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Summary

This paper examines the properties of likelihood maps generated by interval mapping (IM) and
composite interval mapping (CIM), two widely used methods for detecting quantitative trait loci
(QTLs). We evaluate the usefulness of interpretations of entire maps, rather than only evaluating
summary statistics that consider isolated features of maps. A simulation study was performed in
which traits with varying genetic architectures, including 20–40 QTLs per chromosome, were
examined with both IM and CIM under different marker densities and sample sizes. IM was found
to be an unreliable tool for precise estimation of the number and locations of individual QTLs,
although it has greater power for simply detecting the presence of QTLs than CIM. The ability of
CIM to resolve the correct number of QTLs and to estimate their locations correctly is good if
there are three or fewer QTLs per 100 centiMorgans, but can lead to erroneous inferences for more
complex architectures. When the underlying genetic architecture of a trait consists of several QTLs
with randomly distributed effects and locations likelihood profiles were often indicative of a few
underlying genes of large effect. Studies that have detected more than a few QTLs per chromosome
should be interpreted with caution.

1. Introduction

An understanding of the nature of genes affecting
quantitative traits has been a fundamental goal of
research in quantitative genetics at least since the
work of Sax (1923) but, for the most part, it remains
elusive. However, approaches that take advantage
of modern high-throughput genotyping technologies
have brought this understanding and its attendant
benefits to medicine and agriculture nearer than ever
(Mackay, 2001). Twomethods are widely used because
of their power and computational efficiency: interval
mapping (IM) (Lander & Botstein, 1989) and com-
posite interval mapping (CIM) (Zeng, 1994). The ad-
vantages of these approaches include increased
statistical power over single marker analyses (Thoday,
1961), greater algorithmic simplicity than multiple in-
terval mapping (MIM) (Kao et al., 1999) and lower
computational burden than Bayesian interval map-
ping methods (Sillanpää & Arjas, 1998).

In both IM and CIM, molecular marker data and
phenotype data are collected from a number of in-
dividuals and are used to calculate the likelihood, L1,
that a QTL is present at some given location in the
genome covered by the linkage map. The likelihood of
no QTL being present, L0, is also determined. In this
study, the likelihood information is summarized with
a likelihood ratio (LR), which equals 2 ln(L1/L0). The
LR statistic is usually calculated across the entire
genome at positions 1 cM apart and then visualized by
plotting LR against map location. Ideally, the result-
ing likelihood map leads to correct inferences re-
garding the number and location of factors affecting
the trait of interest by identifying those portions of the
genome showing higher, statistically significant LRs
than other portions.

Over the past decade, hundreds of studies have
used IM and CIM to reach conclusions regarding the
locations and effects of genes contributing to vari-
ation in a wide variety of traits in many species
(reviewed in Lynch & Walsh, 1998). Thus, it is of
great interest to investigate the power and accuracy of
these methods in order to develop a clearer picture
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of the appropriate confidence or skepticism with
which conclusions drawn from mapping results
should be met.

Beginning with Lander & Botstein (1989), many
studies have used computer simulation and other
techniques to investigate the properties of IM (Van
Ooijen, 1992; Carbonell et al., 1993; Darvasi et al.,
1993; Zeng, 1994; Wright & Kong, 1997; Ronin et al.,
1999; Walling et al., 2002). CIM has not been as
extensively examined (Zeng, 1994; Visscher & Haley,
1996; Goffinet &Mangin, 1998; Visscher et al., 2000).
Unfortunately, it is often difficult to compare and sum-
marize results across such studies owing to the range
of approaches and simulation parameters that are
used. Also, it is well known that interval mapping can
fail to distinguish between one QTL of large effect and
several QTLs of small effect (Visscher & Haley, 1996;
Liu & Dekkers, 1998), yet most simulation studies
have investigated relatively simple genetic architec-
tures. A third shortcoming of previous studies is that
they rely on summary statistics that take into account
only one or two aspects of likelihood maps.

In the present study, all previously examined gen-
etic architectures, as well as several more complicated
architectures, are analyzed in a unified, consistent
framework for both IM and CIM. Furthermore, an
attempt was made to investigate, quantify and sum-
marize the properties of whole likelihood maps and
not to rely solely on summary statistics. Thus, we

place an emphasis on evaluating the usefulness of IM
and CIM in a ‘real world’ context and address their
utility to experimenters who frequently use likelihood
maps as the primary evidence for the existence and
location of QTLs. In this spirit, we also provide an
extensive downloadable database of likelihood maps
and other data generated under known genetic archi-
tectures.

