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ABSTRACT

A Pell-Abel equation is a functional equation of the form P? — DQ? =1, with a given
polynomial D free of squares and unknown polynomials P and ). We show that the
space of Pell-Abel equations with the degrees of D and of the primitive solution P
fixed is a complex manifold. We describe its connected components by an efficiently
computable invariant. Moreover, we give various applications of this result, including
to torsion pairs on hyperelliptic curves and to Hurwitz spaces, and a description of
the connected components of the space of primitive k-differentials with a unique zero
on genus 2 Riemann surfaces.

1. Introduction

The reincarnation of Pell’s Diophantine equation in the realm of polynomials was introduced
and investigated by Abel in [Abe26]. Since then, the equation

P*(z) - D(2)Q*(z) =1 (PA)

has been known as the Pell-Abel equation. Here, P(x) and Q(x) are unknown polynomials of one
variable and D(z) := ][] cg(x — e) is a monic complex polynomial of given degree deg D = |E| :=
2¢g + 2 without multiple roots. For a generic choice of D, the Pell-Abel equation only admits the
trivial solutions (P, Q) = (£1, 0). If an equation has a nontrivial solution, then the set of solutions
is infinite and contains a unique, up to sign, polynomial with minimal degree n := deg P > 0. This
solution is called primitive. It generates the other solutions P via composition with the classical
Chebyshev polynomials and a change of sign. This is discussed in more detail in § 2.

Let us fix g >0 and n>1 and consider the set %n of monic polynomials D of degree
equal to 2g + 2 whose associated Pell-Abel equations have a primitive solution of degree n.
The affine group z+— ax +b with a € C* and b€ C acts on the set of monic polynomials as
D(x)+ a~ 98P D(az + b). This action does not affect the degree n of the primitive solution of
(PA). Our main object of study is the quotient ;" of the set gf;n by this group action. More
precisely, we have the following result, which is proved in § 3.
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A. BOGATYREV AND Q. GENDRON

THEOREM 1.1. The set ,Q/;n is invariant under the action of the affine group. The quotient 7"
is a smooth orbifold of complex dimension g.

An introduction to orbifolds can be found in [Thu79, § 13], and in the first approximation we
can think of them as manifolds.

The main result of this paper consists in the classification of the connected components of
the spaces &/". A weaker version was announced in [BG23], which contains a survey of the proof
given below.

We first introduce the degree partition invariant of an element D € &/". Given a primitive
solution P of (PA), its value P(e) =21 at any zero e € E of D. Therefore the set E can be
decomposed into two subsets E* and we obtain the partition of the degree of D:

|E|=2g+2=|E"|+|E|.

The choice of the other primitive solution —P interchanges the indexes 4 in the summands, but
the unordered partition remains the same. The degree partition invariant of D is the unordered
pair of nonnegative integers (|[E~|, |E1]).

THEOREM 1.2. Let m =min(g,n —g—1) and let || denote the integer part. Equation (PA)
has no primitive solutions of degree n < g+ 1 or n>1 when g =0. Otherwise, the number of
components a(g,n) of </ is equal to [m/2] + 1 if n+ g is odd and [(m + 1) /2] if n+ g is even.
Moreover, each component is labelled by a unique degree partition (|E™|, |E1|) satisfying:

(1) |[E¥[>0;
(2) |[E*[<n; and
(3) the parity of |E*| is equal to the parity of n.

This theorem has two trivial cases. When n < g + 1, the degree of P? is strictly less than the
degree of DQ? if the solution (P, Q) is not trivial. When g =0, any (PA) is brought to the case
D(z) =2% — 1 by a linear change of variable, and admits the (primitive) solution (P, Q) = (x, 1)
of degree n=1. All the other cases are far less trivial. They are based on a pictorial calculus
representing the flat structure on the Riemann surface that we associate with each Pell-Abel
equation.

First, in § 2, we associate, with every (marked) hyperelliptic Riemann surface, a distinguished
abelian differential. Using this, we propose a solvability criterion for the Pell-Abel equation in
terms of the periods of this differential. Then, in §4, we explain the graphical technique which
allows us to control the periods of the distinguished differential when we deform the polynomial
D. The upper bound for the number of connected components is obtained in § 5, where we bring
the graph of an arbitrary solvable Pell-Abel equation to one of the standard forms. Finally,
we discuss the degree partition invariant in §6. We show that this invariant appears in the
context of braids, and that all standard forms have different invariants and hence lie in different
components.

1.1 Applications

The Pell-Abel equation is inherently connected to many problems in different branches of math-
ematics. To cite some of these, it appears in the reduction of abelian integrals [Abe26, Che48,
BEO01], Poncelet’s porism [BZ13], elliptic billiards [DR19], approximation theory [SY92, Peh93,
Bogl2, Bog02], spectral theory for infinite Jacobi matrices [SY92], algebraic geometry including
the study of Frobenius endomorphisms [Ser19], complex affine surfaces [Kol20], and Teichmiiller
curves [McMO6].
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We now give some examples of where our main result may be directly translated or applied.

1.1.1 Eaxtremal polynomials. Shabat polynomials, meaning polynomials with just two finite
critical values, are rigid objects, but many applications require maps with similar properties that
are more flexible. These polynomials were defined in [Bog02, Bog12] under the name of g-extremal
polynomials and in [Zanl4, §12.2.2] or [BCZ22, § 2] as almost-Belyi maps. A typical g-extremal
polynomial P(x) has only simple critical points, with almost all critical values equal to +1 and
exactly g exceptional critical values not lying in this set. In general we allow the critical points
to be merged, and the extremality weight ¢g defined, for example, in [Bog02, Bogl2] takes into
account the confluent critical points, even if the appropriate critical value lies in the exceptional
set {£1}.

The practical interest in g-extremal polynomials comes from some problems of uniform
Chebyshev optimization: the vast majority of the alternation points that arise for the solution
will be the critical ones that have values in the two-element set: + the value of the approximation
error. After re-normalization they become g-extremal with some small value of the parameter g.
Classical examples are Chebyshev and Zolotarev polynomials for g =0 and g =1, respectively.

Any polynomial P is a solution of the unique Pell-Abel equation: just extract the square-free
part D in the polynomial P? —1. A simple calculation (see [Bog02, §3]) shows that deg D =
2g 4+ 2 where g is the extremality number of the polynomial P. The set of g-extremal complex
polynomials of given degree N > g+ 1 is a smooth complex manifold of dimension g+ 2, and
the number of its components may be counted with the use of our main theorem. Indeed, every
g-extremal polynomial Py (x), as a solution of a Pell-Abel equation, has a unique representation
of the kind +T,,, o P,,(z), where T}, is the classical degree m Chebyshev polynomial and P, is
the primitive solution of the same Pell-Abel equation (see Theorem 2.1). One can show that the
inverse polynomials + Py lie in the same component of the set of g-extremal polynomials exactly
when the corresponding degree partition has equal parts: |[E¥| = g + 1. Eventually, we arrive at
following corollary.

COROLLARY 1. The deformation space of g-extremal polynomials of a given degree N consists
of one or two components when g =0 and N is, respectively, odd or even. For g > 0 the same
number is equal to

N

g 2a(g,n)—#{n€N:isoddandn—g:1,3,5,...}, (1)
n

n|N

where a(g,n) is the number of components of .o7".

1.1.2 Hurwitz spaces. A typical g-extremal polynomial of degree N with different excep-
tional critical values gives us a covering of a sphere by another sphere which is branched in a
specific way. The cyclic type of monodromy above g + 2 finite critical points is described by the
following passport (see [LZ04] for definitions):

[2A1N—2A; 9B N-2B.

g X 211N—2]

with integers 2 < A, B < N/2 satisfying the planarity (or Riemann-Hurwitz) condition
A+B+g=N -1

Again, the polynomials Py that realize the above passport after their re-normalization have
a representation as the composition of a classical Chebyshev polynomial T}, and a primitive
solution P, of some Pell-Abel equation. We should distinguish between two cases: for even m,
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the maximum of 24, 2B is equal to N and the minimum is equal to N — 2g — 2; for odd m, the
positive numbers N — 24 and N — 2B make up the degree partition for P,.

COROLLARY 2. The Hurwitz space of degree N polynomials with the above monodromy passport
has the following number of components:

(1) the number of the integer n such that N/n is odd and n > N — 2 min(A, B), when the degree
N >2max(A, B); and

(2) the sum ), a(g,n) over integers n such that N/n is even, when N =2 max(A, B).

Note that this result generalizes works with similar passports in [Waj96, LO08, MP18] and
partial results on these passports in [KZ96] and in [LZ04, Table 5.1]. Moreover, the use of abelian
differentials to study Hurwitz spaces appeared previously in [Mul22].

