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Finite group schemes
Michel Briona

Abstract

These extended notes give an introduction to the theory of finite group

schemes over an algebraically closed field, with minimal prerequisites.

They conclude with a brief survey of the inverse Galois problem for

automorphism group schemes.

1.1 Introduction

Finite group schemes are broad generalizations of finite groups; they

occur in algebraic geometry, number theory, and the structure and rep-

resentations of algebraic groups in positive characteristics. Unlike finite

groups which exist on their own, finite group schemes depend on an

additional data: a base, for example a commutative ring.

This text is an introduction to finite group schemes over an alge-

braically closed field. In characteristic 0, these may be identified with

finite groups, as follows from Cartier’s theorem (see Theorem 1.4.13 for a

direct proof). But these form a much wider class in characteristic p > 0,

as it includes the finite-dimensional restricted Lie algebras (also called

p-Lie algebras). In fact, such Lie algebras form the building blocks of

finite group schemes, together with finite groups; see Corollary 1.5.14

for a precise statement.

Many notions and results of group theory extend to the setting of

finite group schemes, sometimes with more involved proofs; for example,
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2 Michel Brion

Lagrange’s theorem, which requires substantial developments on

quotients (see Corollary 1.5.13). Still, the topic leaves much room for

developments, e.g., the notion of conjugacy class is unsettled (several

approaches are discussed in the appendix of the recent preprint [17]).

The theory of finite group schemes over a field k is often presented as

part of that of algebraic groups (in the sense of group schemes of finite

type), see [7, 8, 25]. This yields a broader view of the topic and many

natural examples, but also requires quite a few results from commutative

algebra and algebraic geometry.

This text aims at presenting some fundamental structure results for

finite group schemes, with minimal prerequisites: basic notions of algebra

and familiarity with linear algebra. For this, we deal mainly with finite

schemes (rather than algebraic schemes). These can be viewed in three

ways:

• algebraically, via finite-dimensional algebras (i.e., k-algebras of finite

dimension as k-vector spaces),

• geometrically, via finite sets equipped with a finite-dimensional local

algebra at each point,

• functorially, via points with values in finite-dimensional algebras.

We will start with the first viewpoint, where finite group schemes are

identified with finite-dimensional Hopf algebras, and mainly work with

the second and third ones.

The structure of this text is as follows. Section 1.2 begins with three

motivating examples which will be reconsidered at later stages. We then

describe a classical correspondence between finite sets and their rings of

k-valued functions, where k is an algebraically closed field. These rings

are exactly the reduced finite-dimensional (commutative, associative) k-

algebras. Next, we define finite schemes via finite-dimensional algebras,

and obtain structure results for these; in particular, Theorem 1.2.13.

We then turn to the functor of points, which yields simple formulations

of basic operations such as the sum and product of finite schemes. This

section ends with a brief overview of notions and results on more general

schemes.

In Section 1.3, we introduce finite group schemes, and generalize basic

notions of group theory to this setting: (normal) subgroups, group ac-

tions, semi-direct products. Then we define infinitesimal group schemes

(also known as connected, or local), and obtain a first structure result:

every finite group scheme is the semi-direct product of an infinitesimal

group scheme and a finite group (Theorem 1.3.13).
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Finite group schemes 3

Section 1.4 develops Lie algebra methods for studying infinitesimal

group schemes; these present some analogies with connected Lie groups.

We begin with the Lie algebra of derivations of an algebra; in characteris-

tic p > 0, this is a restricted Lie algebra via the pth power of derivations.

We then give overviews of restricted Lie algebras, and infinitesimal cal-

culus on affine schemes. Next, we introduce the Lie algebra of an affine

group scheme, and use it to show that finite group schemes are reduced

in characteristic 0 (Theorem 1.4.13). Returning to positive character-

istics, we define Frobenius kernels, present a structure result for these

(Theorem 1.4.23), and some applications, e.g. to finite group schemes of

prime order.

Section 1.5 deals with quotients of affine schemes by actions of finite

group schemes. The intuitive notion of quotient as an orbit space does

not extend readily to this setting, e.g. for infinitesimal group schemes

as they have a unique k-point. A substitute is the categorical quotient,

for which we obtain a key finiteness property (Theorem 1.5.4). Next,

we discuss quotients by free actions and applications to the structure of

finite group schemes (Corollaries 1.5.13 and 1.5.14).

The final Section 1.6 is a brief survey of some recent developments

on automorphism group schemes in projective algebraic geometry. It fo-

cuses on a version of the inverse Galois problem in this setting, which

asks whether a given group scheme can be realized as the full automor-

phism group scheme of a projective variety. The answer is positive for

finite groups by a classical result (see [13, 20, 19]), but negative for

many abelian varieties as recently shown in [18, 1] (see Theorem 1.6.7

for a precise statement). Also, the answer is positive in the setting of

connected algebraic groups (in particular, infinitesimal group schemes)

and connected automorphism group schemes; see Theorem 1.6.5, based

on [4].

The exposition is essentially self-contained in Sections 1.2 and 1.3,

which consider almost exclusively finite (group) schemes. Sections 1.4

and 1.5 also deal with affine (group) schemes, and rely on a few results

for which we could find no direct proof; most notably, basic properties of

quotients by free actions (Theorem 1.5.12). In these sections, we also use

some fundamental results of commutative algebra, for which an excellent

reference is [11]. Section 1.6 is more advanced, and involves notions and

results of algebraic geometry which can be found in [15].

This text presents only the first steps in the theory of finite group

schemes. Here are some suggestions for further reading: [26, Chap. III]

for more on this topic, [37] for affine group schemes, [25] for algebraic
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4 Michel Brion

groups (both over an arbitrary field), [29] for finite commutative group

schemes over a perfect field, and [34] over an arbitrary base.

Notation and conventions. We fix an algebraically closed field k of

characteristic p ≥ 0. By an algebra, we mean a commutative associative

k-algebra A with identity element, unless otherwise mentioned. The di-

mension of A is its dimension as a k-vector space. Given a1, . . . , am ∈ A,

we denote by (a1, . . . , am) the ideal of A that they generate. The poly-

nomial algebra in n indeterminates over k is denoted by k[T1, . . . , Tn].

1.2 Finite schemes

1.2.1 Motivating examples

Example 1.2.1 Let n be a positive integer and consider the nth power

map

k∗ −→ k∗, x �−→ xn.

This is a group homomorphism with kernel the group µn(k) of nth roots

of unity in k. If p = 0 or n is prime to p, then µn(k) is a cyclic group

of order n. Also, if p > 0 then µp(k) is trivial, since xp − 1 = (x − 1)p.