2. Methods

To investigate the performance of IM and CIM under
conditions representative of those likely to be encoun-
tered in QTLmapping studies, quantitative traits were
mapped in simulated backcross (BC1) populations
whose members were each represented by a linkage
group (‘chromosome’) of length 100 cM (cf Van
Ooijen, 1992). Phenotypes were simulated as the sum
of the additive genetic effects of any QTLs present,
plus a random normal environmental effect with vari-
ance chosen to give the traits the heritabilities listed in
Table 1.

For CIM, a cofactor selection method was used
whereby all markers more than 10 cM away from the
interval in question were considered (cf Zeng 1994).
Among these, markers at least 10 cM from all other
markers were chosen as cofactors, starting with the
marker farthest away from the interval on the ‘ left ’
side. When the interval was reached, cofactors were

Table 1. Simulation parameters summary

Number
of QTLsa Conditionsa Heritability

Locations of
QTLs (cM)

Relative effects
of QTLsb

1 64 0.05 1 +1.0
48

2 288 0.10 18, 78 +1.0, +1.0
38, 58 +0.5, +2.0
45, 50 x1.0, +1.0

3 32 0.15 18, 48, 78 +1.0, +1.0, +1.0
5c 25 0.45 10.0, 29.0, 47.5,

69.5, 90.0
+3.3, +2.7, +5.5,
+2.8, +1.9

20 128 0.50 Equald Equale

Randomf Randomg

40 128 0.50 Equal Equal
Random Random

a For each QTL number, simulations were performed for each possible combi-
nation of QTL location and QTL effect. Each such combination was in turn per-
formed for each combination of mapping method, marker density and sample size
(as described in the text) to give the total number of conditions.
b The effects correspond to the QTL locations in order from left to right.
c Data estimated from Long et al. (1995).
d For ‘equal spacing’ in 20 QTL conditions, the QTLs are spaced every 5 cM and,
for equal spacing in 40 QTL conditions, 40 QTLs are evenly spaced every 2.5 cM.
e In ‘equal effects ’ conditions, all QTLs have the same relative effect.
f For ‘random spacing’ conditions, 20 or 40 QTL locations were randomly chosen
and all maps with the same number of QTLs used the same randomly chosen set.
g For ‘random effects ’ conditions, all QTLs had random uniform effects and all
maps with the same number of QTL used the same randomly chosen set.
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chosen, starting with the marker farthest away from
the interval on the right. This method was found to
give results similar to the commonly used method of
selecting as cofactors the five or so markers of greatest
effect outside a window around the interval with step-
wise regression (Basten et al., 1999), yet is less com-
putationally intensive (data not shown).

A total of 665 mapping conditions were simulated,
each with 500 replications. The parameter sets for each
of these conditions can be organized into six categor-
ies (Table 1). Unless otherwise noted, simulations
were performed for each combination of the following
parameters in addition to each combination of QTL
location and QTL effect described in Table 1: map-
ping method {IM, CIM}, marker density {1 cM, ran-
dom, 7 cM, 20 cM} and sample size {100, 200, 500,
1000}. Random marker density is a condition with
markers located at 0.0, 1.1, 3.6, 13.8, 24.2, 35.5, 52.5,
62.9, 73.1, 73.4, 84.9, 89.7, 91.2, 94.6 and 100.0 cM
from the left end of the chromosome, giving an aver-
age spacing of 7.1 cM.

20 further mapping conditions were simulated with
parameters chosen based on the mapping conditions
and positions and effects of QTLs mapped by Long
et al. (1995), who detected five QTLs affecting ab-
dominal bristle number on the third chromosome
of Drosophila melanogaster (Table 1). (QTLs were
simulated to have only additive effects, although Long
et al. (1995) found evidence of epistasis.) Unlike with
the other five condition categories, the simulations
were performed with CIM only for each combination
of marker density {Long, 1 cM, random, 7 cM,
20 cM}, and sample size {66, 100, 200, 500, 1000}.
‘Long’ marker density approximates the location of
markers used and 66 was the sample size used the
analysis by Long et al. (1995) of chromosome three.
Because these markers spanned a linkage group
108 cM long, the standard 1 cM, 7 cM, random and
20 cM marker densities also spanned this length in-
stead of the usual 100 cM. (See results in web sup-
plement p. 48 (power and significance proportion
data), pp. 89–93 (fractile curves) and pp. 1374–1423
(sample plots).)

For each mapping condition, the 10th, 25th, 50th,
75th and 90th percentile LRs for the 500 generated
likelihood maps at each position along the chromo-
some were plotted (cf Visscher & Haley, 1996). For
reference, the appropriate empirical 5% significance
threshold was plotted along with the five fractile
curves. These thresholds were calculated based on the
maximum LR values obtained from 1000 likelihood
maps generated under conditions identical to the cor-
responding mapping condition except that no QTL
was present (cf Churchill & Doerge, 1994; Doerge &
Churchill, 1996).