1.1.3 Torsion points. Given a genus ¢ hyperelliptic Riemann surface M with hyperelliptic
involution J and a non-Weierstral marked point p, we can ask when the Abel-Jacobi image of
the divisor p — Jp has some finite order n in the Jacobian. Equivalently, we can ask about the
existence of a function f € C(M) whose divisor is n(p — Jp). This problem is equivalent to the
solvability of some Pell-Abel equation, which we explain in Remark 1 of §2. Therefore, we make
the following claim.

COROLLARY 3. The number of connected components of the space of hyperelliptic Riemann
surfaces M of genus g with a primitive n-torsion pair of points conjugated by the hyperelliptic
involution is equal to a(g,n). The degree partition (|[E~|, |ET|) is the number of e € E such that
f(e, 0) = £1 for a suitable normalization of this function in the algebraic model (2) of M = M (E).

1.1.4 Strata of k-differentials. A more elaborate application is the following result, which
is proved in §7 (where the basic definitions are recalled).

COROLLARY 4. The moduli space of primitive k-differentials with a unique zero of order 2k on
genus 2 Riemann surfaces QF My(2k)P™ is empty for k = 2, connected for k=1,3 or k >4 and
even, and has two connected components for k> 5 and odd. Moreover, the component of .oZy"
of degree partition invariant (1,5), respectively (3,3), corresponds to the component of odd,
respectively even, parity of the strata QF Mo (2k)P™™.

The proof of the second part of the corollary is given in Proposition 7.2 by considering the
torsion packets modulo the Weierstrafl points, which may be of independent interest.

2. Solvability of Pell-Abel equation

Fix a polynomial D of degree 2g + 2 whose roots are all simple. The union of these roots is
denoted by E. Some conditions on D have to be imposed [Abe26, Che48, Mal02, SY92] to
guarantee the existence of a nontrivial solution of the Pell-Abel equation (PA), that is with
n:=deg P > 0. The criterion given by Abel is the periodicity of the continued fraction for the
square root of D (see [Plal4] and the references therein for a more modern presentation). We
will use a transcendental criterion coming from [Bog02, Bogl2] which is much easier to handle.

We associate, with the polynomial D(x)=][.cg(z —e), the affine genus g hyperelliptic
Riemann surface

M =M(E):={(z,w) e C*:w*=D(z)} . (2)
1486
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The latter admits the natural two-point compactification
My :=M U {ocoy} (3)

where the points oot are distinguished by the limit value of the function w=!z9%! (oot ) = £1.
The added points are interchanged by the hyperelliptic involution J(z, w) = (z, —w) acting on
M. In what follows, we will suppose that the points oot are marked on the Riemann surface
M.

The Riemann surface M, associated with D bears a unique meromorphic differential of the
third kind,

dn=dny = (29 + ag_1209 " + - -+ ag)w™ ! dz, (4)

having two simple poles at infinity with residues Res dn|~, := F1 and purely imaginary periods
(see [GK10, Proposition 3.4]). This differential will be referred to as the distinguished differential.
Note that the distinguished differential is odd with respect to hyperelliptic involution, that is,
it satisfies J*dn = —dn. In particular, the quadratic differential (dn)? descends to the Riemann
sphere so that dn is the canonical cover of (dn)? in the terminology of [BCG*19]. This quadratic
differential is referred to as the distinguished quadratic differential.
We give the criterion for the solvability of (PA) in terms of the distinguished differential.

THEOREM 2.1. Given n > 1, (PA) admits a nontrivial solution with deg P =n if and only if all
the periods of dny; on M are contained in the lattice 2wiZ/n.
If this condition is satisfied, then the solution of the Pell-Abel equation is given, up to

sign, by
(sz) (x,w)
P(x) = cos <m/ an> and Q(z)=iw 'sin <m/ an>. (5)
( (

e,0) e,0)
Proof. 1If (PA) has a nontrivial solution (P, Q) then the (Akhiezer) rational function f(x,w)=
P(z)+wQ(z) € C(My) satisfies f(z, —w)=1/f(x,w). Hence it has a unique pole at ooy and
a unique zero at co_, both of multiplicity n. In that case, the distinguished differential is equal
to dn=n"'dlog(f(x,w)). The fact that log is a multi-valued function implies that the periods
of dn lie in 2iwZ/n.
Conversely, the lattice condition

/ dnnt C 27T/ (6)
H.(M,Z)

and the fact that J*dn = —dn imply that the functions on the right-hand sides of Equation (5)
are polynomials of degree n and n — g — 1 respectively. Now the classical Pythagorean theorem
sin?(z) + cos?(z) =1 for z € C reads as the Pell-Abel equation. O

Remark 1.

(1) The lattice condition as the criterion for the solvability of the Pell-Abel equation seems
to have first appeared in approximation theory and is related to the Chebyshev approach
to least deviation problems [Zol77, Bogl2]. Some particular cases may be found in [Rob64,
SY92, Peh93, Bog99, Bog02].

(2) Given a polynomial D, the set of all solutions of (PA) admits a group structure which
mimics the multiplication of Akhiezer functions:

(P, Q) *(p,q) = (Pp+ DQq, Pq+ Qp). (7)
1487
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The trivial solution (1, 0) is the unit of this group, and the inverse of (P, Q) is (P, —Q). It
follows from the trigonometric representation of the solutions given in (5) that the primitive
solution generates all higher degree solutions via composition with the classical Chebyshev
polynomial and possibly a change of sign.

(3) Note that if (PA) has a nontrivial solution (P, Q) of degree n, then the Akhiezer function
f(z,w)=P(x) + wQ(x) € C(Ms) has divisor noor —noo_. This means that the divisor
004 — oo_ is of primitive n-torsion if and only if (PA) has a primitive solution of degree n.
Corollary 3 follows readily from Theorem 1.2 using this remark.

3. Space of Pell-Abel equations

Let us study the constraints imposed by the lattice condition (6) of Theorem 2.1. Consider the
space 7-[g of complex monic square-free polynomials D(x) of degree 2g + 2. This may be identified
with the space C2912 with a removed discriminant set. The disjoint zeros e € E may serve as local
coordinates of this complex manifold. The polynomials such that the Pell-Abel equation (PA)
has a primitive solution of degree n > 1 form a subset ,52{;” of 3':[9. We show that this subset is a
manifold.

THEOREM 3.1. The set of polynomials ;zf;n is either empty or a smooth complex manifold of
pure dimension g + 2.

The proof relies on the fact that the set g/; is given by the polynomials D(x) such that the
associated distinguished differential dn on M satisfies the lattice condition (6) of Theorem 2.1.

Proof. Consider the space of non-normalized abelian differentials
x9 9Ly xs
dn(B,E) = ( +2§20 ) i
ng:1 (z—¢)
with coordinates (B, E) := (bo, ..., bg-1;€1, ..., €zg4+2). Note that this is a natural fibration over
the space H,.

Let us fix 2g+1 closed paths on the given twice-punctured surface M = M (Ep) which
represent a basis of the homology group Hi(M,Z) (an extra nontrivial cycle encompasses a
puncture). By deforming the loops within their homology class we suppose that the projections
Co, C1, . .., Oyg of those contours to the z-plane are disjoint from the branching set Eq. Therefore

for all E € H, in a small vicinity of Eq the lifts of those contours to the surface M (E) represent
the basis of the first homology group. We denote by Cj the cycle encompassing a puncture at

9

infinity.
We also fix g + 2 paths Dg on the complex plane disjoint from the branching set Eg, starting
at a common point pg and ending at arbitrarily chosen but distinct points pg, for s=1,..., 9+ 2.

Finally, we fix a loop Dy lifting to an open path on M (Ej) and connecting two preimages of pg
on the surface. This set of data provides us with 3g 4+ 2 locally defined holomorphic functions:

(B, E) ::/C dn(B,E) for j=1,2,...,2g,

1
TS(B,E):_/D dn(B,E)—i—z/D dn(B,E) fors=1,2,...,9+2.

If the coordinate change (B, E)— (m,7) is degenerate at the point (B, Eg), there exists a
tangent vector ), 8;(0/0b;) + 3 €s(9/0es) annihilating all these functions at this point of the
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space of differentials. This means that the differential

2g+2 -
1 dnns 2l dx
dC::zzlesx_es Zﬂj "
S= Jf

determined by the tangent vector satisfies the equations

/ d¢ =0 foralls=1,...,2g,

(/ /)d(—O forall j=1,...,9+2.
Do

All the periods of the d(, both polar and cyclic, vanish and therefore its integral is a single
valued function on the surface M (Ep):

( /P 0 /J p0> a¢ with ¢(Py) = (8)

The differential d¢ is odd with respect to the hyperelliptic involution J, and so is its integral
((P) for the chosen constant of integration. The only possible singularities of the meromorphic
function ((P) are simple poles at the branchpoints of M whose number is not greater than
2g + 2. It is strictly less than the 2g + 4 zeros of ((P), which cover all the endpoints x = pg of
the integration paths D; in the formulas above. Hence d(, and therefore the annihilating tangent
vector, vanish.

