supp( f ) = G(R)+ ×
⋃

m mod D,
(m,D)=1

(
1 −m/D
0 1

)
Z(Q+)M(n,N). (5.4)

The union over m is easily seen to be disjoint, using the fact that (n, D) = 1.
Accordingly, we can write

ffin =
∑

m∈(Z/DZ)∗
fm,

where fm is supported on the coset indexed by m in (5.4), and

fm

((
1 −m/D
0 1

)
zk

)
=
ν(N)χ(m)ψ∗(dN)

τ( χ )
(5.5)

for z ∈ Z(Q+) and k =
(a b

c d
)
∈ M(n,N).

Under the condition k > 2 (which will be in force throughout), f ∈ L1(ψ∗), so the
operator R( f ) on L2(ψ∗) is defined.

Proposition 5.2. The operator R( f ) factors through the orthogonal projection of
L2(ψ∗) onto the finite-dimensional subspace Sk(N, ψ) (embedded in L2(ψ∗) via (2.8)).

Proof. The operator R( f∞ × f n) factors through the orthogonal projection onto
Sk(N, ψ) [KL1, Corollary 13.13]. Therefore, by (5.2) and (5.3), R( f ) has the same
property. �

Remark 5.3. The image of R( f ) is not contained in any classical space of cusp forms
Sk(Γ1(M)). Indeed, it is immediate from (3.7) that the image of R( f ) is not left K1(M)-
invariant for any M, since a congruence condition on a is needed.

The operator R( f ) is an integral operator given by the continuous kernel

K(g1, g2) =
∑
h∈F

R( f )φh(g1)φh(g2)
‖h‖2

=
∑

γ∈G(Q)

f (g−1
1 γg2). (5.6)

Here, the spectral sum is taken over any orthogonal basis F for Sk(N, ψ), as a
consequence of Proposition 5.2, and both sums are absolutely convergent.
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6. Spectral side

Fix a positive integer r relatively prime to D. We prove Theorem 1.1 by computing
the following integral:∫

Q∗\A∗

∫
Q\A

K
((

y 0
0 1

)
,

(
1 x
0 1

))
θr(x)χ∗(y)|y|s−k/2 dx d∗y (6.1)

using the two expressions for the kernel (5.6). We note that the double integral is
absolutely convergent for all s ∈ C (see below).

On the spectral side, (6.1) becomes∑
h∈F

1
‖h‖2

∫
Q∗\A∗

R( f )φh

((
y

1

))
χ∗(y)|y|s−k/2 d∗y

∫
Q\A

φh

((
1 x
0 1

))
θr(x) dx. (6.2)

Choose F in (5.6) to consist of eigenvectors of Tn. Then, for h ∈ F , we write
Tnh = λn(h)h, so that, by (3.7) and (4.2),

R( f )φh

((
y

1

))
= n1−k/2λn(h)χ∗(y)φhχ

((
y

1

))
for all y ∈ R+ × Ẑ∗ � Q∗\A∗. Consequently, the factor χ∗(y) in (6.2) is cancelled out,
and (6.2) becomes∑

h∈F

n1−k/2λn(h)
‖h‖2

∫
Q∗\A∗

φhχ

((
y

1

))
|y|s−k/2 d∗y

∫
Q\A

φh

((
1 x

1

))
θr(x) dx (6.3)

=
n1−k/2

e2πr

∑
h∈F

λn(h)ar(h)
‖h‖2

Λ(s, h, χ) (6.4)

by Lemma 2.2. The two integrals in (6.4) are absolutely convergent for all s, so we
have the following proposition.

Proposition 6.1. The double integral (6.1) is absolutely convergent for all s ∈ C.

7. Geometric side

For the moment, let H(A) = M(A) × N(A) � A∗ × A. Inserting the geometric
expression K(g1, g2) =

∑
γ f (g−1

1 γg2) into (6.1),∫
H(Q)\H(A)

∑
γ∈G(Q)

f
((

y−1 0
0 1

)
γ

(
1 x
0 1

))
θr(x)χ∗(y)|y|s−k/2 dx d∗y

=

∫
H(Q)\H(A)

∑
δ

∑
γ∈[δ]

f
((

y−1 0
0 1

)
γ

(
1 x
0 1

))
θr(x)χ∗(y)|y|s−k/2 dx d∗y,

where δ ranges over a set of representatives for the H(Q)-orbits in G(Q) relative to the
action (m, n) · γ = m−1γn, and [δ] = {m−1δn | (m, n) ∈ Hδ(Q)\H(Q)} is the orbit. It is
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not hard to check that in fact for all δ, the stabilizer Hδ(Q) = {1}. Therefore, (6.1) is
formally equal to∑

δ

∫
A∗

∫
A

f
((

y−1

1

)
δ

(
1 x

1

))
θr(x)χ∗(y)|y|s−k/2 dx d∗y, (7.1)

where δ runs through a set of representatives for M(Q)\G(Q)/N(Q). By the Bruhat
decomposition

G(Q) = M(Q)N(Q) ∪ M(Q)N(Q)
(
−1

1

)
N(Q),

a set of representatives δ is given by

{1} ∪
{(

0 −1
1 0

)}
∪

{(
t −1
1 0

) ∣∣∣∣∣ t ∈ Q∗
}
. (7.2)

The equality between (6.1) and (7.1) is valid on the strip 1 < Re(s) < k − 1. This is a
consequence of the following proposition.