For one, two and three QTL conditions, an
additional means of summarizing and visualizing

mapping performance for the 500 replicates was used.
This method views the chromosome as a histogram
with bin widths spanning 5 cM. The height of a bin in
these histograms is equal to the proportion of the time
out of the 500 replicates that the maximum LR is
present at the location spanned by that bin (cf Liu and
Dekkers, 1998). This method was not informative for
conditions with more than three QTLs owing to the
relationship between QTL spacing and the width of
the bins. When appropriate, however, it is particularly
useful for visualizing the precision of the estimates of
QTL location.

Two methods of numerically summarizing the re-
sults were also used. The 10th, 25th, 50th, 75th and
90th percentile proportions of the chromosome that
were reported as significant for each condition were
calculated. For a given map, this ‘significance pro-
portion’ is simply the number of times the LR is above
the significance threshold divided by the number of
positions at which the LRwas calculated. This method
was found to be a useful supplementary means of
quantifying likelihood profile shape and results are
provided in the web supplement. The power of QTL
detection (Van Ooijen, 1992) was also calculated for
all conditions.

Some discussion and clarification of terms is necess-
ary. In the presentation of results below, the resolving
ability of a map is called ‘high’ if the peaks corre-
sponding to putative QTLs can reasonably be called
narrow and if the map can distinguish multiple
nearby QTLs. Resolving ability is distinct from ‘local-
ization ability ’, which is the average difference be-
tween the true location of the QTL and the location of
the maximum LR in a given peak (Fig. 1a, b). The
concept of a peak itself is subjective; our working
definition of a peak is a region of the likelihood profile
that is a local maximum and that can reasonably be
interpreted to suggest that factors in the region affect
the trait in question (Fig. 1c). The characterization of
resolving ability in the presentation of results below
takes into account the shape of peaks even if they are
below the significance threshold. Such an analysis,
together with the power data, gives a more complete
picture of the properties of maps than would be given
by an analysis that considered only maps, whose in-
terpretations would certainly result in a conclusion
that a QTL is present (Fig. 1d ).

3. Results

Owing to space constraints, only a representative
sample of the data is presented here. Fractile curves
for all conditions, maximum LR histograms for all
one, two, and three QTL conditions, and complete
significance proportion and power data for all condi-
tions are available at http://hjmuller.bio.uci.edu/
ylabhome/work-im1.html. This web supplement is a
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large archival file that may be appropriate for exper-
iments with marker densities, sample sizes and hy-
pothesized genetic architectures matching one of the
simulated conditions.

(i) IM vs CIM for a small number of QTLs

IM and CIM maps for conditions with three or fewer
QTLs of uniform effect both display good localization
ability. For a typical individual map, a peak’s maxi-
mum LR tends to be within 10 cM of the true QTL
location across sample size and marker density con-
ditions (Fig. 2a, b, web supplement pp. 4–27 (max.
LR histograms)). Both IM and CIM localization
ability increase somewhat with sample size and mar-
ker density. In addition, a lack of informative recom-
bination events in sample sizes of less than 100 used to
detect three QTL gives poor localization ability re-
gardless of mapping method used.

Unlike localization ability, there are significant
differences in resolving ability between IM and CIM
for uniform effects maps. This is especially noticeable
when two or more QTLs are present, because multiple

peaks must be distinguished for an accurate map
interpretation because the maximum LR across the
chromosome does not suffice to indicate QTL lo-
cation. The very broad patterns in the IM fractile
curves reflect the fact that, for individual IM maps
with two or more QTLs, peaks are often unin-
formative owing to the large portion of the chromo-
some they encompass (Fig. 3a ; web supplement pp.
49–60 (fractile curves) and pp. 94–477 (sample
plots)). In fact, most IM maps show a single wide
peak. The CIM peaks, by contrast, are fairly narrow
on average (<20 cM) (Fig. 3b ; web supplement
pp. 38–43 (significance proportion data), pp. 69–80
(fractile curves) and pp. 734–1117 (sample plots)) and
CIM maps with one to three QTLs usually show
clearly discernible peaks in the appropriate regions,
although, more often than not, the correct number are
not present (there are often more and sometimes less),
especially when QTLs are less than 30 cM apart or
when a sample size of 100 is used and three QTLs are
present. For both IM and CIM, resolving ability is un-
affected by sample size but increases with increasing
marker density.

CIM LR values tend to increase as marker density
decreases and as sample size increases, whereas IM
LR values increase with sample size but are unrelated
to marker density for uniform effects maps. This dif-
ference is probably due to the higher number of CIM
cofactors being used at higher marker densities in our
study, which reduces the power of CIM. The power of
QTL detection was observed to be considerably
higher for all IM maps with three or fewer QTLs than
for corresponding CIM maps (Table 2; web sup-
plement pp. 28–33 and pp. 38–43 (power data)).