We conclude that the set locally defined by fixing the values of all periods of the differential
dn(B E) is a smooth complex analytic manifold of dimension g + 2 in the fibration over the space
Hgy. It remains to show that it does not degenerate under the projection to the base 7—[ If the
1soper10dlc manifold had two points gluing under the projection, or a vertical tangent, th1s would
mean the existence of a non-zero holomorphic differential with vanishing periods. The latter is
prohibited by the Riemann bilinear relations. O

Remark 2. The counterpart of this theorem for real curves was proved in [Bogl2, Chapter 5].

Note that isoperiodic (or Pell-Abel) manifolds @f;n are invariant under the action of the
one-dimensional affine group E — aE 4+ b with (a,b) € C* x C. Indeed, this transformation does
not change the conformal structure on the Riemann surface with the marked point at infinity.
Hence, the distinguished differential and all its periods survive under this map.

COROLLARY 5. The quotient <" of %n by the action of the affine group is a smooth orbifold
of complex dimension g.

Proof. This follows directly from Theorem 3.1 and the fact that the action of the affine group
on any set of 2¢g + 2 points in the plane has finite stabilizer. O

4. Pictorial representation

In this section we introduce a pictorial representation of the moduli space of hyperelliptic
Riemann surfaces My, carrying a couple of marked points oot conjugated by the hyperellip-
tic involution. We associate with such a Riemann surface the planar graph whose edges are
critical leaves of the vertical and horizontal foliations of the distinguished quadratic differential
(dnar)? introduced in §2. We will completely characterize the graphs of this type, and each of
them will come from a unique, up to the action of the affine group, pointed Riemann surface M,
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Originally this graphic language was used in [Bog03, Bogl2] for the theory of real extremal
polynomials, where the problem of the deformation of Riemann surfaces with control of the
periods also exists. It turned out to be very useful in the investigation of the global periods map,
particularly for its image [Bog03] and the study of the topology of its fibres [Bogl9].

4.1 Global width function

Let My, be a hyperelliptic Riemann surface with marked points co+, and dn be its distinguished
differential. Given a branchpoint e € E, we define the width function W :C — R4 by

(z,w)
Re / dn‘. 9)
(e,0)

One can immediately check that the normalization conditions of the distinguished differential
imply that the width function satisfies the following properties:

W(x)=

(1) W is a well-defined single-valued function on the plane;

(2) W is harmonic outside its zero set I'j:={z € C: W (x) =0};
(3) W has a logarithmic pole at infinity;

(4) W vanishes at each branchpoint ¢’ € E.

We only comment on property (4). Since dn is odd with respect to hyperelliptic involution,
the value W (e') is equal to one half of the modulus of the real part of some period of dn. Since
all its periods are purely imaginary, this gives (4). Moreover, this implies that the width function
is independent of the choice of the branchpoint e as the initial point of integration.

4.2 Construction of the associated graph I'(M).

Recall that a quadratic differential induces a vertical and a horizontal foliation (see [Str84] for
a detailed discussion). The level lines of the width function are the trajectories of the vertical
foliation of the distinguished quadratic differential (dn)?, while the steepest descent lines of W (z)
are its horizontal trajectories.

We associate, with any Riemann surface M, a weighted planar graph I'=T(M) which is a
union of a ‘vertical’ subgraph I'j and a ‘horizontal’ subgraph I'_. The precise definition is given
below, and examples of such graphs are given in Figure 1.

DEFINITION 4.1. Let M be the hyperelliptic Riemann surface given by Equation (2). Its
associated graph I'(M) is the weighted planar graph constructed as follows.

— The vertical edges are the unoriented arcs of the zero set of W (z) (they are segments of the
vertical foliation of (dn)?).

— The horizontal edges are the segments of the horizontal foliation of (dn)? connecting saddle
points of the function W to the zero level set of W (which may occasionally hit other saddle
points on its path). The horizontal edges are oriented with respect to the growth of W(z).

— The vertices of the graph I' are the union of the finite points of the divisor of (dn)? and
the points in IT1NT_, i.e. projections of the saddle points of W to its zero set along the
horizontal leaves.

— )

— Each edge R of the graph is equipped with its length A(R) in the metric ds:= |dn| induced
by (dn)>*.
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-1

Fi1GURE 1. Typical graphs associated with Riemann surfaces of genera 1 and 2 are shown without
their weights. For every vertex V of the first graph, the value of ord(V) is given.

Convention 4.2. In the figures, we draw the vertical edges of the canonical graph with double
lines. The horizontal edges are represented by single lines with an arrow showing their orientation.
The weight of a vertical edge R is denoted by h(R). We do not usually put the values of the
horizontal weights on the figures.

From the local behaviour of the trajectories one can immediately check that, for any vertex
V €T, its multiplicity in the divisor of (dn)? is given by

ord(V) :==d(V) + 2d;in (V') — 2, (10)

where d) is the degree of the vertex with respect to the vertical edges and d;;, is the number of
incoming horizontal edges. The fixed points of the hyperelliptic involution of M correspond to
the vertices V' with the odd value of ord(V'), and automatically lie on the vertical part of the
graph I'. One can check this statement for the graphs represented in Figure 1.

4.3 Admissible graphs

The graphs I'(M) associated with the hyperelliptic Riemann surfaces by the previous construc-
tion can be described in an axiomatic way. There are five conditions, three on the topology of
the graph (T) and two on its weights (W).

THEOREM 4.3. A weighted planar graph I, considered as a topological object (up to isotopy of
the plane), is associated with a hyperelliptic Riemann surface M if and only if the following five
conditions are satisfied.

(T1) The graph T is a tree.

(T2) The horizontal edges leaving the same vertex are separated by a vertical or an incoming
edge.

(T3) If ord(V) =0 then VeIl _NI.

(W1) The width function increases along oriented edges, and W (V') =0 if V lies on the vertical
part of the graph.

(W2) The weights of the vertical edges are positive and their total sum is 7.

Given a graph I satisfying all five conditions, the Riemann surface M whose associated graph
is T' is unique up to the action of the linear maps Aff(1, C) on the branching set E.

Remark 3. These conditions imply some basic restrictions on the graphs I'(M). For instance,
there are no pendent horizontal edges like «— or ««—. The first case is prohibited by (T2), while
the second is prohibited by (T3).
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Proof. We give a sketch of the proof for completeness, and the reader can look at [Bog03, Bog12]
for a more detailed description.

Constraints on associated graph. We say a few words about the genesis of properties (T1),
(T2), and (W2). Properties (T3) and (W1) follow directly from the definition of the
graph I.

Property (T1). Suppose that the complement C\ I'(M) of the graph is not connected. Let us cal-
culate the Dirichlet integral of the width function in a bounded component €2 of the complement
by means of Green’s formula:

/]gradW(x)Psz/ W(m)a—wds.
Q 00 on

The function W vanishes on the vertical parts of the boundary, while its normal derivative
vanishes at the horizontal parts of 9€). This would imply that W is constant. Now suppose that
the graph has several components. Summing up the values of ord(V') over all its vertices, we get,
by (10), that

2¢{vertical edges} + 2f{horizontal edges} — 2f{vertices} = —2f{components of I'}.

This value equals the degree of the divisor of (dnys)? on the sphere (i.e. —4) plus the order of
its pole at infinity (i.e. 2). Hence, the graph I' has just one component and it is a single tree.

Property (T2). Let V be a vertex of T" such that W (V) > 0. This is a saddle point of the width
function, the meeting point of several alternating ‘ridges’ and ‘valleys’. A horizontal edge comes
into V' from each valley, by definition. The outgoing edge (if any) goes along the ridge, so any
two of them are separated. The same is true for W (V') =0 with the vertical edges coming from
each ‘valley’.

Property (W2). The integral of (dn)? along the boundary of the plane cut along Iy equals 2i
times the sum of the weights of all vertical edges. The integration path may be contracted to
the path encompassing the pole at infinity, and hence by the residue theorem is 2.

From the graph to the Riemann surface. The Riemann surface M may be glued from a finite
number of strips in a way determined by combinatorics and the weights of the graph. We briefly
describe the procedure below.