This still holds when k is replaced with any field extension. But if k is

replaced with an algebra R having nonzero nilpotent elements, then the

group of pth roots of unity µp(R) is nontrivial.

For any algebra R, we may view µp(R) as the set of algebra homo-

morphisms f : A → R, where A = k[T ]/(T p − 1). Indeed, such a homo-

morphism f is uniquely determined by f(t), where t denotes the image

of T in A.

More generally, we have for any n and any algebra R

µn(R) = Homalg(k[T ]/(T
n − 1), R),

where the right-hand side denotes the set of algebra homomorphisms.

This suggests a way to encode the nth roots of unity by the algebra

k[T ]/(Tn − 1), of dimension n (regardless of the characteristic).

Example 1.2.2 Assume that p > 0 and consider the pth power map,

also called the Frobenius map

F : k −→ k, x �−→ xp.

This is a ring homomorphism with trivial kernel. But again, if k is re-

placed with an algebra R having nonzero nilpotents, then the pth power
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Finite group schemes 5

map has a nontrivial kernel,

αp(R) = {x ∈ R | xp = 0} = Homalg(k[T ]/(T
p), R).

This kernel is encoded by the p-dimensional algebra k[T ]/(T p), equipped

with additional structures which will be introduced in §1.3.1.

In the next, more advanced example, we will freely use some results

on elliptic curves which can be found in [32].

Example 1.2.3 Let E be an elliptic curve with origin 0. Then E is

a commutative group with neutral element 0. Thus, for any positive

integer n, we have the multiplication map

nE : E −→ E, x �−→ nx.

If k = C then E � C/Λ as a group, where Λ is a lattice in C; as a

consequence, Λ � Z2 as a group. Thus, the kernel of nE (the n-torsion

subgroup of E) satisfies

Ker(nE) �
(
1

n
Λ

)
/Λ � Λ/nΛ � (Z/nZ)2.

In particular, Ker(nE) has order n
2.

This still holds over an arbitrary (algebraically closed) field k of char-

acteristic p, if p = 0 or if n is prime to p. Also, the endomorphism nE of

E has degree n2 for any n > 0. But the structure of its kernel depends

on the curve E if p > 0 divides n. For instance, Ker(pE) has order p

if E is ordinary, and is trivial if E is supersingular. The supersingular

elliptic curves form only finitely many isomorphism classes.

To get a more uniform description of n-torsion subgroups, one consid-

ers the schematic kernel E[n]. This is a finite group scheme of order n2

regardless of the characteristic, as we will see in Remark 1.5.11.

1.2.2 Algebras of functions on finite sets

Given a finite set E, we denote by O(E) the set of maps f : E → k.

Then O(E) is an algebra for the operations of pointwise addition and

multiplication; we have an isomorphism of algebras O(E) � kn, where

n = |E|. We will investigate the assignment E �→ O(E) in a series of

observations and lemmas.

For any x ∈ E, we denote by

evx : O(E) −→ k, f �−→ f(x)
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6 Michel Brion

the evaluation at x. Then evx is an algebra homomorphism, and hence

its kernel mx is a maximal ideal of O(E). Also, we define δx ∈ O(E) by

δx(y) =

{
1 if y = x

0 otherwise.

Then (δx)x∈E is a basis of the k-vector space O(E), which satisfies

δ2x = δx (x ∈ E), δxδy = 0 (x, y ∈ E, y �= x),
∑
x∈E

δx = 1.

The idempotents of the ring O(E) (i.e. those f ∈ O(E) such that f2 = f)

are exactly the partial sums δF =
∑

x∈F δx, where F ⊂ E.

Lemma 1.2.4 Every algebra homomorphism u : O(E) → k is of the

form evx for a unique x ∈ E.

Proof Since
∑

x∈E δx = 1, there exists x ∈ E such that u(δx) �= 0.

Then u(δx) = 1 as δ2x = δx. Let y ∈ E \ {x}, then δxδy = 0 and hence

u(δy) = 0. Thus, u = evx.

Next, consider another finite set F . Then every map ϕ : E → F yields

a map

ϕ∗ : O(F ) −→ O(E), g �−→ g ◦ ϕ

which is clearly an algebra homomorphism.

Lemma 1.2.5 Every algebra homomorphism u : O(F ) → O(E) is of

the form ϕ∗ for a unique ϕ : E → F .

Proof Let x ∈ E, then the composition evx◦u : O(F ) → k is an algebra

homomorphism. By Lemma 1.2.4, there exists a unique y ∈ F such that

evx ◦u = evy, that is, u(g)(x) = g(y) for all g ∈ O(F ). So the statement

holds for the map ϕ : E → F , x �→ y and for no other map.

We now consider the product E×F with projections prE : E×F → E,

prF : E × F → F . Then one may readily check that the map

pr∗E ⊗ pr∗F : O(E)⊗O(F ) −→ O(E × F ), δx ⊗ δy �−→ δ(x,y) (1.1)

is an isomorphism of algebras. Likewise, consider the sum E � F with

inclusion maps iE : E → E � F , iF : F → E � F , then the map

(i∗E , i
∗
F ) : O(E � F ) −→ O(E)×O(F ) (1.2)

is an isomorphism of algebras.
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Finite group schemes 7

Remark 1.2.6 Let A be an algebra, and f : A → k an algebra homo-

morphism. Then the kernel m of f is a maximal ideal, and A = k ⊕ m

where k is the line spanned by the identity element; this identifies f with

the projection A → k. In particular, f is uniquely determined by m.

If A is finite-dimensional (as a k-vector space), then every maximal

ideal m is the kernel of a unique algebra homomorphism to k. Indeed, the

quotient A/m is a field extension of k of finite degree, and hence equals

k as the latter is algebraically closed. This yields a bijection between

algebra homomorphisms from A to k and maximal ideals of A.

Clearly, every algebra O(E) is reduced, i.e., it has no nonzero nilpo-

tent element. We will now obtain a converse:

Lemma 1.2.7 Let A be a reduced finite-dimensional algebra, and de-

note by E the set of algebra homomorphisms f : A → k.

(i) The set E is finite and the assignment

A −→ O(E), a �−→ (f �→ f(a)) (1.3)

is an isomorphism of algebras.

(ii) Every quotient algebra of A is reduced.

Proof (i) In view of Lemma 1.2.5, it suffices to show that there exists

an algebra isomorphism A � O(F ) for some finite set F .

Assume that there exist nonzero ideals B,C of A such that A = B⊕C.