The properties of CIM maps with two QTLs of
effects x1.0 and +1.0 are similar to those with QTLs
of uniform effects, except with somewhat better local-
ization ability and substantially better resolving
ability. Two clear, narrow peaks in the correct location
are generally seen (Figs 2d, 3d ; web supplement
pp. 24–26 (max LR histograms), pp. 42–43 (signifi-
cance proportion data), pp. 77–79 (fractile curves)
and pp. 990–1085 (sample plots)). Localization ability
for IM maps with QTLs of effects x1.0 and +1.0
is similar to localization ability for corresponding
CIM maps, and resolving ability is surprisingly good
given IM trends observed elsewhere (Fig. 3c, d ). For
example, when the QTLs are 60 cM apart and have
effects of x1.0 and +1.0 in IM maps, there are
generally two peaks that localize the QTL to within
5–10 cM, are roughly 30–40 cM wide and have simi-
lar shapes across sample size/marker density condi-
tions. As the QTL distance decreases to 20 cM and
even 5 cM apart, the maps have properties similar to
the maps with QTLs 60 cM apart, except that the in-
side portions of the peaks tend to be truncated; that
is, there tends to be a deep ‘valley’ that often leads to
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Fig. 1. Idealized depictions of likelihood profile properties.
QTL locations are indicated by a hash mark at the top
border. The height of the mark is a measure of the relative
QTL effect. Negative effects are indicated by marks
extending below the top border. The likelihood map
in (a) has good resolving ability but poor localization
ability ; one would be strongly led to believe that there is
a QTL at y20 cM when, in reality, it is at 80 cM. By
contrast, the likelihood map in (b) has poor resolving
ability and good localization ability, because the peak
correctly identifies the location of the QTL as 50 cM.
However, one would not be confident that the QTL is near
50 cM. In the commonly seen situation depicted in (c), a
standard definition of a peak (a local LR score maxima
separated by LR values below the significance threshold)
would lead to the conclusion that there are two closely
linked QTLs. However, a reasonable interpretation would
be that there is a single QTL near 50 cM. Similarly,
although the maximum in (d) is slightly below the
significance level, the resolving ability of the map is clearly
excellent and there is suggestive evidence for a single QTL
near 50 cM.

T. W. Cornforth and A. D. Long 142

https://doi.org/10.1017/S0016672303006396 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672303006396


an interpretation of two peaks in the appropriate re-
gions. Despite this excellent overall resolving ability,
roughly one-quarter to one-third of the time, one or
the other of the QTLs is virtually undetected (Fig. 2c,
Fig. 3c ; web supplement pp. 12–14 (max LR histo-
grams), pp. 32–33 (significance proportion data), pp.
57–59 (fractile curves) and pp. 350–445 (sample
plots)).

The resolving ability and localization ability of IM
and CIM maps with QTLs of effects 0.5 and 2.0 are
essentially the same as those of corresponding maps
with a single QTL, because the presence of the QTL

with effect 0.5 is almost never suggested by the maps.
This is perhaps not surprising given that the QTL with
a relative effect of 0.5 accounts for only 1/17th of the
genotypic variance.

All IM and CIM nonuniform QTL effect maps
display the same LR increase and power trends as
corresponding uniform QTL effect maps. Similarly,
IM power is higher than CIM when two QTL of ef-
fects 0.5 and 2.0 are modeled. By contrast, IM power
is generally lower than CIM power for traits con-
trolled by two QTLs of opposite effect (Table 2; web
supplement pp. 30–33 and pp. 40–43 (power data)).
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Fig. 2. Maximum LR histograms for selected parameter sets. The histograms are as follows. QTL locations are indicated
by a hash mark at the top border. The height of the mark is a measure of the relative QTL effect. Negative effects are
indicated by marks extending below the top border. (a) IM with a marker density of 7 cM, a sample size of 500 and two
QTLs with the same relative effects and with locations of (left to right) 18 cM and 78 cM, 38 cM and 58 cM, and 45 cM
and 50 cM. (b) CIM with a marker density of 7 cM, a sample size of 500 and two QTLs with the same relative effects and
with locations of 18 cM and 78 cM, 38 cM and 58 cM, and 45 cM and 50 cM. (c) IM with a marker density of 7 cM, a
sample size of 500 and two QTLs with effects of x1 and +1, and with locations of 18 cM and 78 cM, 38 cM and 58 cM,
and 45 cM and 50 cM. (d) CIM with a marker density of 7 cM, a sample size of 500 and two QTLs with effects of x1 and
+1, and locations of 18 cM and 78 cM, 38 cM and 58 cM, and 45 cM and 50 cM.
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(ii) CIM and a several-QTL model