Given a planar graph satisfying the above five conditions, we extend it by drawing dj(V') —
dout (V) + din (V) = 0 outgoing horizontal arcs which connect each vertex V' to infinity and are
disjoint except possibly at their endpoints. For each vertex, we require that all the outgoing
edges of this extended graph ExtI', old and new, alternate with the incident edges of other
types, incoming or vertical, so that the graph Ext I satisfies property (T2). Since the original
graph is a tree, the extended graph is unique up to isotopy of the plane. Typical examples for
g=1and g =2 are given in Figure 2.

From the topological viewpoint all the components of the complement to the extended graph
in the plane have the same structure. They are 2-cells bounded by exactly one vertical edge R
and two finite chains of horizontal edges attached to the endpoints of R, all pointing away from
the vertical edge and meeting at infinity. For each cell we denote by h(R) the weight of the
corresponding vertical edge and define the half-strip for h = h(R) by

Y(h)={neC:Ren>0and 0 <Imn<h}.

We glue these 2f{vertical edges} half-strips by translations along the horizontal edges and a
rotation of angle 7 along the vertical edges as indicated by the graph Ext I'. This flat structure

1492

https://doi.org/10.1112/S0010437X25007158 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X25007158

THE SPACE OF SOLVABLE PELL—ABEL EQUATIONS

| |
| I
| I
ko I
| |
»
\

\

hd

A
1
Y
1
1

1
1
1
1
1
1
A
I
I
I
I

A

|

|
Y

l

|

|

|

|
A

l

l
N

N

P |

I I
I I
I I
I I
I I
I I
I I
I I
A A
I I
I I
I I
I I
I I
I I
I I
e +
I I
I I
I I
I I
v v
I I
I I
I I
I I
I I
1 1

R

I I
v v
I I
I I
I I

FIGURE 2. The extensions of the graphs of Figure 1.

on the Riemann sphere has 2¢g + 2 singularities of odd order and is well defined up to the action
of the affine group. The Riemann surface M is defined to be the double cover ramified at these
points. The distinguished quadratic differential on the Riemann sphere is the one whose flat
structure has just been defined. O

Remark 4.

(1) The axiomatic description of the graphs I" which appear as associated graphs of Riemann
surfaces, including the five constraints (T1,T2,T3,W1,W2) and the realization theo-
rem, were first established, for Riemann surfaces admitting an anticonformal involution
(i.e. reflection), in [Bogl2, Bog03]. The purely complex case is somewhat simpler as we
should keep in mind that in the real case there is a mirror symmetry and additional
topological invariants, splitting of homology, etc.

(2) An interesting enumerative problem related to the associated graphs arises: compute the
number of (stable) combinatorial graphs I' associated with the Riemann surfaces M of genus
g. The same holds for real curves with a given genus, and the number of real ovals.

4.4 Period mapping in terms of graphs

In this section we explain how to compute the periods of the distinguished differential from a
graph satisfying the conditions of Theorem 4.3.

4.4.1 Homology basis associated with a graph. Given a graph I'=T(M), we associate a
set of 2g 4+ 2 cycles on the twice-punctured surface M = My, \ cox which generate its integer
homology group Hy (M, 7Z) = Z29*!. This set is unique if all the branchpoints are pendent (degree
one) vertices of the graph, which is the generic case; see the example in Figure 3.

We denote the complex plane cut along the vertical part of the graph by M :=C\ I}. The
Riemann surface M is obtained by gluing two copies of M T along the cuts in a criss-cross
manner: each bank of a cut in a copy of M ™ is glued to the opposite bank of the same cut in
the other copy.

Suppose that we travel counterclockwise along the boundary of the plane cut along the whole
graph I'. We meet each branchpoint e exactly once, provided that each of these branchpoints
are hanging vertices of the tree. All the branchpoints therefore become cyclically ordered e.g.
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FIGURE 3 (colour online). Generators of the first homology group of the genus g =2 Riemann
surface associated with the generic graph I'.

€1,€2,...,6eg4+2,e294+3 = e1. If there are interior branchpoints, some points e € E will be listed
more than once, and we eliminate all duplicates in an arbitrary way. We again get a cyclic order
of all the branchpoints, although it is not unique.

For j=1,...,2g9+2, let ¢; be any simple arc connecting point e; to e;;11 that is disjoint
from the graph I' except for its ends. We draw this arc on M, and then C; := (Id — J)¢; is a
closed loop on the surface M. These 2g + 2 loops are represented in Figure 3. They are linearly
dependent: both sums of the loops with even/odd indexes are equal to the same loop encircling
the puncture coy clockwise. There are no other relations between them.

LEMMA 4.4. The cycles Cy,Ca, ..., Cogq1 make up a basis of the lattice Hy(M,Z).

Proof. For every j=1,...,2g+ 2 consider the relative cycles D; in the relative homology group
Hi (M, {004}, Z) given by D; :=(Id — J)d;, where d; is any simple arc connecting the branch-
point e; to ooy that is disjoint from the graph except for its starting point. There is a pairing
between the above two homology groups given by the intersection index. We compute that

D;oCjisequal to 1if s=j or s=j+ 1 and is equal to 0 for all other indexes. The determinant
2g+1

of the intersection matrix || D, o C;[|,] is equal to 1. O

4.4.2 Period mapping for the associated homology basis. Given an admissible graph I', we
can calculate the periods of the distinguished differential dn along the basic cycles C}; introduced
in §4.4.1. This differential may be reconstructed from the width function as dn = 20W (z) on the
top sheet M ™. On the other sheet it just has the opposite sign.

LEMMA 4.5. The period of the distinguished differential dn along the cycle Cj is
/ dnp=2i Y  h(R), (11)
Cj €j<R<€j+1

where the summation is taken over all vertical edges R of 1' that appear when travelling
counterclockwise from e; to e;ji1 along the bank of T'.

Proof. Let H(z) be the harmonic conjugate to the width function W (z). It is a multi-valued
function in the complement of the graph I': going around the graph (or equivalently, the infinity)
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ho h1

hy

FIGURE 4. Vicinity of a generic saddle point V. The horizontal segment of the graph deformed
by hs — hs — (—1)%0h with positive 0h is pictured as a dashed curve.

adds 27 to the initial value of H(z). We have a chain of equalities:

!L@M:QA@M:QZ@MV+Uﬂ:Q{ldH. (12)

To obtain the last equality we use the fact that the width function W vanishes at all the
branchpoints e, where the path c¢; starts and ends. Continuing the last equality:

(AJM=2i > uédeQi > h(R). (13)

e;<R<eji1 e;<R<ejt1
Here we use the Cauchy—Riemann equations

dH|gr = a—Wdl,
on

where n is normal to the edge R and [ is a length parameter on the edge. Hence dH vanishes at
the horizontal edges and is equal to the metric of the differential |dn| on the vertical edges. [

Ezample 4.6. For the graph pictured in Figure 3, the period of dn along the cycle Cy is 2i(hy +
hs), the period along the cycle Cs is 2i(hs + hyg + hg), and the period along the cycle Cy + C3 + Cs
is 2i(h1 + h3 + he + h7 + hs + hg + ha) = 27i, according to the normalization property (W2).

4.5 Local isoperiodic deformations

We know from Theorem 3.1 that fixing the values of the periods of the distinguished differential
locally defines a complex (g + 2)-dimensional submanifold, such as szfgn, in the moduli space
7:19. Two degrees of freedom on this manifold account for the inessential affine motions of the
branching divisor which do not change the complex structure. The remaining g complex degrees
of freedom on the isoperiodic manifold may be explained in terms of the associated graphs. For
simplicity we define the isoperiodic deformations for the generic graph, and the general case will
follow from continuity.

In the generic case, the width function W has exactly g saddle points V', which are the double
zeros of (dn)?. The vicinity of each of these saddle points in the graph I' has the appearance
shown in Figure 4: the vertex V is the meeting point of exactly two horizontal edges which go
straight from two vertical components of the graph. Each of the two nearest neighbour nodes
of V is incident to exactly two vertical edges. We label the weights of these four vertical edges
nearest to V cyclically as hi, ho, hg and hy4, as in Figure 4. The following two modifications of
the weights in the neighbourhood of the vertex V' obviously do not change any period:

W)= W(V)+6W;  hy—hy— (=1)°6h, s=1,2,3,4, (14)
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FIGURE 5. The linear graph I'(s, g,n) for g=5 and s =2.

with real increments dW, dh small enough for the modified graph to obey the admissibility
conditions.

We will use deformations of this kind to bring the graph of a Riemann surface M
corresponding to (PA) that admits a primitive solution of degree n to a standard form.