Proposition 7.1. Suppose that 1 < Re(s) < k − 1. Then∑
δ

∫
A∗

∫
A

∣∣∣∣∣∣ f
((

y−1

1

)
δ

(
1 x

1

))
θr(x)χ∗(y)|y|s−k/2

∣∣∣∣∣∣ dx d∗y <∞.

Proof. This is proven in just the same way as the analogous result in [KL2,
Proposition 3.3]. We outline the steps. Because ffin is bounded and compactly
supported as a function of y, x, the argument hinges on bounding the infinite part

Iabs
δ ( f )∞ =

∫ ∞

0

∫ ∞

−∞

∣∣∣∣∣∣ f∞
((

y−1

1

)
δ

(
1 x
0 1

))∣∣∣∣∣∣ dx yσ−k/2−1 dy,

where σ = Re(s). However, by (5.1), the above is

=

∫ ∞

0

∫ ∞

−∞

∣∣∣∣∣∣ f∞
((

1 −x
0 1

)
δ−1

(
y

1

))∣∣∣∣∣∣ dx yσ−k/2−1 dy.

Noting that the set of the δ in (7.2) is exactly the set of inverses of the δ in [KL2], the
above coincides with Iabs

δ−1 ( f )∞ considered in Section 3.3 there. Hence, those results
give

Iabs
δ ( f ) <∞ for



δ = 1 and 0 < σ < k − 1,

δ =

 −1
1

 and 1 < σ < k,

δ =

 t −1
1 0

 and 0 < σ < k.

Furthermore, by [KL2, Proposition 3.3], for δt =
( t −1
1 0

)
,

Iabs
δt

( f )∞ � |t|σ−k if 0 < σ < k. (7.3)
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Thus, to complete the proof, it remains to show that for 1 < σ < k − 1,∑
t∈Q∗

Iabs
δt

( f ) <∞.

We will prove in Proposition 8.1 below that the finite part Iabs
δt

( f )fin vanishes unless
t = Nb/nD for some b ∈ Z − {0}. We will show in (8.14) that for such t,

|Iabs
δt

( f )fin| ≤
nσ−k/2ν(N)ϕ(D) gcd(r, n)

N2σ−kD1/2

∑
d|b

dk−2σ.

Together with (7.3), the fact that #{d : d|b} � |b|ε for ε > 0, and using dk−2σ ≤ 1 when
σ > k/2, this gives the global estimate

∑
t∈Q∗

Iabs
δt

( f )�N,D,n,ε


∑

b∈Z−{0}

|b|−σ+ε if σ ≤ k/2,∑
b∈Z−{0}

|b|σ−k+ε if σ > k/2.

This is finite when 1 < σ < k − 1 and ε is sufficiently small. �

Let Iδ(s) denote the double integral attached to δ in (7.1). For 1 < Re(s) < k − 1 and
each δ in (7.2), we need to compute Iδ(s). It factorizes as

Iδ(s) = Iδ(s)∞Iδ(s)fin = Iδ(s)∞
∏

p

Iδ(s)p,

where

Iδ(s)∞ =

∫
R∗

∫
R

f∞

((
y−1

1

)
δ

(
1 x
0 1

))
θ∞(rx)χ∞(y)|y|s−k/2 dx

dy
|y|

and likewise

Iδ(s)p =

∫
Q∗p

∫
Qp

fp

((
y−1

1

)
δ

(
1 x
0 1

))
θp(rx)χp(y)|y|s−k/2

p dx d∗y.

From the definition of f∞, the integrand for Iδ(s)∞ vanishes unless y > 0. Because χ∞
is trivial on R+, it has no effect on Iδ(s)∞ and can be removed. Using (5.1),

Iδ(s)∞ = I′
δ−1 (s)∞, (7.4)

where

I′
δ−1 (s)∞ =

∫ ∞

0

∫ ∞

−∞

f∞

((
1 −x
0 1

)
δ−1

(
y

1

))
θ∞(rx)ys−k/2 dx

dy
y

is the archimedean factor computed in [KL2].
For convenience, when computing the finite part Iδ(s)fin, we will replace y by y−1.

(It is a property of unimodular (for example abelian) groups that this does not affect
the value of the integral.) Thus,

Iδ(s)fin =

∫
A∗fin

∫
Afin

ffin

((
y

1

)
δ

(
1 x
0 1

))
θfin(rx) dx χ∗(y)|y|k/2−s

fin d∗y.
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Looking at determinants, by (5.4), the integrand is nonzero only if y = nu/`2 for some
` ∈ Q+ and u ∈ Ẑ∗. Thus, since Q+ ∩ Ẑ∗ = {1}, the above is

=
∑
`∈Q+

( n
`2

)s−k/2 ∫
Ẑ∗

∫
Afin

ffin

(` `

)−1 nu
`

`

 δ (1 x
0 1

) θfin(rx) dx χ∗
(nu
`2

)
d∗u.