Let 1 = e+f be the corresponding decomposition of the identity element

of A; then we easily obtain e2 = e, f2 = f and ef = 0, and hence B

(resp. C) is a subalgebra of A with identity element e (resp. f). Since A

is reduced, so are B and C. Using the isomorphism (1.2) and induction

on the dimension of A, we may thus assume that A admits no such

decomposition.

Let a ∈ A \ {0} and consider the multiplication map

aA : A −→ A, b �−→ ab (1.4)

(so that the assignment a �→ aA is the regular representation of A).

Then aA is an endomorphism of the finite-dimensional vector space A,

and hence satisfies

A = Ker(anA)⊕ Im(anA) (n � 0). (1.5)

Moreover, Ker(anA) and Im(anA) are ideals of A, and Im(anA) �= 0 as A

is reduced. By our assumption, it follows that A = Im(anA) for n � 0.
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8 Michel Brion

In particular, aA is injective, and hence a is invertible. So A is a field;

arguing as in Remark 1.2.6, it follows that A = k.

(ii) Let I be an ideal of O(E). Since
∑

x∈E δx = 1, we have I =∑
x∈E Iδx, where Iδx ⊂ O(E)δx = kδx. As a consequence, I = ⊕x∈F kδx

for a unique subset F ⊂ E. Then O(E)/I � O(E \F ) is indeed reduced.

Combining Lemmas 1.2.4, 1.2.5 and 1.2.7, we obtain:

Proposition 1.2.8 The assignment E �→ O(E) yields a bijective cor-

respondence from finite sets (and maps between such sets) to reduced

finite-dimensional algebras (and homomorphisms between such algebras).

The inverse correspondence is denoted by A �→ Spec(A) (the spec-

trum of the algebra A).

For any maps of finite sets E
ϕ−→ F

ψ−→ G, we have (ψ◦ϕ)∗ = ϕ∗ ◦ψ∗.

Thus, the category of finite sets is equivalent to the opposite of the

category of reduced finite-dimensional algebras.

1.2.3 Finite schemes and finite-dimensional algebras

Definition 1.2.9 The category of finite schemes is the opposite

category to that of finite-dimensional algebras.

In more concrete terms, finite schemes are finite-dimensional algebras,

with morphisms going the other way round.

A basic example of a nonreduced algebra is the algebra of dual

numbers k[T ]/(T 2) = k[ε] = k ⊕ kε, where ε2 = 0.

Remark 1.2.10 With the above definition, some properties of finite

schemes follow readily from the dual properties of algebras. For example,

any two finite schemes X, Y admit a product, i.e., a finite scheme Z

equipped with morphisms prX : Z → X, prY : Z → Y (the projections)

which satisfy the following universal property: for any finite scheme W

equipped with morphisms f : W → X, g : W → Y , there exists a unique

morphism h : W → Z such that f = prX ◦ h and g = prY ◦ h.
Indeed, any two algebras A and B admit a “coproduct”, namely, the

tensor product A ⊗ B equipped with the homomorphisms A → A ⊗ B,

a �→ a⊗ 1A and B → A⊗B, b �→ 1A ⊗ b.

In view of the universal property, the above scheme Z is unique up to

isomorphism; we will use the standard notation Z = X × Y .
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Finite group schemes 9

We will obtain a structure result for finite-dimensional algebras (Theo-

rem 1.2.13). For this, we recall some notions from commutative algebra.

Let R be a commutative ring. The set of nilpotent elements of R is an

ideal, called the nilradical; we denote it by n = n(R). The quotient ring

A/n = Ared is reduced, and n is the smallest ideal with this property.

Clearly, n ⊂ m for any maximal ideal m of R.

The ring R is indecomposable if it has no nontrivial decomposition

into a direct product of rings. Equivalently, R has no idempotent e �= 0, 1

(this notion appeared implicitly in the proof of Lemma 1.2.7).

Also, R is local if it has a unique maximal ideal m. Equivalently, m is

an ideal of R and every x ∈ R \m is invertible. The quotient ring R/m

is then a field, called the residue field of R.

We now record two auxiliary results:

Lemma 1.2.11 Let A be a finite-dimensional algebra. Then A is inde-

composable if and only if it is local. Under this assumption, the maximal

ideal m is the nilradical of A, with residue field k. Moreover, we have

mn = 0 for n � 0.

Proof Assume that A is local with maximal ideal m. If e ∈ A is inde-

composable, then e(1− e) = 0. Thus, we have either e ∈ m or 1− e ∈ m.

In the former case, 1− e is invertible, hence e = 0. In the latter case, we

obtain similarly e = 1. Thus A is indecomposable.

Conversely, assume that A is indecomposable. To show that A is local,

we argue as in the proof of Lemma 1.2.7. Let a ∈ A, then for n � 0,

we have Ker(anA) = 0 or Im(anA) = 0 in view of the decomposition (1.5).

Thus, a is nilpotent or invertible. As a consequence, A is local and its

maximal ideal m is the nilradical. We have A/m = k by Remark 1.2.6.

It remains to show that mn = 0 for n � 0. Since the powers mn form

a decreasing sequence of subspaces of A, we have mn = mn+1 for n � 0.

This yields a finite-dimensional vector space V = mn equipped with com-

muting nilpotent endomorphisms u1, . . . , uN (the multiplication maps by

elements of a basis of m) such that V = u1(V ) + · · · + uN (V ). So the

dual vector space V ∗ comes with commuting nilpotent endomorphisms,

the transposes uT
1 , · · · , uT

N . If V �= 0 then these endomorphisms have a

common nonzero kernel, i.e., there exists a nonzero f ∈ V ∗ such that

f ◦ ui = 0 for i = 1, . . . , n. But then f(V ) = 0, a contradiction.

Lemma 1.2.12 Let A be a local finite-dimensional algebra, m its max-

imal ideal, and a1, . . . , am ∈ m. Then the following conditions are equiv-

alent:
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10 Michel Brion

(i) The algebra A is generated by a1, . . . , am.

(ii) The ideal m is generated by a1, . . . , am.

(iii) The vector space m/m2 is generated by the images of a1, . . . , am.

Proof (i)⇒(ii) Let a ∈ m. There exists P ∈ k[T1, . . . , Tm] such that

a = P (a1, . . . , am). Then the constant term of P must be 0, and hence

a ∈ (a1, . . . , am).

Since the implication (ii)⇒(iii) is obvious, it remains to prove that

(iii)⇒(i). For this, we use the decreasing filtration of A by the powers

mn, where n ≥ 0, and the associated graded gr(A) =
⊕

n≥0 m
n/mn+1.