The simulated traits controlled by 20 and 40 QTLs
are meant to approximate a polygenic trait rather
than a trait with relatively few factors of large effect.
At its extreme of an infinite number of genetic factors
(Bulmer, 1980), many would consider the common
observation that a small number of QTLs are map-
ped for many traits as being inconsistent with a poly-
genic model. IM 20 and 40 QTL maps are, almost
without exception, large domelike shapes with inflec-
tions in the likelihood profile owing only to the
notches at marker locations with power always 1.0.
Thus, results are here presented only for CIM 20
and 40 QTL maps. Furthermore, CIM 20 and 40
QTL maps have very similar properties and so state-
ments made about CIM 20 QTL maps should be
taken to hold for CIM 40 QTL maps unless stated
otherwise.

Maps with uniform spacing of the QTLs and uni-
form effects tend to display the whole-chromosome
encompassing profiles of the IM maps across sample
size and marker density conditions (Fig. 4a ; web
supplement pp. 81, 85 (fractile curves), pp. 1118–1149
and pp. 1246–1277 (sample plots), and pp. 44, 46
(significance proportion data)). When a marker den-
sity of 1 cM was used for these maps, a regular pattern
of peaks approximately every 10–15 cM was observed
that do not seem to correspond to QTL locations.

For CIM conditions with uniform QTL spacing but
random effects, resolving ability and localization
ability are similar to the uniform spacing and uniform
effects conditions, except that the general pattern is
the production of broad peaks or entire regions with
relatively high LR that correspond roughly to the
places where there are clusters of QTL with high ef-
fects, which are on the far left side and the far right
side of the chromosome (Fig. 4b ; web supplement
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Fig. 3. Fractile curves and example individual likelihood maps for selected parameter sets with a small number of QTLs.
QTL locations are indicated by a hash mark at the top border. The height of the mark is a measure of the relative QTL
effect. Negative effects are indicated by marks extending below the top border. The first column contains the fractile curves
and the other two plots in a row are representative example individual likelihood maps. (a) IM with a marker density of
7 cM, a sample size of 500 and two QTLs with the same relative effects and locations of 18 cM and 78 cM. (b) CIM with a
marker density of 7 cM, a sample size of 500 and two QTLs with the same relative effects and locations of 18 cM and
78 cM. (c) IM with a marker density of 7 cM, a sample size of 500 and two QTLs with effects of x1 and +1 at 38 cM and
58 cM. (d) CIM with a marker density of 7 cM, a sample size of 500 and two QTLs with effects of x1 and +1 at 38 cM
and 58 cM. Notice that, although IM and CIM can perform well on average, individual realizations of the simulations can
be misleading with regards to the underlying genetic architecture. For example, in (b) column two, the left-hand QTL would
probably not be identified, just as the right-hand QTL would not in (c) column three. In (b) column three, the left-hand
QTL would be identified, although the likelihood at the true location of the QTL is significantly lower than at the peak.
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pp. 82, 86 (fractile curves), pp. 1150–1181 and pp.
1278–1309 (sample plots), and pp. 44, 46 (significance
proportion data)).

CIM 20 QTL random location, uniform effects
maps have basically the same properties as uniform
location, random effects maps except that they show
the opposite pattern, with the high region located in
the center of the chromosome instead of at the edges
(Fig. 4c ; web supplement pp. 83, 87 (fractile curves),
pp. 1182–1213 and pp. 1310–1341 (sample plots), and
pp. 45, 47 (significance proportion data)). Because the
QTLs all have the same effect, the fact that QTL lo-
cations are concentrated towards the center (there is
only one QTL to the left of 22.8 cM and none to the
right of 86.7) accounts for this observation.

CIM 20 QTL random location, random effects
maps have profile shapes determined primarily by the
QTLs with high effects on the edges. As is the case
with the other 20 and 40 QTL maps, the interpret-
ation of any given map would probably bear little re-
semblance to the actual genetic architecture; a likely
interpretation might take the form of ‘one or more
factors affecting the trait in the 10–30 cM region and
70–90 cM region’, which would probably correspond
to the QTL at 22.8 cM, 23.4 cM and 24.2 cM with
effects 2.1, 3.9 and 4.9 and to the QTLs at 77.8 cM,
78.0 cM and 82.9 cM with effects of 4.6, 3.3 and 3.0.