Note that χ∗fin(n/`2) = χ∗(n/`2) = 1 since n/`2 ∈ Q+. Likewise, the scalar factor of `−1
fin

pulls out of ffin as ψ∗fin(`−1) = 1. Hence,

Iδ(s)fin =
∑
`∈Q+

( n
`2

)s−k/2 ∫
Ẑ∗

∫
Afin

ffin

nu
`

`

 δ (1 x
0 1

) θfin(rx) dx χ∗(u) d∗u. (7.5)

Proposition 7.2. When δ = 1, the integral

I1(s) =

∫
A∗

∫
A

f
((

y xy
0 1

))
θ(rx) dxχ∗(y)|y|k/2−s d∗y

converges absolutely on 0 < Re(s) < k − 1, and for such s it is equal to

n1−k/2

e2πr

2k−1(2πrn)k−s−1

(k − 2)!
Γ(s)ν(N)

∑
d|(n,r)

d2s−k+1ψ
(n
d

)
χ
( rn
d2

)
. (7.6)

Proof. The absolute convergence was proven in Proposition 7.1. We factorize the
integral as I1(s) = I1(s)∞I1(s)fin. By (7.4) and the proof of [KL2, Proposition 3.4],

I1(s)∞ =
2k−1(2πr)k−s−1

(k − 2)! e2πr Γ(s). (7.7)

Now consider the finite part, which by (7.5) is

I1(s)fin =
∑
`∈Q+

( n
`2

)s−k/2 ∫
Ẑ∗

∫
Afin

ffin


nu
`

xnu
`

0 `


 θfin(rx) dx χ∗(u) d∗u.

Replacing x by `x/nu, the above is

=
∑
`∈Q+

ns−k/2+1

`2s−k+1

∑
m∈(Z/DZ)∗

∫
Ẑ∗

∫
Afin

fm


nu
`

x

0 `


 θfin

(r`x
nu

)
dx χ∗(u) d∗u

=
∑
`∈Q+

ns−k/2+1

`2s−k+1

∑
m

∫
Ẑ∗

∫
Afin

fm


(
1 −m/D
0 1

) nu
`

x +
`m
D

0 `


 θfin

(r`x
nu

)
dx χ∗(u) d∗u.

By (5.4), the integrand is nonzero if and only if nu/`, `, x + `m/D ∈ Ẑ. Replacing x by
x − `m/D,

I1(s)fin =
ν(N)
τ( χ)

∑
`|n

ns−k/2+1

`2s−k+1 ψ
∗(`N)

∑
m

χ(m)
∫

Ẑ∗

∫
Ẑ
θfin

(r`(x − `m
D )

nu

)
dx χ∗(u) d∗u

=
ν(N)
τ( χ)

∑
`|n

ns−k/2+1

`2s−k+1 ψ(`)
∑

m

χ(m)
∫

Ẑ∗
θfin

(r`2m
nDu

) ∫
Ẑ
θfin

(r`x
nu

)
dx χ∗(u) d∗u.
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The integral over Ẑ evaluates to 1 if n
`
|r, and 0 otherwise. Setting d = n/`, the above is

=
ν(N)
τ( χ)

∑
d|(n,r)

ns−k/2+1

( n
d )2s−k+1ψ

(n
d

)∑
m

χ(m)
∫

Ẑ∗
θfin

( rnm
d2Du

)
χ∗(u) d∗u

=
ν(N)nk/2−s

τ( χ)

∑
d|(n,r)

d2s−k+1ψ
(n
d

)∑
m

χ(m)
∫

Ẑ∗
θfin

( rnm
d2D

u
)
χ∗(u) d∗u

=
ν(N)nk/2−s

τ( χ)

∑
d|(n,r)

d2s−k+1ψ
(n
d

)∑
m

χ(m)χ
(rnm

d2

)
τ( χ )
ϕ(D)

= ν(N)nk/2−s
∑

d|(n,r)

d2s−k+1ψ
(n
d

)
χ
( rn
d2

)
.

Passing to the third line, we applied (2.5). Multiplying by (7.7) gives the result. �

Although we computed the orbital integral globally, it may be of interest to know the
value of the local orbital integrals, for example if one wishes to compute the analogous
trace formula over a number field, or use a test function which differs from ours at a
finite number of places. Letting

I1(s)p =

∫
Q∗p

∫
Qp

fp

((
y xy
0 1

))
θp(rx)χp(y)|y|k/2−s

p dx d∗y,

by calculations very similar to the above, we find, for r ∈ Zp, that

I1(s)p =



χp(r) (p|D),
ν(pNp ) (p|N),

(pnp )k/2−s
min(rp,np)∑

dp=0

(pdp )2s−k+1ψp

( pdp

pnp

)
χp

( p2dp

pnp

)
(p|n),

1 (p - nND).