Then gr(A) is a graded algebra generated by m/m2, and hence by the

images ā1, . . . , ām of a1, . . . , am. Given a nonzero a ∈ A, there exists a

unique integer n ≥ 0 such that a ∈ mn \mn+1 (since mr = 0 for r � 0).

Then there exists a polynomial P as above such that ā = P (ā1, . . . , ām),

where ā denotes the image of a in mn/mn+1, and āi, the image of ai in

m/m2 for i = 1, . . . ,m. This means that a− P (a1, . . . , am) ∈ mn+1. We

now conclude by decreasing induction on n, using again the vanishing

of mn for n � 0.

Theorem 1.2.13 Let A be a finite-dimensional algebra, and denote by

E the (finite) set of algebra homomorphisms f : A → k.

(i) The assignment A → O(E), a �→ (f �→ f(a)) (1.3) induces an

isomorphism of algebras Ared
∼−→ O(E).

(ii) For any x ∈ E, the idempotent δx ∈ O(E) lifts to a unique idem-

potent ex ∈ A. Moreover, exey = 0 for all distinct x, y ∈ E, and∑
x∈E ex = 1. The idempotents of A are exactly the partial sums∑
x∈F ex, where F ⊂ E.

(iii) We have A =
∏

x∈E Aex and each Aex is a local algebra.

Proof (i) Let π : A → Ared = A/n denote the projection. Since every

homomorphism of algebras f : A → k sends n to 0, the composition

with π yields a bijection from Homalg(Ared, k) to Homalg(A, k). So the

assertion follows from Lemma 1.2.7.

We now show (ii) and (iii) simultaneously. Since the algebra A is finite-

dimensional, it admits a decomposition A = A1 × · · · × An where each

Ai is indecomposable, and hence local (Lemma 1.2.11). Thus, Ai =

kei ⊕ mi, where ei is the identity element of Ai, and mi the nilradical.

So m1 × · · · × mn is an ideal of A contained in n, and the quotient

A/m1 × · · · × mn � kn is reduced. It follows that m1 × · · · × mn = n;

moreover, we may identify E with {1, . . . , n}. Via this identification,
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Finite group schemes 11

each δi ∈ O(E) lifts to the idempotent ei of A. Moreover, eiej = 0 for

all distinct i, j, and
∑n

i=1 ei = 1.

Next, we show that every idempotent e ∈ A can be written as
∑

i∈F ei
for some F ⊂ {1, . . . , n}. We have e = (t1e1 + x1, . . . , tnen + xn) where

ti ∈ k and xi ∈ mi for i = 1, . . . , n. Since e2 = e, we obtain t2i +2tixi = ti
and x2

i = xi. Thus, xi = 0 as xi is nilpotent. This implies the assertion.

This assertion implies in turn that each ei is the unique lift of δi,

completing the proof.

In view of Theorem 1.2.13, we may reformulate the definition of finite

schemes in more geometric terms:

Definition 1.2.14 A finite scheme X consists of a finite set E together

with local finite-dimensional algebras OX,x for each x ∈ E. We then say

that OX,x is the local ring of X at x.

With this definition, the algebra associated with X is

A = O(X) =
∏
x∈E

OX,x

and we still write X = Spec(A). We say that X is local if A is local.

Given another finite scheme Y with data (F, (OY,y)y∈F ), a morphism

of finite schemes f : X → Y consists of a map ϕ : E → F together

with algebra homomorphisms OY,ϕ(x) → OX,x for all x ∈ E (as follows

by considering the dual homomorphism f∗ : O(Y ) → O(X) and using

Theorem 1.2.13).

Remark 1.2.15 A basic invariant of a local schemeX is the dimension

of O(X), also known as the length of X. There is a unique local algebra

of dimension 1 (resp. 2) up to isomorphism, namely, k (resp. k[ε]). But

this fails in dimension 3, since k[T ]/(T 3) and k[T1, T2]/(T
2
1 , T1T2, T

2
2 ) are

nonisomorphic (as follows e.g. from Lemma 1.2.12). In higher dimensions,

there may be infinitely many nonisomorphic local algebras, for example

k[T1, T2]/(P, T
n
1 , T

n−1
1 T2, . . . , T1T

n−1
2 , Tn

2 ),

where P is a homogeneous polynomial of degree n − 1 in T1, T2, and

n ≥ 5 (exercise).

Definition 1.2.16 Let X,Y be finite schemes. We say that Y is a

subscheme of X if the algebra O(Y ) is a quotient of O(X). Then the

morphism i : Y → X corresponding to the projection O(X) → O(Y ) is

called an immersion.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009563208.002
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 22 Aug 2025 at 03:22:38, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009563208.002
https://www.cambridge.org/core


12 Michel Brion

With the above notation, this is equivalent to F being a subset of

E, and OY,y being a quotient of OX,i(y) for any y ∈ F . Also, note that

the subschemes of X correspond bijectively to the ideals of O(X), by

assigning to Y the kernel of the projection O(X) → O(Y ).

Definition 1.2.17 Let X1, . . . , Xn be finite schemes, and A1, . . . , An

the corresponding algebras. The sum X = X1 � · · · � Xn is the finite

scheme Spec(A1 × · · · ×An).

With an obvious notation, we then have E = E1�· · ·�En and OX,x =

OXi,x for all x ∈ Xi (i = 1, . . . , n). The projections A1 × · · · × An →
Ai correspond to immersions Xi → X. Also, Theorem 1.2.13 may be

reformulated as follows: every finite scheme has a unique decomposition

into a sum of local finite schemes.

1.2.4 The reduced subscheme

We first obtain a useful addition to the structure theorem for finite-

dimensional algebras (Theorem 1.2.13):

Proposition 1.2.18 (i) Every finite-dimensional algebra A admits

a largest reduced subalgebra Ared. Moreover, the composition

Ared → A → A/n = Ared is an isomorphism.

(ii) Every homomorphism of finite-dimensional algebras f : A → B

induces homomorphisms fred : Ared → Bred, f
red : Ared → Bred

such that the diagram

Ared fred

��

��

Bred

��
A

f ��

��

B

��
Ared

fred �� Bred

commutes.

(iii) For any finite-dimensional algebras A, B, we have natural isomor-

phisms of algebras

Ared ⊗Bred ∼−→ (A⊗B)red, Ared ⊗Bred
∼−→ (A⊗B)red.

Proof (i) With the notation of Theorem 1.2.13, the subalgebra B =∏
x∈E kex is reduced, the composition B → A → Ared is an isomorphism,
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Finite group schemes 13

and B contains every idempotent of A. It follows that B contains every

reduced subalgebra C of A, since C is spanned by its idempotents in

view of Lemma 1.2.7. This yields the assertion.