5. Isoperiodic deformations to graphs of standard forms

The original enumeration problem essentially belongs to algebraic geometry, but graph tech-
nology allows us to study it by efficient combinatorial methods. A similar approach is used in
the classification of the connected components of the strata of abelian differentials [KZ03], in
intersection theory on moduli spaces [Kon91, Kon92], and in some other investigations.

In this section we first introduce two standard forms of the graphs I'(M), and then present a
combinatorial procedure for the isoperiodic deformation of a graph associated with a Pell-Abel
equation with a primitive solution of degree n to a standard form graph.

These standard forms may be chosen in different ways. For the upper bound of the number of
connected components a(g,n), we use the two-bush standard form. For the lower bound in §6.2
we use the linear standard form. For the sake of completeness we give an explicit isoperiodic
transformation between the two standard forms.

5.1 Two standard forms of graphs

Let I" be a graph associated with a Pell-Abel equation with a primitive solution of degree n. For
convenience we rescale the weights of its vertical edges as follows:

R(R) :=nh(R)/7. (15)

This rescaling allows us to work with integers instead of rational multiples of 7. To distinguish
between the normalizations, we continue to call the value h(R) the weight of the (vertical) edge
R, whereas we refer to h(R) as its height. Note that the total height of the vertical component
of a graph is equal to n.

DEFINITION 5.1. The linear graph I'(s,g,n) with integer parameters g>1, n>g+1 and
s=0,1,...,m":=min(g — 1,n — g — 1) is defined as follows. It has g + 1 vertical segments con-
nected at their endpoints by g horizontal components so that the whole graph is embedded in a
line, as represented in Figure 5. The first (g — s) vertical edges are of height 7 =1 and these are
followed by s vertical edges of height i =2; finally the height of the last edge is h=n — g — s.
The value of the width function at its g saddle points is not specified as it is inessential.

Remark 5. The number s of vertical edges of height A =2 in the standard linear form cannot
be too large when the degree n is smaller than 2g. If it was too large, the last vertical edge
would have zero or negative height. This is the reason why s is less than or equal to m* :=
min(g —1,n—g—1).

Remark 6. The linear graphs correspond to Riemann surfaces M with only real branchpoints.
The solutions P(z) of the corresponding Pell-Abel equations are known as multiband Chebyshev
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29 — 2s + 2 twigs

of h=1

tail of height h=n—-—g—s—1 > reflection

symmetry

2s twigs of h =1

FIGURE 6. The two-bush graph I'*(s, g,n) for g=4 and s =2.

polynomials; see [Bog99, Bog03]. In this case, the heights & of the vertical segments correspond
to the oscillation numbers of the Chebyshev polynomial P(x) on the bands. In general, they can
take arbitrary positive integer values which sum up to deg P =n.

Given the same set of parameters (s, g, n) as we had for the standard linear form I'(s, g, n),
we introduce the two-bush standard form I™*(s, g, n) built as follows.

DEFINITION 5.2. The small bush is a collection of 2(g — s) + 2 vertical edges, that we call twigs,
of equal height h=1/2, all growing from the same root. The large bush is a similar starlike
graph of 2s vertical edges of height = 1. The two-bush graph I'*(s, g, n) is obtained by gluing
the root of the large bush and a vertical edge of height h=n — g — s — 1, called the tail, to a
hanging vertex of the small bush, in such a way that the whole embedded graph admits reflection
symmetry. Such a graph is pictured in Figure 6.

Note that the tail disappears when s=n — g — 1. In this case, the root of the larger bush
becomes a branchpoint.

We will prove in § 5.3 that these two standard forms are related to each other in the following
way.

LEMMA 5.3. The two-bush graph I'*(s, g,n) and the linear graph I'(s, g,n) are joined by an
isoperiodic deformation.

The two-bush graphs I'*(s, g,n) and I'*(s — 1, g,n) with s >0 and s+ g +n odd are joined
by an isoperiodic deformation.

The main result of this section is the following.

THEOREM 5.4. Any graph I' corresponding to a Pell-Abel equation P%(z)— D(z)Q*(z)=1
with deg D =2¢g + 2> 2 and admitting a primitive solution of degree n > g can be isoperiodi-
cally transformed into a two-bush graph I'*(s, g,n) for some s=0,1,...,m*, where m* is the
minimum of {g—1,n—g—1}.

COROLLARY 6. The number of connected components a(g,n) of <7 for n>g and g >0 is at
most [m/2] + 1 if n+ g is odd and at most [(m + 1)/2] if n+ g is even, where

m=min(g,n —g—1).

Proof. According to Lemma 5.3, the two-bush graphs I'*(s, g, n) and I'*(s — 1, g, n) can be joined
by an isoperiodic deformation if s >0 and s 4+ g + n is odd. Now it suffices to count the parame-
ters to see that the number of nonequivalent two-bush graphs is at most [(m + 1)/2] when n+ g
is even and [m/2] + 1 when n + g is odd. O
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FiGURE 7. Rolling the vertical component Fll around the core component I'}. The dotted lines
show the intermediate positions of the chord.

In order to prove Lemma 5.3 and Theorem 5.4 we present some preparatory material on
isoperiodic deformations.

5.2 Useful isoperiodic deformations

In this preparatory section, we describe some useful isoperiodic deformations of a graph
associated with hyperelliptic Riemann surfaces M., with a pair of marked points ocoi in
involution.

5.2.1 Rolling. Suppose that the graph I' has exactly two disjoint vertical components Fll
and F|2. The latter are connected by the only horizontal component containing exactly two edges
meeting at the saddle point of the width function, as shown on the left of Figure 7. We call such
a simple horizontal component a cord.

The following deformation of I', called rolling and pictured in Figure 7, is isoperiodic. The
cord is fixed while the two vertical components rotate as rigid bodies in the same direction so
that the meeting points of the cord with the two vertical components move along the boundaries
of Fll and F|2 with equal speed. Alternatively, we keep one of the vertical components, say F|2,
static, and we now call this the core component. The cord goes around the core and drags
the other vertical component Fll which at the same time rotates with respect to the cord in the
opposite direction, so that the equality of velocities of the contact points again holds. Essentially
this deformation is the same as that in §4.5, except that the parameter éh of the deformation
is no longer small.

Remark 7. The rolling of a pendent vertical component of the graph I' around the rest of the
graph may be defined in a more general case. For simplicity, we do not use any deformations in
this paper which lead to the collision of different horizontal components of the graph. A collision
of this type leads to a deeper change in the combinatorial structure of the graph I'; see e.g.
[Bogl2, Chapter 4] and [Bog23] for the analytical aspects of such a collision.

5.2.2 Attaching and detaching. Given a graph I and the rolling procedure, the cord may
be contracted when it reaches some point V' at the boundary of the core graph I‘|2 during rolling.
This procedure is called the attaching of T’ |1 at the point V on the core vertical graph. Note that
if the cord connects two branchpoints, as it does in the middle of Figure 7, the procedure leads
to a nodal curve M and is prohibited. The inverse procedure of inserting a cord at a vertex V
of a vertical subgraph will be referred to as a detaching.
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FIGURE 8. Pumping mass from a pendent vertical segment [V;, V] = Fll to the core graph F|2 .

FIGURE 9. The two-bush form I'*(s, g,n) with s =2 and g = 3 just after detaching the first pair
of small twigs, and its deformation into the standard line form I'(s, g, n). The numbers designate
the heights of the edges.

5.2.3 Pumping. Given a graph I with a pendent vertical segment [V7, V2] = 1".l and a core
graph I’ |2, we can roll Fll until the cord passes through a branchpoint of F|2, as pictured on the left
of Figure 8. We can transfer a positive weight from I’ |1 to the core component by the following
pumping construction. We first contract the cord as shown in the middle of Figure 8, and then
insert it again in another way as shown on the right of Figure 8.

Note that pumping the mass is impossible if the cord simultaneously passes through two
branchpoints, one on the pendent vertical segment and the other on the core graph, as can be
seen in the middle of Figure 7. As observed before, contracting the cord in such a case brings us
to a nodal curve.

5.3 Proof of Lemma 5.3

Starting with the two-bush graph, we detach (g — s) pairs of consecutive little twigs with A =1/2
from their root. The graph, after detaching the first pair, is shown on the left of Figure 9. We
do the same for the pairs of consecutive big twigs with =1, and obtain the graph on the
right of Figure 9. Finally, it suffices to ‘rotate’ each horizontal segment counterclockwise to
obtain the linear graph. The intermediate positions of the horizontal components are indicated
by dotted/dashed lines on the right-hand side of the same Figure 9.