(7.8)

Proposition 7.3. When δ =
(
−1

1
)
, the integral

Iδ(s) =

∫
A∗

∫
A

f
((

0 −y
1 x

))
θ(rx) dx χ∗(y)|y|k/2−s d∗y

converges absolutely on 1 < Re(s) < k, and for such s it vanishes unless N = 1. When
N = 1 (so k is even by (2.6)),

Iδ(s) =
n1−k/2

e2πr

2k−1(2πrn)s−1

(k − 2)!
Γ(k − s)

ik

D2s−k

τ( χ)2

D

∑
d|(r,n)

dk−2s+1χ
( rn
d2

)
. (7.9)

Remark 7.4. Comparing with the identity term (7.6) when N = 1,

ik

D2s−k

τ( χ)2

D
I1(k − s, χ) = Iδ(s, χ),

mirroring the functional equation (1.2) on the spectral side.
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Proof. The absolute convergence was proven in Proposition 7.1. By (7.4) and the
proof of [KL2, Proposition 3.5],

Iδ(s)∞ =
2k−1(2πr)s−1

e2πr(k − 2)! ik
Γ(k − s). (7.10)

Now consider the finite part (7.5):

Iδ(s)fin =
∑
`∈Q+

( n
`2

)s−k/2 ∫
Ẑ∗

∫
Afin

ffin


0 −

nu
`

` x`


 θfin(rx) dx χ∗(u) d∗u.

Because the above matrix has determinant nu ∈ nẐ∗, we see from (5.4) that0 −
nup

`
` `xp

 ∈ M(n,N)p for all p - D (7.11)

when `xp ∈ Zp. Likewise, we can assume that for some m ∈ (Z/DZ)∗,1 m
D

0 1


0 −

nu
`

` x`

 =

`mD −
nu
`

+
m`x
D

` `x

 ∈ M(n,N). (7.12)

The latter implies that x` ∈ Ẑ and ` ∈ NZ+. If p|N, then, by considering the upper right
entry of (7.11), we have ordp(n) ≥ ordp(`) ≥ ordp(N) > 0. This contradicts (n,N) = 1,
and therefore we may assume that N = 1. From the upper left entry of (7.12), we see
that D|`. Write ` = Dd for d ∈ Z+. Replacing x by x/` = x/Dd, the measure is scaled
by |Dd|−1

fin = Dd, so Iδ(s)fin is equal to∑
d∈Z+

ns−k/2

(Dd)2s−k−1

×
∑

m∈(Z/DZ)∗

∫
Ẑ∗

∫
Ẑ

fm


1 −

m
D

0 1


md

−nu
Dd

+
mx
D

Dd x


 θfin

( rx
Dd

)
dx χ∗(u) d∗u.

From the upper right entry of (7.12), −nu/Dd + mx/D ∈ Ẑ. Since x ∈ Ẑ, this means
that

mdx ∈ mdẐ ∩ (nu + DdẐ). (7.13)

Generally, it is not hard to show that for any h, j, k ∈ Ẑ,

hẐ ∩ ( j + kẐ) =

hc +
hk

gcd(h, k)
Ẑ if gcd(h, k)| j,

∅ if gcd(h, k) - j,
(7.14)

where c ∈ Z is any solution to hc ≡ j mod kẐ. Applying this to (7.13), we have
gcd(h, k) = gcd(md, Dd) = d, so the set in (7.13) is nonempty if and only if d|n.
Assuming that this holds, the range of x is determined by

x ∈ cm + DẐ,
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where cm is any positive integer satisfying

mdcm ≡ nu mod dDẐ. (7.15)

For such x, the value of fm is identically equal to χ(m)/τ( χ ), since N = 1 (and so
ψ = 1). Replace x by cm + Dx. This changes the measure by a factor of |D|fin = D−1,
and

Iδ(s)fin =
ns−k/2

τ( χ )D2s−k

∑
d|n

dk−2s+1
∑

m

χ(m)
∫

Ẑ∗

∫
Ẑ
θfin

(r(cm + Dx)
Dd

)
dx χ∗(u) d∗u.

The inner integral
∫

Ẑ θfin(rx/d) dx is equal to 1 if d|r, and 0 otherwise. Therefore, the
above is

=
ns−k/2

τ( χ )D2s−k

∑
d|(r,n)

dk−2s+1
∑

m

χ(m)
∫

Ẑ∗
θfin

(rcm

Dd

)
χ∗(u) d∗u.

Since d|(r, n), (7.15) is equivalent to cm ≡ m(n/d)u mod DẐ, where mm ≡ 1 mod D.
Using this along with (2.5),

Iδ(s)fin =
ns−k/2

τ( χ )D2s−k

∑
d|(r,n)

dk−2s+1
∑

m

χ(m)
∫

Ẑ∗
θfin

(−( r
d )( n

d )mu

D

)
χ∗(u) d∗u

=
ns−k/2

τ( χ )D2s−k

∑
d|(r,n)

dk−2s+1
∑

m

χ(m)χ(−1)χ
( rn
d2

)
χ(m)

τ( χ)
ϕ(D)

=
ns−k/2

D2s−k

τ( χ)
χ(−1)τ( χ)

∑
d|(r,n)

dk−2s+1χ
( rn
d2

)
. (7.16)

Since χ is primitive, τ( χ) χ(−1)τ( χ ) = τ( χ)τ( χ) = D. Therefore, τ( χ)/χ(−1)τ( χ ) =

τ( χ)2/D. Using this and multiplying the above by (7.10), equation (7.9) follows. �

We state here the value of the local orbital integrals

Iδ(s)p =

∫
Q∗p

∫
Qp

fp

((
0 −y
1 x

))
θp(rx) χp(y)|y|k/2−s

p dx d∗y.