(ii) The commutativity of the top square follows from the fact that

every quotient of a reduced algebra is reduced (Lemma 1.2.7 again).

The commutativity of the bottom square is readily checked from the

definitions.

(iii) By Lemma 1.2.7 once more and the isomorphism (1.1) (or a direct

argument), the tensor product of any two reduced finite-dimensional

algebras is reduced. This easily implies the assertion.

Definition 1.2.19 A finite scheme X is reduced if the algebra O(X)

is reduced.

In view of Proposition 1.2.8, the category of reduced finite schemes

is equivalent to that of finite sets via the assignments X �→ X(k) and

E �→ O(E). Moreover, Proposition 1.2.18 translates as follows in the

language of schemes:

Corollary 1.2.20 Every finite scheme X has a largest reduced sub-

scheme Xred. Moreover, there exists a unique morphism r : X → Xred

such that r ◦ i = idXred
, where i denotes the immersion Xred → X. The

formations of Xred and r are functorial and commute with products.

1.2.5 The functor of points

Definition 1.2.21 Let X = Spec(A) be a finite scheme, and R a finite-

dimensional algebra. An R-valued point of X is a homomorphism of

algebras u : A → R. The set of R-valued points of X is denoted by

X(R) = Homalg(O(X), R) = Hom(Spec(R), X).

With the above notation, X(k) is the finite set E of Definition 1.2.14;

its points are also known as the k-points or k-rational points of X.

Also, every morphism of finite schemes f : X → Y induces a map f(R) :

X(R) → Y (R) given by precomposition with the dual homomorphism

f∗ : O(Y ) → O(X). The map f(k) : X(k) → Y (k) is the map ϕ : E → F

of the above definition.

Note that Spec(k)(R) = Homalg(k,R) is a unique point for any k-

algebra R. As a consequence, for any x ∈ X(k) viewed as a morphism

x : Spec(k) → X, we obtain a point x(R) ∈ X(R).

Every algebra homomorphism u : R → S induces a map X(u) :

X(R) → X(S) via postcomposition. Moreover, X(idR) = idX(R) and
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14 Michel Brion

X(v ◦u) = X(v)◦X(u) for any algebra homomorphisms R
u−→ S

v−→ T .

This yields a functor from the category of finite-dimensional algebras to

that of sets: the functor of points of X, that we denote by hX .

Given a functor F from finite-dimensional algebras to sets, there exists

a natural isomorphism

Hom(hX , F )
∼−→ F (X), u �−→ u(X)(idX),

where the left-hand side denotes the set of morphisms of functors, also

known as natural transformations (Yoneda’s lemma, see [10, Lem. VI-1]).

In particular, we obtain natural isomorphisms

Hom(hX , hY ) � hY (X) = Hom(X,Y ) � Homalg(O(Y ),O(X)).

It follows that every finite scheme is uniquely determined by its functor

of points. So we may view finite schemes as representable functors

from finite-dimensional algebras to sets, i.e., functors of the form hX .

Some operations on finite schemes have a simple formulation in terms

of their functors of points. For example, given finite schemes X1, . . . , Xn,

their sum satisfies

(X1 � · · · �Xn)(R) = X1(R) � · · · �Xn(R)

for any finite-dimensional algebra R. Also, given two finite schemes X,Y ,

we have a functorial bijection

X(R)× Y (R)
∼−→ (X × Y )(R)

via the tensor product of algebra homomorphisms. In other words, the

functor R �→ X(R)× Y (R) is represented by the product X × Y .

More generally, given two morphisms of finite schemes f : X → Z,

g : Y → Z, we may consider the functor

R �−→ X(R)×Z(R)Y (R) = {(u, v) ∈ X(R)×Y (R) | f(R)(u) = g(R)(v)}.

Then this functor is represented by the finite scheme

W = Spec
(
O(X)⊗O(Z) O(Y )

)

where O(X) (resp. O(Y )) is a O(Z)-algebra via f∗ (resp. g∗). Indeed,

this follows easily from the universal property of the tensor product of

algebras.

Definition 1.2.22 With the above notation and assumptions, the fi-

nite scheme W is called the fibered product of X and Y above Z, and

denoted by X ×Z Y .
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Finite group schemes 15

In particular, consider a morphism of finite schemes f : X → Y , and

a k-point of Y viewed as a morphism y : Spec(k) → Y . Then the fibered

product X ×Y y is called the (schematic) fiber of f at y and denoted

by Xy.

The functor of points of Xy satisfies

Xy(R) = {u ∈ X(R) | f(R)(u) = y(R)} (1.6)

for any finite-dimensional algebra R. In particular, Xy(k) is the set-

theoretic fiber f(k)−1(y).

Also, note that X×ZY is the subscheme of X×Y with ideal generated

by the f∗(h) ⊗ 1 − 1 ⊗ g∗(h), where h ∈ O(Z). As a consequence, Xy

is the subscheme of X with ideal f∗(my)O(X), where my denotes the

maximal ideal of y in O(Y ).

Remark 1.2.23 Some notions and results of this section extend to

the setting of affine schemes; these form the opposite category to

that of algebras (without finiteness condition). More specifically, the con-

structions of sums and fibered products extend unchanged; also, affine

schemes may be viewed as representable functors from algebras to sets,

via their functor of points. We will still use the notations X = Spec(A)

and A = O(X) in the setting of affine schemes.

A basic example of affine scheme is the affine n-space

An = Spec(k[T1, . . . , Tn]),

where n is a positive integer. We have An � A1 × · · · × A1 (n times),

since k[T1, . . . , Tn] � k[T ] ⊗ · · · ⊗ k[T ]. Moreover, An(R) = Rn for any

algebra R.

But there are important differences between affine and finite schemes.

For example, an affine scheme may well have no k-point (just consider a

nontrivial field extension of k, e.g., the field of rational functions k(T )).

The subclass of (affine) schemes of finite type, also known as al-

gebraic schemes, is better behaved in this respect; these correspond

to the finitely generated algebras, i.e., those isomorphic to a quotient

A = k[T1, . . . , Tn]/I, where I is an ideal of k[T1, . . . , Tn]. The functor of

points of X = Spec(A) satisfies

X(R) = {(x1, . . . , xn) ∈ Rn | P (x1, . . . , xn) = 0 for all P ∈ I}.

In particular, X(k) is the set of zeros of I in kn; such a set is known as

an (affine) algebraic set.