For the deformation from the two-bush graph I'*(s, g, n) to I'*(s — 1, g, n), we detach a bunch
of (g — s) pairs of neighbouring twigs from the small bush, roll the bunch and attach it to the
midpoint of the neighbouring twig of the large bush, provided s> 0, as shown on the left of
Figure 10. We obtain s — 1 twigs of unit height on the right of the new small bush and s+ 1
twigs of h=1 to the right counted from the root of the large bush. Now we detach a couple
of neighbouring unit height twigs from the larger part of the large bush, roll the 2 =2 pendent
vertical segment and attach it to the endpoint of the tail. Since the height of the tail is even we
get the graph on the right of Figure 10. A unit height edge incident to the endpoint of the tail
may be detached, rolled toward the small bush, and attached to its root. Thus we obtain the
standard graph I'*(s — 1, g, n).
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FIGURE 10. An isoperiodic deformation between the bush graphs I'*(s, g,n) and I'*(s — 1, g, n)
when s+ g +n is odd.
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FiGurE 11. Clockwise rotation of a component of I'_. The new position of the horizontal
component is shown with the dashed curve.
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5.4 Proof of Theorem 5.4
Let I'(M) be a weighted graph associated with a Riemann surface M of genus g > 0 corresponding
to (PA) with a primitive solution of degree n > g + 1. We prove that I'(M) may be isoperiodically
deformed to the two-bush graph I'*(s, g,n) for some s=0,1,...,m*, where m*:=min(g — 1,
n—g-—1).

The proof is split into several consecutive steps:

(1) collapsing the horizontal component of the graph to obtain a purely vertical graph;
(2) detaching the vertical segment of minimal possible length = 1; and
(3) bringing the core graph to the standard form by induction on the genus g.

Stage 1: Obtaining a purely vertical graph. Let I'(M) be any graph satisfying the hypothesis of
Theorem 5.4. The elimination of its horizontal component may be achieved by linearly decreasing
to zero the values of the width function W (V') at all vertices V' of the horizontal subgraph. The
only drawback of this deformation is that some branchpoints may collide in the final instant of
the deformation. To prevent this, we may preliminarily ‘rotate’ every horizontal component of
the graph by shifting all its points of intersection with the vertical subgraph by the same small
value 6k in the same direction to avoid passing through the branchpoints. An example of the
rotation is shown in Figure 11. After the contraction of its horizontal component, the graph is
composed only of vertical edges.

Stage 2: Creating a pendent segment of height h=1. Let us first show that there exist two
hanging edges that are neighbouring with respect to the cyclic order around some vertex V of
the graph. Indeed, take any vertex L of the graph I'. Choose any vertex Vj of I' at the maximal
path length from L (i.e. with the number of edges in the path joining them being maximal). This
is necessarily a hanging vertex of I'; and the previous vertex V' in the path [L, V1] on the graph
is at distance one less from L. The degree d(V) =d(V') > 1, since g > 0, and moreover d(V') # 2
because of property (T3) of admissible graphs. Hence the node V' is joined to yet another vertex
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V5 at the same distance from L as Vj. This vertex V5 is also hanging, so the edges joining V to
V1 and V5 are the desired ones.

We are going to create a pendent vertical segment of minimal height =1 using the two
transformations of rolling and pumping. Detach from the rest of the graph the vertical segment
Vi, Vo] := Fll obtained above. Then roll it around the core graph I‘|2 and pump its mass whenever
possible. Since the height of the segment is always an integer it cannot diminish ad infinitum.
Hence it stabilizes at some integer [ > 1. If [ > 1, then all A-distances between neighbouring
branchpoints on the boundary of the core graph are divisible by [, and hence all the periods of
dnps lie in the coarse lattice corresponding to the integer n/l. This would mean that the solution
of degree n of Equation (PA) is not primitive.

This pendent vertical segment of height h=1 is called the catalyst. We can roll it to any
convenient place in the rest of the graph where it does not interfere with further manipulations.
In particular, for g = 1 we can attach it to the core graph to obtain the two-bush graph I'*(0, 1, n),
proving Theorem 5.4 in that case.

Stage 3: Induction step for g > 2. Let us consider the core graph F|2 (obtained after detaching
the catalyst) as a separate graph equipped with the present heights & of its vertical edges. Since
F|2 satisfies the conditions of Theorem 4.3, it corresponds to a Pell-Abel equation admitting
a degree n — 1 solution on a genus g — 1 Riemann surface (explicitly described in the second
part of the proof of Theorem 4.3). Once the solution is primitive, we bring the graph to the
two-bush form I'*(s, g — 1,n — 1) by the induction hypothesis. Then we roll the catalyst towards
the smaller bush and attach it at its root. Thus we obtain I'*(s, g,n) with parameter s in the
admissible range of values.

Suppose now that the Pell-Abel equation corresponding to the core graph I‘|2 admits a primi-
tive solution of smaller degree n’ = (n — 1)/l for some integer [ > 2. By the induction hypothesis,
the graph T’ |2 may be isoperiodically transformed into a two-bush graph I'*(s, g — 1, n') which
however uses another scale for the weights of the edges. To return to our initial units we should
multiply all the heights of this graph by the integer factor I = (n —1)/n’.

Recall that the catalyst of unit height is joined to the rescaled two-bush core graph by a cord.
We attach the catalyst to a hanging twig of the smaller bush (which exists in the worst case
s=g¢g—1) at a distance i =1 >[/2 from the endpoint. Then we detach the i = 2 vertical segment
(composed of the catalyst and part of the small bush twig) from the graph. The procedure is
allowed even in the worst case [ = 2. In that case the catalyst is attached to the root of the small
bush, which is not a branchpoint.

We claim that the remaining core graph F|2/ corresponds to (PA) admitting a primitive
solution of degree n — 2. Indeed, the h distances between the branchpoints along the boundary
of F|2/ are all integers and include the coprime numbers [ and [ — 1 (on the small bush). Now the
induction step may be applied again and we replace the core graph Flzl by the two-bush form
I'*(s,g —1,n — 2). The pendent segment of height h =2 may be attached by its midpoint to the
obtained two-bush form either:

(1) at the root of the large bush, as pictured on the left of Figure 12; or

(2) at the tip of the large bush twig (this happens only when s > 0), as shown in the upper left
picture of Figure 13.

Case (1). We detach a bunch of (g — s — 1) pairs of twigs from the small bush, roll them and
attach them to the midpoint of the nearest twig of the large bush, as illustrated on the right of
Figure 12 where the dashed curves show the final positions of the horizontal components. Thus
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X

F1GURE 12. The induction step in case (1) for g =5 and s =2.
«»//%
>< > < tail

new longer tail

h=2 tail

|
%
.7\.

F1GURE 13. The induction step in case (2) for g =5 and s =2.

we obtain the graph I'*(s + 1, g, n). Note that s + 1 is an admissible value of parameter for given
g and n when s <min(g —2,n— g — 2).

Case (2). Starting from the top left picture of Figure 13, we first attach the pendent segment.
This creates a T-shape whose branches are of height 1. We detach one of the unit height twigs
of the T-shape, roll it around the core graph and attach it to the root of the small bush as
shown in the top right picture of Figure 13. Next, we detach the union of the tail (which may
be of height 0) of the two-bush graph and the neighbouring & =2 edge. We roll it along the
neighbouring twig of height A =1, as pictured at the bottom left of Figure 13. Finally, we attach
it to the core graph at the root of the large bush, as pictured at the bottom right of Figure 13.
The root of the larger bush is now a branchpoint, so one twig of this bush may be detached and
replanted on the smaller bush as we have just done. We obtain the two-bush graph I'*(s — 1, g, n).
This completes the proof of Theorem 5.4.

Remark 8. A proof without recursion is available too, but it is a bit longer and the deformations
are more involved.
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6. Isoperiodic invariants

In this section, we show that the genus g hyperelliptic Riemann surfaces associated with Pell-
Abel equations admitting a primitive solution of degree n that correspond to nonequivalent
linear graphs I'(s, g,n) as described in §5.1 live in different components of ;. To this end,
we introduce two global invariants of the isoperiodic transformation and compute them for all
graphs I'(s, g, n).

The first invariant is based on the partition of the degree of the polynomial D(x) of the
Pell-Abel equation (PA) into two summands. For this reason we call it the degree partition
invariant. Its elementary construction is given in §6.1. We describe a way to compute it using
graphs, and show that each admissible partition is realized by a unique linear graph I'(s, g, n).
This completes the proof of Theorem 1.2 and the reader could stop there.

The other invariant described in § 6.2 possesses a much richer geometric content: it is related
to braids, which describe the motions of unordered branching sets E in the plane without colli-
sions of any individual branchpoints. Hence this invariant is referred to as the braid invariant.
The construction of this invariant is far less elementary, but nonetheless it numerically coincides
with the degree partition invariant. However, it gives a deeper immersion into the geometry of
the problem and will, no doubt, be used for further research on the topic.