By local calculations similar to the above, we find, for δ =
(0 −1
1 0

)
, that

Iδ(s)p =



(pDp )k−2sψp(D) χp(D2) χp(−r)
τ( χ)p

τ( χ )p
(p|D),

0 (p|N),

(pnp )s−k/2
min(rp,np)∑

dp=0

(pdp )k−2s+1ψp(pdp )χp

( pnp

p2dp

)
(p|n),

1 (p - nND).

(7.17)

Here, recall that τ( χ)p = χp(D/pDp )τ( χp) as in (3.9). Using (3.10), it is
straightforward to show that the product of the above over all p agrees with (7.16)
when N = 1.

https://doi.org/10.1017/S1446788715000142 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000142


228 J. Jackson and A. Knightly [22]

8. Computation of Iδt (s)

In this section, we will prove the following proposition.

Proposition 8.1. When δt =
( t −1
1 0

)
, the integral

Iδt (s) =

∫
A∗

∫
A

f
((

yt yxt − y
1 x

))
θ(rx) dx χ∗(y)|y|k/2−s d∗y

converges absolutely on the strip 0 < σ < k, where σ = Re(s). The integrand vanishes
unless t = Nb/nD for b ∈ Z − {0}. When 1 < σ < k − 1, the sum

∑
t∈Q∗ Iδt (s) is

absolutely convergent, and E := (e2πr/ν(N)n1−k/2)
∑

Iδt (s) is equal to

(4πrn)k−1ϕ(D)ψ(nD)eiπs/2

N sDs−k(k − 2)! τ( χ )

×
∑

a,0,d>0 sat. (8.2),
gcd(a,Nd(D))|gcd(r,n)

as−k gcd(a,Nd(D))
dsψ(a)e(2πir`/adD) Jχ(a, d)1 f1

(
s; k;
−2πirnD

Nad

)
,

where as = e−iπs|a|s if a < 0, d(D) =
∏

p-D pdp is the prime-to-D part of d, and similarly
for d = d(D)dD, ` is any integer satisfying Nd(D)` ≡ −nD mod adD, Jχ is a product of
certain explicit local factors of absolute value ≤1 given in (8.13),

1 f1(s, k; w) =
Γ(s)Γ(k − s)

Γ(k) 1F1(s; k; w) =

∫ 1

0
ewxxs−1(1 − x)k−s−1 dx (8.1)

for Re(k) > Re(s) > 0, and, writing ap, dp for the p-adic valuations of a, d,

p|D =⇒


ap = Dp if dp > Dp,

ap ≥ Dp if dp = Dp,

ap = dp if 0 ≤ dp < Dp.

(8.2)

Remark 8.2. We give an expression for Iδt (s) in (8.16) below. As in [KL2], this can be
used in principle to compute the sum over t to any level of precision.

The absolute convergence was proven in Proposition 7.1. To begin the computation,
write δ = δt, and consider the finite part given by (7.5):

Iδ(s)fin =
∑
`∈Q+

( n
`2

)s−k/2 ∫
Ẑ∗

∫
Afin

ffin




nut
`

nutx
`
−

nu
`

` `x


 θfin(rx) dx χ∗(u) d∗u.

We will show that this vanishes unless t ∈ (N/nD)Z. In anticipation of this, write
t = Nb/nD, where (for now) b ∈ Q∗. Since the determinant of the matrix is nu ∈ nẐ∗,
by (5.4) the integrand vanishes unless ` ∈ NZ+ and `x ∈ Ẑ. Therefore, we shall set ` =

Nd, and replace x by `−1x = x/Nd, so that dx becomes d(x/Nd) = |Nd|−1
findx = Nd · dx.

The above then becomes∑
d∈Z+

ns−k/2Nd
(Nd)2s−k

∫
Ẑ∗

∫
Ẑ

ffin


 ub

dD
ubx

Nd2D
−

nu
Nd

Nd x


 θfin

( rx
Nd

)
dx χ∗(u) d∗u. (8.3)
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We will show that the integrand vanishes unless b ∈ Z and d|b. We now work locally.
The pth factor of the double integral is∫

Z∗p

∫
Zp

fp


 ub

dD
ubx

Nd2D
−

nu
Nd

Nd x


 θp

( rx
Nd

)
dx χp(u) d∗u. (8.4)

8.1. Local computation at p|D. Suppose first that p|D. Then N is a unit, so,
replacing u by Nu, (8.4) becomes∫

Z∗p

∫
Zp

fp


Nub

dD
ubx
d2D

−
nu
d

Nd x


 θp

( rx
Nd

)
dx χp(Nu) d∗u. (8.5)

Recall that fp =
∑

m∈(Zp/DZp)∗ fp,m, where fp,m = f χp,m is given in (3.12). Fix m and
consider

fp,m


Nub

dD
ubx
d2D

−
nu
d

Nd x


 = fp,m


1 −

m
D

0 1


Nub

dD
+

Ndm
D

ubx
d2D

−
nu
d

+
mx
D

Nd x


 .