By Hilbert’s basis theorem (see [11, Thm. 1.2]), every ideal I as above
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16 Michel Brion

is finitely generated, and hence every algebraic set is the set of common

zeros of finitely many polynomials. Also, by Hilbert’s Nullstellensatz

(see [11, Thm. 1.6]), the maximal ideals of A are exactly the kernels of

elements of X(k) = Homalg(A, k). Moreover, A is finite-dimensional if

and only if X(k) is finite.

A new feature of affine schemes is the Zariski topology. For algebraic

schemes, it can be defined as the topology on X(k) with closed sets

being the zeros of ideals of k[T1, . . . , Tn] containing I. These ideals can

be identified with the ideals J of A, and they correspond bijectively with

the closed subschemes Y = Spec(A/J) of X = Spec(A) (then Y (k) is

closed in X(k)). Thus, every affine algebraic scheme is isomorphic to a

closed subscheme of an affine space. Also, for finite schemes, the Zariski

topology is just the discrete topology, i.e., every subset is closed.

Every algebraic scheme X = Spec(A) has a largest closed reduced sub-

scheme Xred corresponding to the nilradical of A; moreover, Xred(k)
∼−→

X(k). But A may have no largest reduced subalgebra; for example, the

nonreduced algebra k[T1, T2]/(T
2
2 ) is generated by its reduced subalge-

bras k[T1] and k[T1+T2]. Still, A has a largest reduced finite-dimensional

subalgebra: the span of its idempotents (see e.g. [25, Prop. 1.29]).

An affine scheme X is called connected if the algebra O(X) is in-

decomposable. Every affine algebraic scheme X is the sum of finitely

many connected schemes, and these are affine algebraic as well. More-

over, X is connected if and only if X(k) is connected relative to the

Zariski topology (see loc. cit.).

Remark 1.2.24 We briefly present some further aspects of scheme

theory, which will only be used in Section 1.6; we refer to [10] for a

user-friendly introduction to schemes.

There is a notion of (not necessarily affine) schemes. These are ob-

tained by gluing affine schemes, like manifolds in differential geometry;

the Hausdorff property is replaced with the property that the diagonal

is closed. Schemes are equipped with the Zariski topology; the notion of

closed subscheme extends readily to this setting.

A basic example is the projective n-space Pn, obtained by gluing

appropriately n+ 1 copies of An (corresponding to the nonvanishing of

homogeneous coordinates). The projective schemes are those isomor-

phic to a closed subscheme of some projective space.

A scheme is called of finite type (or algebraic) if it admits an open

covering by finitely many affine schemes of finite type. Every projective
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Finite group schemes 17

scheme is of finite type. Also, every scheme of finite type has only finitely

many connected components.

A scheme is reduced (resp. integral) if the algebra O(U) is reduced

(resp. integral) for any open affine subset U . A variety is an integral

scheme of finite type. For example, An and Pn are varieties, as well as

elliptic curves.

By taking k-points, every closed reduced subscheme of An is identified

with an algebraic subset of kn, i.e., the set of common zeros of polyno-

mials in n variables. The subvarieties of An correspond to irreducible

algebraic subsets (those that are not the union of proper closed subsets).

Likewise, we may define the algebraic subsets of Pn(k) as the sets of

common zeros of homogeneous polynomials in n+ 1 variables; then the

closed subvarieties of Pn can be identified with the irreducible algebraic

subsets of Pn(k).

1.3 Finite group schemes

1.3.1 Basic definitions and examples

A group structure on a set G is given by two maps µ : G × G → G,

(x, y) �→ xy (the multiplication map) and ι : G → G, x �→ x−1 (the

inverse map), together with an element e ∈ G (the neutral element)

which satisfy the group axioms. These translate into the commutativity

of the following diagrams:

G×G×G
µ×id ��

id×µ

��

G×G

µ

��
G×G

µ �� G

(1.7)

(i.e., µ is associative),

G
(id,ι) ��

e
��

G×G

µ

��

G
(ι,id)��

e
��

G

(1.8)
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18 Michel Brion

(i.e., ι is the inverse map), and

G
(e,id) ��

id ��

G×G

µ

��

G
(id,e)��

id��
G

(1.9)

(i.e., e is the neutral element). Here e : G → G denotes the constant map

g �→ e.

Next, let A = O(G). In view of the isomorphism (1.1), we may identify

O(G×G) with A⊗A, and O(G×G×G) with A⊗A⊗A. By Lemma

1.2.5, the data of the multiplication µ : G×G → G is equivalent to that

of an algebra homomorphism

∆ = µ∗ : A −→ A⊗A.

Likewise, ι corresponds to an algebra endomorphism

S = ι∗ : A −→ A,

and e to an algebra homomorphism

ε = e∗ : A −→ k.

Moreover, the commutative diagrams (1.7), (1.8), (1.9) correspond to

commutative diagrams

A
∆ ��

∆

��

A⊗A

∆⊗id

��
A⊗A

id⊗∆ �� A⊗A⊗A

(1.10)

A

∆

��

ε

��

ε

��
A A⊗A

id⊗S�� S⊗id �� A

(1.11)

A

∆

��

id

��

id

��
A A⊗A

id⊗ε�� id⊗ε �� A

(1.12)

Here we denote again by ε : A → A the composition of ε : A → k with

the inclusion of k into A.
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Finite group schemes 19

Definition 1.3.1 A Hopf algebra is an algebra A equipped with al-

gebra homomorphisms ∆ = ∆A : A → A ⊗ A (the comultiplication),

S = SA : A → A (the antipode) and ε = εA : A → k (the augmenta-

tion) such that the diagrams (1.10), (1.11) and (1.12) commute.

Given two Hopf algebras A, B, a homomorphism of Hopf algebras

u : A → B is an algebra homomorphism such that ∆B ◦u = (u⊗u)◦∆A.

The latter condition corresponds to the equality f(xy) = f(x)f(y) for

a group homomorphism f : G → H and for all x, y ∈ G.

Actually, the notion of Hopf algebra is more general, and does not

assume that A is commutative, nor that k is algebraically closed. Also,

the data of ∆ determines S, ε uniquely, and every homomorphism of

Hopf algebras u : A → B satisfies SB ◦ u = u ◦ SA and εB ◦ u = u ◦ εA
(see [37, §2.1]).

By Proposition 1.2.8 and the isomorphism (1.1), the category of fi-

nite groups is equivalent to the opposite category of reduced finite-

dimensional Hopf algebras. This motivates the following:

Definition 1.3.2 The category of finite group schemes is the

opposite to that of finite-dimensional Hopf algebras.