A similar resolving ability across marker densities
is observed for all CIM 20 and 40 QTL maps, as well
as the above-mentioned 10–15 cM valley pattern ob-
served in maps with 1 cM density, is illustrated by
three fractile curves and six individual maps from the
CIM 20 QTL with random spacing and random
effects conditions in Fig. 5d–f (web supplement
pp. 84, 88 (fractile curves), 1214–1245 and 1342–1373

(sample plots), and 45, 47 (significance proportion
data)). Power was higher for all CIM 20 and 40 QTL
maps than for CIM one, two and three QTL maps,
and was never less than 0.38 (Table 2; web sup-
plement pp. 45, 47 (power data)).

4. Discussion

(i) IM vs CIM for a small number of QTLs

For practical purposes, IM should be used primarily
as a tool for identifying whole chromosomes or link-
age groups with effects on a trait. This is because IM
typically does not reliably resolve multiple QTLs but
can almost always identify the location of groups of
QTL to within 40 cM or less. Even if the trait in
question is not known to be controlled by one or
fewer QTL per 100 cM, the location estimate pro-
vided by IM can be useful preliminary data for higher
resolution analysis of a region or for purposes other
than positional cloning, such as marker-assisted
selection or candidate gene identification. Our results
demonstrate the greater power that IM generally has
compared with CIM, which is related to the use of
conditioning markers (Zeng, 1993).

Nevertheless, CIM can frequently be used to obtain
accurate information about QTL number and lo-
cation for traits that are controlled by three or fewer
QTLs per 100 cM, even when trait heritabilities are
fairly low, assuming that QTL effects are additive and
a reasonable sample size (at least 200) is used. Within
these general trends for CIM, significant benefits
of increased marker density were observed for QTL
resolution and, to a lesser extent, localization. The
shape of an LR profile is almost entirely independent

Table 2. Power data for selected parameter sets

QTL location and effect
18/+1, 78/+1 38/–1, 58/+1 CIM (20 QTLs

Marker Sample of equal location
density size IM CIM IM CIM and effect)

1 100 0.75 0.11 0.21 0.37 0.38
200 0.97 0.25 0.47 0.73 0.79
500 1.00 0.64 0.94 1.00 1.00
1000 1.00 0.98 1.00 1.00 1.00

7 100 0.77 0.20 0.20 0.47 0.75
200 0.98 0.35 0.44 0.81 1.00
500 1.00 0.82 0.89 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00

Random 100 0.74 0.14 0.18 0.33 0.54
200 0.97 0.19 0.46 0.57 0.86
500 1.00 0.62 0.90 0.98 1.00
1000 1.00 0.91 1.00 1.00 1.00

20 100 0.74 0.26 0.17 0.53 0.95
200 0.97 0.56 0.35 0.86 1.00
500 1.00 0.97 0.89 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00
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of sample size, although the magnitude of the LR
values increases with sample size.

Other studies investigating the properties of IM and
CIM for a small number of QTL are consistent with
the results presented here. For example, Van Ooijen’s
conclusion (Van Ooijen, 1992) that a single QTL ex-
plaining 5% of the phenotypic variance can be map-
ped only to roughly the nearest 40 cM is based on
stricter criteria for determining confidence in location
estimates than in the present study. However, as the
maximum LR histograms attest, if IM is to be used

for rough mapping only, localization ability is good
by any standard. Wright & Kong (1997) found IM
localization ability to be good if one QTL is present,
unless marker density is low. In general, for three or
fewer QTLs, our results show good IM and CIM lo-
calization ability across all marker density conditions.
For these three or fewer QTL conditions, however, a
decline in localization ability related to low marker
density (an appreciable bias of location estimates to-
ward the center when the marker density was 20 cM)
was observed, as predicted by Wright & Kong (1997).
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Fig. 4. Fractile curves and example individual likelihood maps for selected parameter sets with 20 QTLs. QTL locations
are indicated by a hash mark at the top border. The height of the mark is a measure of the relative QTL effect. Negative
effects are indicated by marks extending below the top border. (a) CIM with a marker density of 7 cM, a sample size of
500 and equally spaced QTLs of equal effects. (b) CIM with a marker density of 7 cM, a sample size of 500 and equally
spaced QTLs of random effects. (c) CIM with a marker density of 7 cM, a sample size of 500 and randomly spaced QTLs
of equal effects. (d) CIM with a marker density of 7 cM, a sample size of 500 and randomly spaced QTLs of random
effects. (e) CIM with a marker density of 1 cM, a sample size of 500 and randomly spaced QTLs of random effects. (f)
CIM with a marker density of 20 cM, a sample size of 500 and randomly spaced QTLs of random effects.
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For a small number of QTLs, Darvasi et al. (1993)
found that IM power is not substantially influenced
by marker spacing if QTLs are not present at marker
locations. This is consistent with our results, because
we made an effort to ensure that QTLs were not
present at the markers.