By (3.11) and the fact that the determinant of the rightmost matrix is nNu ∈ Z∗p, this is
nonzero if and only if the rightmost matrix belongs to Kp or, equivalently,

(i)
ub
dD

+
dm
D
∈ Zp,

(ii)
x
d

( ub
dD

+
dm
D

)
−

nu
d
∈ Zp.

We assume henceforth that these conditions hold. Notice that if p - d, the first
condition already implies the second. On the other hand, since x ∈ Zp,

p|d, (i), (ii) =⇒
(iii) x ∈ Z∗p,

(iv)
( ub
dD

+
dm
D

)
∈ Z∗p.

Letting Dp = ordp(D), and similarly for bp, dp, we find by condition (i) (if dp = 0) and
condition (iv) (if dp > 0) that

p|D =⇒


bp = dp + Dp if dp > Dp,

bp ≥ 2Dp if dp = Dp,

bp = 2dp if 0 ≤ dp < Dp.

(8.6)

Suppose first that p - d, so that by (8.6), dp = bp = 0. Then condition (i) is
equivalent to

m ≡
−bu
d2 mod DZp,

https://doi.org/10.1017/S1446788715000142 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000142


230 J. Jackson and A. Knightly [24]

d, b, u,m being units. So, given u, there is exactly one m for which the above condition
holds and, by (3.12), the inner integral of (8.5) is equal to∫

Zp

χp(m)
τ( χ )p

θp

( rx
Nd

)
dx =

χp(−b
d2 )

τ( χp)
χp(u),

since θp(rx/Nd) = 1. Therefore, the double integral (8.4) is equal to

χp(N)
χp( −d

b/d )

τ( χ )p

∫
Z∗p
χp(u)χp(u) d∗u =

χp(−Nd
b/d )

τ( χ )p
. (8.7)

Now suppose that p|d. In view of (ii) and (iv),

x ∈
Dnu

u b
d + dm

+ dZp ⊂ Z∗p.

This is the only condition on x required for the fp,m-term to be nonzero. Make the
substitution x = Dnu/(ub/d + dm) + d · w, so that dx = |d|pdw = |Nd|pdw. The value
of fp,m is χp(m)/τ( χ )p, so, assuming that (iv) holds, the inner integral in (8.5) is equal
to

|Nd|p
∑

m

χp(m)
τ( χ )p

θp

( rDnu
Nub + Nd2m

) ∫
Zp

θp

(rw
N

)
dw.

The latter integral has value 1, since r ∈ Z+ and N is a unit. The variable u ranges
through the set Ub,d,m = (−d2m/b + (dD/b)Z∗p) ∩ Z∗p determined by condition (iv)
above. By considering the possibilities for dp > 0 listed in (8.6), we find easily that

Ub,d,m =



Z∗p if dp > Dp (so bp = dp + Dp),

−
d2m

b
+

D
d

Z∗p if 0 < dp < Dp (so bp = 2dp),

Z∗p if dp = Dp and bp > 2Dp,⋃
a∈(Z/pZ)∗,

a.−(d2m/b) mod p

(a + pZp) if dp = Dp and bp = 2Dp.

The double integral (8.4) is equal to

|Nd|p
τ( χ )p

∑
m∈(Zp/DZp)∗

χp(m)
∫

Ub,d,m

χp(Nu)θp

( rDnu
Nub + Nd2m

)
d∗u.

Noting that Ub,d,m = mUb,d,1, we can replace u by mu and integrate over Ub,d,1. This
has the effect of cancelling every m, so that the above is

|Nd|pϕp(D)
τ( χ )p

∫
Ub,d,1

χp(Nu)θp

( rDnu
Nub + Nd2

)
d∗u. (8.8)

We leave this as something that could be computed given χp, if desired. For our
purposes, it will be enough to bound the integral trivially by 1. (We do not think that
a more careful treatment of the integral can yield enough power saving in D to enable
the type of hybrid subconvexity bound mentioned in the introduction.)
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8.2. Local computation at p - D. Now we suppose that p - D. In this case, χp is
unramified, so that (8.4) is equal to∫

Z∗p

∫
Zp

fp


 ub

dD
ubx

Nd2D
−

nu
Nd

Nd x


 θp

( rx
Nd

)
dx d∗u. (8.9)

Since the support of fp is Z(Qp)M(n,N)p and the determinant of the above matrix is
nu ∈ nZ∗p, the integrand is nonzero precisely when

(i)
ub
dD
∈ Zp,

(ii)
x

Nd

( ub
dD

)
−

nu
Nd
∈ Zp.