6.1 Degree partition invariant

The value of a solution P of (PA) at a zero e € E of the polynomial D may be either +1 or —1.
Therefore, the set E of zeros of D is split into two subsets E*. Since we cannot globally distinguish
between solutions P and — P, we consider the cardinalities of those sets as an unordered partition
of |E| =deg D :=2g + 2. In particular, we may assume that

ET|<g+1<]|ET.

The degree partition invariant of D € o/ is the unordered pair (|E™|, [E*|) computed for the
primitive solution +P(x).

This invariant is easily computable from the graph I' of the associated curve. The h-distance
between any two branchpoints of the curve along the boundary of the graph should be an integer.
It may be either even or odd, depending on whether those branchpoints lie in the same set E*
or in different sets. To compute the value of the solution P at any branchpoint es we use (5).
The integral of the distinguished differential between e; and eg has already been computed in
§4.4.2 in terms of the weights h: it is the sum of all the vertical weights of the edges on a path
between e; and es along the boundary of I'. Now, by substituting the heights A of the edges in
place of their weights h, we get the justification of the above rule.

LEMMA 6.1. The degree partition invariant (|E~|, |[E¥|) of D € &/ having a primitive solution
P of degree n satisfies:

(1) [E¥]>0,

(2) |E*|<n, and

(3) the parity of |E*| is equal to the parity of n.

Proof.

(1) Note that in the graph description, |E7| =0 exactly when all the boundary h-distances

between the branchpoints are even. Dividing all the heights of the graph by 2, we get a solu-
tion P of degree twice less.
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(2) A nontrivial polynomial has at most a number of roots equal to its degree.
(3) The set E of roots of D is the set of x € C where P takes the value +1 with odd
multiplicity. U

Finally, we compute the degree partition invariant of a linear graph.

Ezample 6.2. The degree partition invariant of the linear graph I'(s,g,n) has the following
smaller element:

[ETl=g9—5+a, (16)

where = (s+¢g+mn) mod 2€{0,1}. We note that all linear graphs I'(s, g,n) correspond to
different partitions (and therefore belong to different components of /") outside the cases
explicitly described in Lemma 5.3.

Remark 9. One can check, by direct calculation, that the number of the values taken by this
invariant is exactly the number a(g, n) of components in Theorem 1.2. This completes its proof.

To conclude this subsection, we compute the partition invariant of a Riemann surface defined
over Q.

Ezample 6.3. In [Plal4, p. 30] it is shown that the Pell-Abel equation (PA) with the polynomial

D(z) =25 + 62" + 3327 + 24
has the primitive solution
P(x)= i:pg + %1‘7 + %:L’5 +623+ 9z and Q(x)= iIL‘G - %1:4 + 22+ 1.
Now it is easy to check numerically that the vector of the values of P at the roots of D contains

3 times +1 and 3 times —1. Hence D belongs to the component of degree partition invariant
(3,3)-

6.2 Braid invariant

We know what the invariance of periods means for small deformations of the branching set E
(see, for example, the discussion at the end of §3). For large deformations, we need some way to
identify the integration cycles on remote surfaces M (E). This is done via the parallel transport
of cycles using the Gauss—Manin connection (see [Vas95, §I.1] or [Bogl2, Chapter 5]).

Suppose that we move the branchpoints and simultaneously distort a cycle C so that the
branchpoints never cross its projection to the z-plane. In this way we transport the cycle along
some path 7 in the space 7:19 of hyperelliptic Riemann surfaces with a pair of marked points
at infinity (identified with the space of complex monic square-free polynomials D(x) of degree
2g + 2). The resulting cycle belongs to the Riemann surface corresponding to the end of the path,
and we denote it as C'- 7, whereas C itself belongs to the Riemann surface at the beginning
of the path. This action of paths on the homology spaces of the Riemann surfaces in ”}:[g is
associative: C'- (7-0)=(C - 7)o provided all products are correctly defined (e.g. the end of 7
is the beginning of o, etc.).

6.2.1 Braids and isoperiodic deformations. Fix an affine hyperelliptic Riemann surface M;
whose branchpoints e; <ez <---<eggy2 are real. We introduce the standard homology basis

C1,Ca, ..., Cogqq of Hi(Mi,Z), where the projection of C; to the a-plane encircles e; and e;41,
as pictured in the left-hand panel of Figure 14. Any Riemann surface Ms of the same genus g
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FIGURE 14 (colour online). The standard homology basis for a purely real Riemann surface M
on the left, and the transport of basic cycles under the Dehn half-twist on the right. The slits
pairwise joining the branchpoints are the pictured segments.

with purely real branchpoints may be connected to M; by a path ¢ in the space 7:Lg such that all
the branchpoints move along the real axis during the deformation. The transport of the standard
homology basis for the starting surface along o is the standard basis for the ending surface. Note
that o usually does not conserve any period.

Suppose that an isoperiodic path 7 in 7:[,g connects M; to Ms, both with real branchpoints
(intermediate Riemann surfaces of the path may have general branchpoints). Let dn; be the
distinguished differential on M; defined in §2. For every cycle C; € Hi(Mi,Z) the following
equalities hold:

2g+1
/ dn = / dﬁz—/ ) dUQ—ZB]r (-0~ / dns. (17)
Cj-t 7o~ 1) C,o

Here, the path 8:=7 -0~ ! is a loop in the space ’Hg with the base point M7, and it is represented
by a braid € Brag42 on 2¢g + 2 strands. The transport of cycles along the loops by the Gauss—
Manin connection has nontrivial holonomy. Given a standard basis of H; (M, Z), the holonomy
is given by the matrix B(8)=|Bj.|| € SLag+1(Z). It is easy to calculate this matrix for an
elementary braid 3, corresponding to the Dehn half-twist [Bir75] interchanging the branchpoints
e, and e,41 counterclockwise for r=1,2,...,2g 4+ 1 (see right-hand panel of Figure 14):

(Cla 027 s 7029+1) : ﬁ?‘ = ( B CTfl - CT‘7 CT) CT+1 + CT, s ) (18)

The braid g, changes only the two homology cycles C,_; and C,1. This matrix representation
of the braids group is known as the reduced Burau representation By (see [GG06, §2]) evaluated
at the parameter t = —1.

It follows from this discussion that the naturally ordered periods of two linear graphs con-
nected by an isoperiodic deformation lie in the same orbit of the representation B(/3). However
the braid group is infinite and the fact that two vectors belong to the same orbit is difficult to
check. For this reason we consider a coarser invariant when the periods are discrete. We consider
the binary arrays of length 2g + 1. Obviously, the Burau representation modulo 2 acts on such
binary strings too, but any orbit is now finite. We are interested in the orbits of the binary arrays
of the form

(hlhghg c.. h2g+1) mod 2 with A, := — / d??M e, (19)

being the rescaled periods of the distinguished differential, r=1,2,...,2g+ 1. Note that, for
totally real curves M, all entries A, with even indexes r are zeros and the total sum of A, is n.

Our immediate goal is to learn how to distinguish the orbits of the Burau representation
reduced mod 2 on the binary arrays.

6.2.2 Orbits of the Burau action reduced modulo 2. Consider the following generating set
in Zggﬂ that can be thought of as elements in H'(X, Zy) written in the basis dual to the C;
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introduced at the beginning of §6.2.1:

w1 = (1000000 . . . 0000)
v = (1100000 . . . 0000);
w3 = (0110000 . . . 0000);
vy = ( )

= (0011000. . .0000

vgg+1 = (000000 . .. 0011);

v2g+2 = (000000 . ..0001).
The only nontrivial linear relation between these vectors is 2725{2 v, =0. An elementary braid
B, acting on this set via the reduced Burau representation modulo 2 behaves like a transposition
of two neighbouring elements:

v B(Br) =vry1, vp1B(Br) =v, and v;B(f,)=v; when j#r r+1.

Therefore the braid group acts as a permutation group on the elements v; of the generating set.
It follows that the length @ of the shortest decomposition (there are exactly two of them) of the
elements v € Zgg *1into the generators v, with r=1,...,2¢g + 2 is the only invariant of our braid
action on binary strings. This number @) is the braid invariant of the array. Note that it takes
a value in {1,2,..., g+ 1} and distinguishes the orbits of action of the Burau representation of
braids on binary arrays.

Remark 10. Looking more carefully at its action on the set of generators v;, it can be shown that
the group generated by the reduced Burau matrices reduced mod 2 in SLgg41(Z2) is isomorphic
to the symmetric group on 2g + 2 elements.