Unlike with IM, CIMmarker density affects power.
One possible explanation for this is that, with CIM,
marker density is directly related to the number
of cofactors available for selection: with 20 cM den-
sity, there are at most six cofactors, whereas the other
densities have nine and, as previously mentioned,
the number of cofactors used affects CIM power.
Darvasi et al. (1993) also report that, as sample size
and trait heritability decrease, the effect of marker
density on localization ability decreases. For example,
marker density is unlikely to have a significant effect

on localization ability for sample sizes of 100 or 200,
but is likely to at higher sample sizes, which we ob-
serve to some extent for both IM and CIM. Zeng
(1994) examined both IM and CIM with a heritability
of the simulated trait of 0.70 and observed localiz-
ation ability to be good for both IM and CIM (usually
within the 5–15 cM range), although, in most cir-
cumstances CIM had an advantage over IM. We ob-
serve similar trends for the condition of a small
number of QTLs that Zeng simulated (Fig. 2).

(ii) CIM and a several-QTL model

Many of the simulated maps observed when the
underlying genetic architecture consists of a large
number of QTLs at random locations resemble the
likelihood profiles generated in real-life mapping stu-
dies (cf Long et al., 1995; Macdonald & Goldstein,
1999). Thus, it is possible that the true genetic archi-
tectures of many traits could resemble those present in
the 20 or 40 QTL random location, random effects
conditions. Of course, mapping studies do not claim
to identify all QTLs and their locations, only large
segregating genetic factors that affect the trait. The
results of the present study underscore the fact that
these identified factors might be regions a few centi-
Morgans in size harboring multiple closely linked
QTLs of high effect relative to other regions in the
genome. When more than a few QTLs are mapped on
a chromosome, caution should be exercised in equat-
ing mapped factors or peaks to single QTLs/genes. As
demonstrated in Fig. 4d, even a map with two well
defined peaks is not inconsistent with the presence
of 20 QTLs. This study thus confirms the important
results of Visscher & Haley (1996) and Liu & Dekkers
(1998) : it is difficult to distinguish between a single
QTL of large effect and many QTLs (with small and/
or large effects). However, these previous studies used
a genetic model consisting of 101 QTLs of equal effect
and equal spacing, and it is valuable to ask whether
their conclusions are robust to relaxing the assump-
tion of equal effects and spacing. Here, we extend
these earlier results to a fairly plausible genetic archi-
tecture in which a trait is determined by more than a
handful of factors whose effects are not equally spaced
at random intervals. The inability to distinguish be-
tween a single QTL of large effect and a several-QTL
trait holds to a substantial extent under a variety of
our more realistic models. The conjecture of Visscher
& Haley (1996) that greater sample size and/or mar-
ker density would eliminate this problem is not born
out in our study.

(iii) Discussion of methods

The characteristics of the mapping conditions in the
present study were varied in such a way that the
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Fig. 5. Distribution of location-wise correlations between
simulated maps for traits with simple and complex genetic
architectures. Solid lines are the distribution of the
correlation coefficient (r) or average r for LR values at
each location obtained from 500 simulated CIM maps with
a marker density of 7 cM and a sample size of 500 for a
trait with two QTLs at 25 cM and 91 cM, of relative effects
12.4 and 13.8, and a trait heritability of 0.24. The broken
line is the distribution of average r obtained from 500
simulated CIM maps with a marker density of 7 cM and a
sample size of 500 for the 20 QTLs, random locations and
effects condition. In all cases, the distribution is based on a
random sampling of the 500 simulations to obtain 100,000
estimated r values. The histogram’s bin widths are 0.01
and it was smoothed using the Nadaraya–Watson kernel
regression method with a bandwidth of 0.05 (ksmooth
function in R). (A) The distribution of r when a QTL
mapping experiment is replicated once. (B) The
distribution of the average r based on six replicate
experiments (i.e. (6r5)/2=15 estimates of r). (C) The
distribution of the average r based on 12 replicate
experiments (i.e. (12r11)/2=66 estimates of r).
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importance of factors likely to affect the performance
of IM and CIM could be easily evaluated. In par-
ticular, the effect of the genetic architecture of the
theoretical quantitative trait was presumed to be of
utmost importance. The choices of simulated marker
densities were intended to reflect realistic lower
(20 cM) and upper (1 cM) boundaries for marker
densities used in modern studies. The use of regularly
spaced markers for most of the analysis in this and
other studies (cf Charmet, 2000) is likely to be a valid
simplification, because we found that differences
between the effects of irregular and regular marker
spacing on QTL mapping properties to be minimal
for realistic sample sizes and heritabilities.