Both conditions are in fact independent of u. By (i), we see that 0 ≤ dp ≤ bp since
p - D. Together with (8.6), this proves our assertion that Iδ(s) vanishes unless b ∈ Z,
and that the sum in (8.3) can be taken just over d|b. Since u,D ∈ Z∗p, condition (ii) is
equivalent to

b
d

x ∈ (Dn + NdZp) ∩
b
d

Zp. (8.10)

(If p|N, this is possible only if dp = bp.) Applying the local analog of (7.14) to (8.10),
and then dividing by b/d,

x ∈

c +
Nd

gcd(b/d,Nd)
Zp if gcdp(b/d,Nd)|Dn,

∅ otherwise,

where gcdp denotes the p-part of the gcd, and c ∈ Z is given by

b
d

c ≡ Dn mod NdZp.

We shall specify c further as follows, so that the above holds simultaneously for all
p - D. Write d = d(D)dD, where (D, d(D)) = 1 and dD =

∏
p|D pdp . Then we take c ∈ Z,

so that 
b
d

c ≡ Dn mod Nd(D)Z,

c ≡ 0 mod dDZ.
(8.11)

It is not hard to see that such c exists under the hypothesis that gcdp(b/d, Nd)|Dn
for all p - D. Indeed,

∏
p-D gcdp(b/d, Nd) = gcd(b/d, Nd(D))|Dn, which implies the

existence of an integer c satisfying the first congruence. If necessary, we can multiply
c by dDdD ≡ 1 mod Nd(D) to further ensure that c ∈ dDZ.

The first congruence in (8.11) implies that b/d is relatively prime to N. Therefore,
ψp(x) = ψp(c). Since meas(Z∗p) = 1 and everything is independent of u ∈ Z∗p, the double
integral (8.9) is equal to

νp(N)ψp((cN)p)
∫

c+(Nd/gcd(b/d,Nd))Zp

θp

( rx
Nd

)
dx,
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where we used the formula (4.1) for fp. Now let x = c + (Nd/gcd(b/d,Nd))w. Then
the above is

= νp(N)ψp((cN)p)
∣∣∣∣∣ Nd
gcd(b/d,Nd)

∣∣∣∣∣
p
θp

( rc
Nd

) ∫
Zp

θp

( rw
gcd(b/d,Nd)

)
dw. (8.12)

The integral is nonzero (and hence equal to 1) if and only if gcdp(b/d,Nd)|r.

8.3. The finite part. Multiply the local factors (8.8) (respectively (8.7)) and (8.12),
together with the coefficient of the double integral in (8.3). We set

Jχ
(b
d
, d

)
=

∏
p|D

Jp

(b
d
, d

)
, (8.13)

where Jp(b/d, d) denotes the integral in (8.8) if dp > 0 (respectively the quantity
χp(−Nd/b/d)/ϕp(D) if dp = 0). We find that

Iδt (s)fin =
∑

d|b satisfying (8.6),
gcd(b/d,Nd(D))|(r,n)

ns−k/2Nd
(Nd)2s−k Jχ

(b
d
, d

)∏
p|D

|Nd|pϕp(D)
τ( χ )p

×
∏
p-D

νp(N)ψp((cN)p)
∣∣∣∣∣ Nd
gcd( b

d ,Nd)

∣∣∣∣∣
p
θp

( rc
Nd

)
.

Here, d(D) =
∏

p-D pdp , as before. We can make a few simplifications. First,∏
p-D

ψp((cN)p) = ψ∗(cN) = ψ(c) =
ψ(nD)
ψ(b/d)

,

since (b/d)c ≡ nD mod N and (b/d, N) = 1 by (8.10). By the second congruence
of (8.11), namely dD|c, we have θp(rc/Nd) = 1 for all p|D. Hence,∏

p-D

θp

( rc
Nd

)
= θfin

( rc
Nd

)
= θ∞

( rc
Nd

)
= e−2πirc/Nd.

Therefore,

Iδt (s)fin =
ns−k/2ϕ(D)ν(N)

N2s−kτ( χ )

∑
d|b satisfying (8.6),
gcd(b/d,Nd(D))|(r,n)

ψ(nD)
ψ( b

d )

gcd( b
d ,Nd(D))

d2s−ke2πirc/Nd Jχ
(b
d
, d

)
. (8.14)

8.4. Archimedean integral and global expression. Finally, we consider the
archimedean integral Iδt (s)∞. By (7.4) and the proof of [KL2, Proposition 3.7],

Iδt (s)∞ =
(4πr)k−1ts−k

(k − 2)! e2πr e−iπs/2e−2πir/t
1 f1(s; k; 2πir/t),
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where ts = eiπs|t|s if t < 0. Therefore,

Iδt (s)∞ =
(4πr)k−1ts−keiπs/2e2πir/t

(k − 2)! e2πr 1 f1(s; k;−2πir/t),

where now ts = e−iπs|t|s if t < 0. By the discussion above, we can take t = Nb/nD, so
that

Iδt (s)∞ =
(4πr)k−1N s−keiπs/2

(k − 2)! e2πrns−kDs−k bs−ke2πirnD/Nb
1 f1

(
s; k;
−2πirnD

Nb

)
. (8.15)

When we multiply by the finite part (8.14), the terms e2πirnD/Nb and e−2πirc/Nd combine
as follows. By (8.11), we can write (b/d)c = nD + `Nd(D), where ` ∈ Z is an integer
satisfying

`Nd(D) ≡ −nD mod
(b
d

)
dD.