Equivalently, a finite group scheme is a finite scheme G equipped with

morphisms µ : G × G → G, ι : G → G and with a k-point e such that

the diagrams (1.7), (1.8) and (1.9) commute. For any finite-dimensional

algebra R, we obtain a group structure on the set G(R) with multiplica-

tion map µ(R), inverse map ι(R), and neutral element e ∈ G(k) ⊂ G(R).

Given x, y ∈ G(R), we denote µ(x, y) by xy, and ι(x) by x−1.

Alternatively, we may view finite group schemes as representable

group functors, i.e., representable functors from the category of finite-

dimensional algebras to that of groups.

Definition 1.3.3 A subgroup scheme of a finite group scheme G

is a subscheme H such that H(R) is a subgroup of G(R) for any finite-

dimensional algebra R. We then write H ≤ G.

Definition 1.3.4 Let f : G → H be a homomorphism of finite group

schemes. The kernel Ker(f) is the fiber of f at eH .

We have Ker(f)(R) = {x ∈ G(R) | f(R)(x) = eH} = Ker(f(R)) for

any finite-dimensional algebra R. As a consequence, N = Ker(f) is a

normal subgroup scheme of G, i.e., xyx−1 ∈ N(R) for any such R

and any x ∈ G(R), y ∈ N(R). We then write N � G.
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20 Michel Brion

Definition 1.3.5 The order of a finite group scheme G is the dimen-

sion of the algebra O(G).

As for finite schemes, the category of reduced finite group schemes

is equivalent to that of finite groups via G �→ G(k). A quasi-inverse

functor sends every finite group F to the algebra O(F ). (This algebra

is canonically isomorphic to the dual of the group algebra k[F ], but

generally not to k[F ] itself. Indeed, O(F ) is always commutative, but

k[F ] is commutative if and only if F is commutative). Also, the notion

of order of a finite group scheme generalizes that for finite groups. We

will freely identify finite groups with the associated group schemes.

We now reconsider our first examples from §1.2.1:

Example 1.3.6 Given a positive integer n, let A = k[T ]/(Tn − 1).

Then A is a k-algebra of dimension n, and one may check that A is a

Hopf algebra relative to the homomorphisms

∆ : A −→ A⊗A, t �−→ t1 ⊗ t2,

S : A −→ A, t �−→ tn−1,

ε : A −→ k, t �−→ 1,

where t denotes the image of T in A. The corresponding finite group

scheme is the group scheme of nth roots of unity, denoted by µn. Indeed,

we have for any finite-dimensional algebra R

µn(R) = {r ∈ R | rn = 1}.

Example 1.3.7 If p > 0 then the local p-dimensional algebra B =

k[T ]/(T p) is a Hopf algebra relative to the homomorphisms

∆ : B −→ B ⊗B, t �−→ t1 ⊗ 1 + 1⊗ t2,

S : B −→ B, t �−→ −t,

ε : B −→ k, t �−→ 0

with a similar notation. The corresponding finite group scheme αp sat-

isfies for any finite-dimensional algebra R

αp(R) = {r ∈ R | rp = 0}.

Note that µp and αp are isomorphic as schemes, since their algebras

are isomorphic via A → B, t �→ t + 1. One may show that these alge-

bras are not isomorphic as Hopf algebras; equivalently, µp and αp are
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Finite group schemes 21

not isomorphic as group schemes (see Example 1.4.17 for an alternative

proof). So we obtain three distinct group schemes of order p, namely,

µp, αp and the cyclic group Z/pZ. We will see in Corollary 1.4.26 that

these yield all group schemes of order p.

Definition 1.3.8 A finite group scheme G is infinitesimal if G(k) =

{e}; equivalently, the algebra O(G) is local.

Infinitesimal group schemes are also called local or connected. If

p = 0 then every infinitesimal group scheme is trivial (Theorem 1.4.13

below). This fails if p > 0 in view of the above examples of µp and αp.

1.3.2 Actions of finite group schemes, semi-direct

products

Definition 1.3.9 An action of a finite group scheme G on a finite

scheme X is a morphism of schemes

α : G×X −→ X, (g, x) �−→ g · x

such that g · (h · x) = gh · x and e · x = x for any algebra R and any

g, h ∈ G(R), x ∈ X(R).

The former condition is equivalent to the commutativity of the square

G×G×X
µ×id ��

id×α

��

G×X

α

��
G×X

α �� X

and the latter condition, to the commutativity of the triangle

X
(e,id) ��

id ��

G×X

α

��
X

Let A = O(X). Then the data of a G-action α on X is equivalent to

that of a homomorphism of algebras

ρ = α∗ : A −→ O(G)⊗A
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such that the following diagrams commute:

A
ρ ��

ρ

��

O(G)⊗A

ρ⊗id

��
O(G)⊗A

∆⊗id �� O(G)⊗O(G)⊗A

A
ρ ��

id
��

O(G)⊗A

ε⊗id

��
A

where ∆ = µ∗ : O(G) → O(G)⊗O(G) and ε = e∗ : O(G) → k. We then

say that A is a G-algebra, and X is a G-scheme. The map ρ is called

the co-action; it equips A with the structure of a (left) comodule over

the Hopf algebra O(G).

From the functorial viewpoint, a G-action on X is an action of the

group G(R) on the set X(R) for any finite-dimensional algebra R, which

is functorial in R.

For example, the projection prX : G×X → X is an action, called the

trivial action. It corresponds to the trivial action of G(R) on X(R) for

any R as above, and to the co-action 1⊗ id : A → O(G)⊗A, a �→ 1⊗ a.

In the opposite direction, a G-action is called faithful (or effective) if

no proper subgroup scheme acts trivially.

Remark 1.3.10 Consider again a finite G-scheme X with action mor-

phism α. For any g ∈ G(k), we obtain an automorphism α(g,−) of

the scheme X, and hence an algebra automorphism α(g,−)∗ of A. This

yields in turn an action of G(k) on A by algebra automorphisms, where

each g acts via the inverse of α(g,−)∗.