6.2.3 The braid invariant of standard forms. Let us calculate the value of the braid invariant
@ for the hyperelliptic curves with associated linear graphs I'(s, g,n) for s=0,...,m* where
m* :=min(g — 1,n — g —1) (recall Remark 5 for the justification of the definition of m*). The
binary array corresponding to the latter graph is W,_,, where

W, = (1010101 - - - 0101000 - - - 000b) where b(s) :=(n+s) mod 2, (21)
with exactly s entries 1 in the first 2¢g places. These vectors satisfy the recurrence relation given
by W =1wv25_1 4+ v25_2 + W,_o which, together with the initial conditions W1 = v1 + bvgg42 and

W3 = w2 + v3 + buggya, gives us the value of the braid invariant of the vectors W. Indeed, let
a:=(s+n+g) mod 2 with values 0 and 1, then the invariant is

QWy_s)=g—s+a<g+1. (22)

Hence, the values of @ coincide for the equivalent graphs I'(s,g,n) and I'(s — 1, g,n) when
g+ n+ s is odd, and are different for all the other graphs.
We conclude by comparing the braid invariant with the degree partition invariant.

PROPOSITION 6.4. The braid invariant () of the vector of h-heights of the linear graph coincides
with the smaller number |E~| of the degree partition invariant (|E~|,|E™]).

Proof. Tt suffices to compare (22) with (16). O
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7. k-differentials on hyperelliptic Riemann surfaces

In this last section, we prove Corollary 4. We begin by recalling some known facts on
k-differentials and their moduli spaces. More information can be found in [BCG*19).

Given integers ¢ >0 and k > 1, a k-differential £ on a genus g Riemann surface M is a non-
zero section of the kth tensorial product of the canonical bundle Kj;. A k-differential is said to
be primitive if it is not the power of a k’-differential with k&’ < k.

Given a partition pu=(mq,...,my,) of k(29 —2), we consider the moduli spaces of k-
differentials whose orders of zeros are equal to myq, ..., m,. This moduli space is called a stratum
of k-differentials of type u and is denoted QkMg(,u). The sublocus parametrizing the primitive
k-differentials of type p is denoted by Qk./\/lg(,u)prim.

We now compute the number of connected components of the restriction of the strata of
k-differentials with a unique zero to the hyperelliptic locus.

PROPOSITION 7.1. For g > 2, the number of connected components of the restriction of the
strata Q¥ M, (k(2g — 2))P™ to the hyperelliptic locus is
llg-1)/2) if k=2
— 1if k=3 and either g=2 or g =3;
— g/2if k>4 and g > 2 are even;
g/2+ 1 if either g=2 and k >5 is odd, or k >3 is odd and g >4 is even; and
(9+1)/2 if g>3is odd, k+# 2 and either g or k is not equal to 3.

Proof. A primitive k-differential on a hyperelliptic genus ¢ Riemann surface with a unique zero
of order 2k(g — 1) is equivalent to a primitive solution of (PA) of degree n=Fk(g — 1). Indeed,
consider a solution of degree n of the Pell-Abel equation. According to point 3) of Remark 1,
there exists a hyperelliptic Riemann surface My, such that

noot —noo_ ~ O, (23)

where O is the trivial bundle of M,,. Moreover, by primitivity of the solution this equation is
not satisfied for any n’ < n. Since we know that

(9 — L)oot + (g — 1)oo_ ~ K, (24)
where K is the canonical bundle of M., we obtain
2n - 0oy = kK. (25)

Therefore oo is the unique zero of a k-differential £. The fact that n is minimal for this property
implies that & is a primitive k-differential in the locus Q¥ M, (2k(g — 1))P"™.

Conversely, consider a primitive k-differential (M, &) in the hyperelliptic locus of the strata
QF M, (2k(g — 1))P"™. The zero z of € satisfies (25). Now it suffices to subtract k times (24) from
this equation to obtain (23). Recall that the degree of the solutions associated with the point z
forms a semi-group generated by one element. Together with the primitivity of the k-differential
this implies the primitivity of the solution associated with (23).

Hence, the components are in one-to-one correspondence with components of the primitive
solutions of the Pell-Abel equation of degree n=k(g — 1). Note that g >n — g — 1 if and only if
k<(29g+1)/(g—1). For g >3, this happens if and only if k=2 or k=g =3. .

Since for g=2 we obtain a bijection between the components of Q¥M,(2k)P™™ and the
components of the primitive solutions of the Pell-Abel equation of degree k, we obtain the
result for genus 2 directly from Theorem 1.2.
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So if k=2, we have min(g,2(¢g —1) — g — 1) =g and, using Theorem 1.2, we obtain that
the number of connected components is equal to [(g —1)/2]. If g =k =3, the restriction of the
stratum Q3 M3(12)P™™ to the hyperelliptic locus is connected. If we are not in one of the previous
cases, then the number of components is

{g] +1 when kg — k + g is odd,

[g—i-l

5 } when kg — k + g is even.

The second case occurs when both k£ and g are even, and the first case otherwise. This concludes
the proof of Proposition 7.1. [l

Since Riemann surfaces of genus 2 are hyperelliptic, this implies the first part of Corollary 4.
Moreover, this shows that the parity invariant of [CG22, Theorem 1.2] classifies the connected
components of QF My (2k)P"™. Recall that the parity invariant is given by the parity of the spin
structure of the canonical cover associated with a k-differential (see [CG22, §5] for a detailed
discussion). We now relate the parity invariant to the degree partition invariant, proving the
second part of the corollary.

PROPOSITION 7.2. Let k>5 be an odd number. The component of QF My (2k)P™ with odd,
respectively even, parity corresponds to the component of invariant (1,5), respectively (3, 3).
Moreover, the component of Q¥ Mo(2k)P™™ is odd if and only if there exists a Weierstrafl point
such that the difference between it and the zero of the k-differential is a k-torsion.

The proof relies on the technology of the degenerations that were introduced in [BCG*19]
and studied in [CG22, §2 and 3.2]. It is recommended that readers have some familiarity with
these notions, but this is not necessary: we will only use the notion of twisted k-differentials
which appear as the limit of k-differentials.

Proof. Let k be an odd integer > 5. Let (M, ¢) € Q% M3 (2k) be the primitive k-differential whose
unique zero z is such that the graph associated with M (as explained in §4) is linear. It is shown in
the proof of [Gen22, Theorem 3] that there is a Weierstral point W € M such that the difference
W — z is a k-torsion if and only if the linear graph has heights (2, 2, k — 2). The degree partition
invariant of this graph is (1,5) (and of course W is the preimage of the unique e € E7).

Let (M, &) € QF M3 (2k) be a primitive k-differential of odd parity and denote its zero by z.
It suffices to prove that there exists a Weierstrafl point W such that W — z is a k-torsion.

We start with a twisted k-differential (Mg, ) obtained by gluing the kth power of a holomor-
phic differential on a genus 1 Riemann surface (M1, w1) to the pole of a k-differential (M2, §2) in
QF Mo (2k, —2k)P™™ whose k-residue vanishes (see [CG22, Lemma 5.9] for the existence of such
a k-differential). We denote by z the zero of £&. We note that the Jacobian of the underlying
singular curve My is the product of the elliptic curves. This twisted k-differential (M, &) and
its Jacobian are sketched in Figure 15.

This twisted differential is smoothable in the stratum Q¥ My (2k). The limits of the Weierstraf
points of any such smoothing are the 2-torsion points modulo the node N. Denote by W1, Ws, W3,
respectively Wy, W5, W, the 2-torsion points on M7, respectively Mo. We consider the 2-torsion
points on Mj. Let vy, ve € C such that My ~ C/(Zvi ® Zvsy), and suppose that the node is the
image of 0 € C. The coordinates of z are (n1/2k, na/2k), where pged(ni, ng, 2k) € {1,2} is the
rotation number of & (see [CG22, Theorem 3.12]). Hence, the differences W; — z are given by
((n1 — ké1)/2k, (ng — kd2)/2k) with (81, d2) € (Z/2Z)?\ {(0,0)}. The orders of torsion of these
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M
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W. Ws We

W ®

FIGURE 15 (colour online). The Jacobian of M.

differences are
2k
pged(ny — kdy, ng — ks, 2k)
Suppose that the rotation number pged(ni, ng, 2k) of 12 is 1. If both ¢; have the same parity
as n;, then both n; — kd; are even. Hence there exists a 2-torsion point on Ms, given by kz € Mo,

such that its difference from z is k-torsion. Finally, [CG22, Lemma 5.6] shows that the parity of
the k-differentials obtained by smoothing this twisted k-differential is odd. O
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