Conversely, any ` satisfying the above determines an integer c satisfying (8.11). Then

e2πirnD/Nbe−2πirc/Nd = e2πir(nD−(b/d)c)/Nb = e−2πir`Nd(D)/Nb = e−2πir`/(b/d)dD .

Multiplying (8.15) by the finite part (8.14), we find, for t = Nb/nD, that

Iδt (s) =
(4πr)k−1N s−keiπs/2

(k − 2)! e2πrns−kDs−k bs−k
1 f1

(
s; k;
−2πirnD

Nb

)
×

ns−k/2ϕ(D)ν(N)
N2s−kτ( χ )

∑
d|b sat. (8.6),

gcd(b/d,Nd(D))|(r,n)

ψ(nD) gcd( b
d ,Nd(D))

ψ( b
d )d2s−ke2πir`/(b/d)dD

Jχ
(b
d
, d

)
. (8.16)

Writing b = ad, the condition (8.6) becomes (8.2). Summing over t, we see that
e2πr/ν(N)n1−k/2 ∑

t∈Q∗ Iδt (s) is equal to

(4πrn)k−1ϕ(D)ψ(nD)eiπs/2

N sDs−k(k − 2)! τ( χ )

×
∑

a,0,d>0 sat. (8.2),
gcd(a,Nd(D))|gcd(r,n)

as−k gcd(a,Nd(D))
dsψ(a)e2πir`/adD

Jχ(a, d)1 f1
(
s; k;
−2πirnD

Nad

)
,

where as = e−iπs|a|s if a < 0. This completes the proof of Proposition 8.1.

9. Asymptotics

Grouping a with −a, we rewrite the above sum as follows:∑
a,d>0 sat. (8.2),

gcd(a,Nd(D))|gcd(r,n)

[ as−k

ψ(a)e2πir`/adD
Jχ(a, d)1 f1

(
s; k;
−2πirnD

Nad

)

+
e−iπs(−1)kas−k

ψ(−1)ψ(a)e(−2πir`)/adD
Jχ(−a, d)1 f1

(
s; k;

2πirnD
Nad

)]gcd(a,Nd(D))
ds .
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From the integral representation (8.1),

|1 f1(s, k, 2πiw)| ≤ B(σ, k − σ) ≤ 1 (9.1)

when 1 ≤ σ ≤ k − 1, where B(x, y) =
∫ 1

0 ux−1(1 − u)y−1 du = Γ(x)Γ(y)/Γ(x + y) is the
Beta function. Because |Jχ(a, d)| ≤ 1, the absolute value of the above is

≤ gcd(r, n)B(σ, k − σ)(1 + eπτ)
∑

a,d>0

aσ−kd−σ (s = σ + iτ).

Using |eiπs/2|(1 + eπτ) = 2 cosh(πτ/2), we obtain the following proposition.

Proposition 9.1. Write s = σ + iτ for 1 < σ < k − 1. Then the term E given in
Proposition 8.1 satisfies the bound

|E| ≤
(4πrn)k−1Dk−σ−1/2ϕ(D) gcd(r, n)B(σ, k − σ)

Nσ(k − 2)!
2 cosh

(
πτ

2

)
ζ(k − σ)ζ(σ).

Theorem 1.1 now follows immediately. In order to prove Corollary 1.2, we
must show that the quotient Q = E/F has the limit 0 as N + k → ∞, where F is
the first geometric term of (1.4), and E is the error term of (1.4) discussed above.
We take k ≥ 3, N > 1, and gcd(n, r) = 1, so, for (k − 1)/2 < σ < (k + 1)/2, we have
|F| = 2k−1(2πrn)k−σ−1|Γ(s)|/(k − 2)!. Thus, by the above proposition and (9.1),

|Q| =
∣∣∣∣∣EF

∣∣∣∣∣�D,τ
Dk−σ(2πrn)σ

Nσ|Γ(s)|
ζ(k − σ)ζ(σ). (9.2)

We write σ = k/2 + δ for |δ| < 1
2 . Then each zeta factor is bounded by the constant

ζ( 3
2 − |δ|). By Stirling’s approximation [AS, 6.1.39],

Γ(s)−1 = Γ

( k
2

+ δ + iτ
)−1
∼

ek/2

√
2π(k/2)k/2+δ+iτ−1/2

as k→∞. With (9.2), this shows that

|Q| �
(4Dπrne)k/2

N(k−1)/2kk/2−1 ,

where the implied constant depends on δ, D, r, n, τ. This clearly goes to 0 as
N + k→∞.
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