Various methods have been proposed and used to
quantify the power to detect QTLs and the precision
of QTL mapping procedures. Many of these focus on
the properties of expected LR curves (Lander &
Botstein, 1989; Wright & Kong, 1997; Ronin et al.,
1999). Although expected LR curves are useful, they
can be misleading, because any single QTL mapping
experiment is but one realization of the random pro-
cess that gives rise to the expected LR curve. Thus, a
mapping method might perform well on average yet
still give potentially misleading results for any given
realization (e.g. the sample plots in Figs 3a, 4d ). A
method used in some studies that is perhaps the most
direct means of quantifying mapping precision is the
calculation of the mean location estimate (or devi-
ation from location estimate) based on the maximum
test statistic value in a relevant region of the likeli-
hood profile over multiple simulated mapping popu-
lations (Carbonell et al., 1993; Zeng, 1994; Charmet,
2000). However, the occasional lack of discernible
relevant peaks across simulations makes such an
analysis difficult for multiple QTLs (Zeng, 1994), es-
pecially if it is to be automated and if maps with more
than two QTLs per 100 cM are being investigated.

Although methods for quantifying the accuracy of
location estimates are conceptually and compu-
tationally straightforward, they can be removed from
the type of inference commonly drawn from a map-
ping study. For this reason, we attempted to sum-
marize the nature of the inferences that would be
made by looking at individual likelihood maps, which
largely determine the direction of future experiments
and the conclusions drawn from them. We found de-
veloping a novel summary statistic that would sum-
marize the quality of inference drawn from such
maps to be more problematic than expected, because
experimental geneticists take into account a range of
difficult-to-quantify factors when interpreting a like-
lihood profile. These include the shapes and heights
of peaks as they relate to other nearby peaks and to
the overall shape of the likelihood profile in a nearby
region, and to the overall shape across the entire
chromosome, as well as intuition about the general

characteristics of rational likelihood map interpret-
ations, and possibly even a priori knowledge about the
underlying genetic architecture of the trait such as
knowledge of candidate gene locations. Thus, the de-
velopment of a useful definition of a single, numerical
‘ score’ for the informativeness of QTL likelihood
map data (or similar data that is interpreted in a
somewhat subjective fashion) for now remains un-
workable.

One potential approach to such a problem takes
advantage of unused ‘ information’ in the likelihood
profiles. We simulated replicate QTL mapping ex-
periments under a complex genetic architecture of 20
QTLs with random locations and random effects, and
under a simple genetic architecture of two QTLs that
might reasonably be inferred from more complex
architecture. In Fig. 5, we show the distribution of the
average correlation coefficient between likelihood
profiles that would be observed if the QTL mapping
experiment were replicated two, six or 12 times. It can
be seen that replicating a QTL mapping experiment
many times results in likelihood profiles that are more
correlated over experiments under a two-QTL model
than under a several-QTL model. We are not sug-
gesting that QTL mapping experiments be replicated
to this level but that there is information that is not
presently being used that could perhaps be extracted
under some sort of data re-sampling scheme.

(iv) Conclusion and future directions

We have shown that it would frequently be difficult to
reach the conclusions of studies such as Long et al.
(1995) regarding the numbers, locations and effects of
third chromosome bristle QTLs given the experiment
carried out (with respect to sample size and marker
density). Our goal in so doing is not to criticize or re-
interpret the conclusions of such work, but rather to
demonstrate that the lack of correspondence between
the architecture described in a study and the likeli-
hood of detecting such an architecture given the ex-
perimental design used could be turned into an
advantage. In future studies, it might be of value to
simulate QTL mapping experiments under the ob-
served genetic architecture (and marker densities and
sample sizes used) and to ask how likely the observed
results are under the ‘uncovered’ architecture. This is
possible within the framework of currently used soft-
ware (cf Basten et al., 1999) but is rarely carried out as
a test of consistency of the reported architecture with
the study design that detected that architecture.

In only a few instances has the QTL mapping
community identified the actual causative variants
that were originally identified with IM or CIM (Long
et al., 1998; Frary et al., 2000; Long et al., 2000;
Pasyukova et al., 2000; Thornsberry et al., 2001).
Despite this, and the fact that the statistical models
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underlying the methods are based on the assumption
that one or a small number of QTLs per linkage group
affect the trait, the information regarding the number
of QTLs and their locations and effects that these
genome-wide mapping methods provide is often held
to be accurate, even when many QTLs are identified
(Wright & Kong, 1997). Our results provide some
justification for this attitude but also highlight re-
servations. Inasmuch as it is a goal in modern quan-
titative genetics to distinguish between underlying
inheritances of a ‘few genes of large effect ’ versus
models that are more polygenic in nature (cf Orr &
Coyne, 1992), it will be of use to develop hypothesis
testing frameworks that explicitly test the support for
a polygenic versus small number of genes model.
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