If G is reduced, then the data of a G-action on X is equivalent to that

of a G(k)-action on A by algebra automorphisms. More specifically, the

algebra O(G)⊗A is identified with the set of maps G(k) → A equipped

with pointwise addition and multiplication. This identifies the co-action

ρ : A → O(G)⊗A with the map a �→ (g �→ g · a).
This construction can be generalized as follows: let R be a finite-

dimensional algebra, and g ∈ G(R) = Hom(O(G), R). Composing α∗ :

A → O(G) ⊗ A with g ⊗ id : O(G) ⊗ A → R ⊗ A, we obtain an alge-

bra homomorphism A → R⊗A, and hence an R-algebra endomorphism

g∗ : R ⊗ A → R ⊗ A. One may check that g∗ is an automorphism with

inverse (g−1)∗; moreover, this yields an action of G(R) on R ⊗ A by

R-algebra automorphisms, where g acts via (g−1)∗. This action is func-

torial in R, and determines the G-action on X uniquely. Moreover, G

acts faithfully on X if and only if the group G(R) acts faithfully on

R⊗A for any finite-dimensional algebra R.
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Finite group schemes 23

Definition 1.3.11 Let u : G → H be a homomorphism of finite group

schemes. Let X be a G-scheme, and Y an H-scheme. A morphism of

schemes f : X → Y is equivariant if we have f(g · x) = u(g) · f(x) for
any algebra R and any g ∈ G(R), x ∈ X(R).

Example 1.3.12 Every finite group scheme G acts on itself by left

multiplication: (x, y) �→ xy for any finite-dimensional algebra R and any

x, y ∈ G(R). Also,G acts on itself by right multiplication ((x, y) �→ yx−1)

and by conjugation ((x, y) �→ xyx−1). Moreover, every homomorphism

of finite group schemes f : G → H is equivariant relative to either of

these actions.

Next, let N,H be finite group schemes and α : H × N → N an

action by group automorphisms, i.e., x · yz = (x · y)(x · z) for any finite-

dimensional algebra R and any x ∈ H(R), y, z ∈ N(R). We may then

form the semi-direct product N(R)�H(R) for any such R. This yields a

group functor, which is clearly represented by the product scheme N×H

equipped with the appropriate multiplication and inverse morphisms,

and with the neutral element (eN , eH). The corresponding finite group

scheme is the semi-direct product G = N �H. We have N � G and

H ≤ G.

We now come to the main result of this section:

Theorem 1.3.13 Let G be a finite group scheme. Then the reduced

subscheme Gred is a subgroup scheme. Moreover, G has a largest in-

finitesimal subgroup scheme G0, and G0 is normal in G. We have G =

G0 �Gred.

Proof Recall from Corollary 1.2.20 that the formation of the reduced

subscheme Xred commutes with products. In view of the commutative

diagrams (1.7), (1.8) and (1.9), it follows that Gred is a subgroup scheme.

Likewise, the formation of r = rX : X → Xred commutes with prod-

ucts, and hence rG : G → Gred is a homomorphism. Let K be its kernel,

then we have G = K � Gred. Moreover, K is infinitesimal, since r is

bijective on k-valued points. If I is an infinitesimal subgroup scheme of

G, then rI : I → Ired is trivial. By functoriality, it follows that I is

a subgroup scheme of Ker(rG) = K. So K is the largest infinitesimal

subgroup scheme of G.

Example 1.3.14 Assume that p > 0 and let n be a positive inte-

ger. Then the group scheme αp admits an action of µn by group au-
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tomorphisms, via x · y = xy. So we may form the semi-direct product

G = αp � µn.

If n is prime to p, then one may readily check that Gred = µn. As a

consequence, Gred is not a normal subgroup scheme of G.

On the other hand, if n = p then G is a noncommutative infinitesimal

group scheme of order p2.

Remark 1.3.15 As for affine schemes, we may define the category of

affine group schemes as the opposite to that of Hopf algebras. Alter-

natively, the affine group schemes are the representable group functors

from the category of algebras. The notions of action, equivariant mor-

phism, semi-direct product extend readily to the setting of affine group

schemes. Also, we have an obvious notion of closed subgroup scheme.

The (schematic) kernel of a homomorphism of affine group schemes is a

closed normal subgroup scheme.

An affine group scheme G is called algebraic if its underlying scheme

is algebraic, i.e., the algebra O(G) is finitely generated. Then G is called

an algebraic group for simplicity. Basic examples of affine algebraic

groups include:

• the multiplicative group Gm, corresponding to the Hopf algebra

k[T, T−1] � k[T1, T2]/(T1T2 − 1) with comultiplication, antipode and

augmentation given by T �→ T1 ⊗ T2, T �→ T−1 and T �→ 1 (compare

with Example 1.3.6). The corresponding group functor is given by

R �→ (R×,×), where R× denotes the group of invertible elements of

the algebra R,

• the additive group Ga, corresponding to the Hopf algebra k[T ] with

comultiplication, antipode and augmentation given by T �→ T1 ⊗ 1 +

1 ⊗ T2, T �→ −T and T �→ 0 as in Example 1.3.7. The corresponding

group functor is given by R �→ (R,+),

• the general linear group GLn, which represents the group functor

R �→ GLn(R) (the group of invertible n× n matrices with coefficients

inR). Its Hopf algebra is k[Tij , 1 ≤ i, j ≤ n][1/ det(Ti,j)], where the Tij

are the matrix coefficients. According to the formula for the product

of matrices, the comultiplication satisfies

∆(Tij) =

n∑
�=1

T
(1)
i� ⊗ T

(2)
�j

with an obvious notation. Likewise, the antipode is given by the inverse

of matrices, and the augmentation is the evaluation map at the identity

matrix.
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Finite group schemes 25

Note that Gm = GL1 and Ga is the closed subgroup scheme of GL2

with ideal (T1,1 − 1, T2,1, T2,2 − 1).

Likewise, given a finite-dimensional vector space V , we may define

the general linear group GLV . A homomorphism of affine group schemes

ρ : G → GLV is called a linear representation of G in V . We say

that ρ is faithful if its kernel is trivial; then ρ yields an isomorphism of

G onto a closed subgroup scheme of GLV (see [25, Cor. 3.35]).

If G is a finite group scheme, then its action on itself by left multi-

plication yields a faithful linear representation in O(G) (as follows from

Remark 1.3.10). Thus, G is isomorphic to a closed subgroup scheme of

GLn, where n = |G|.
An algebraic group G is called linear if it is isomorphic to a closed

subgroup scheme of some general linear group. Then G is clearly affine;

conversely, every affine algebraic group is linear (see [25, Cor. 4.10]).

Finally, the structure theorem 1.3.13 extends partially to any affine

algebraic group G: the reduced subscheme Gred is a subgroup scheme

and the connected component of e in G is a normal subgroup scheme,

denoted by G0. Moreover, the connected components of G are exactly

the cosets gG0, where g ∈ G(k). In particular, there are only finitely

many such cosets, and G = G0Gred. Finally, G
0
red = G0∩Gred is a group

variety.

Remark 1.3.16 We will also encounter nonaffine group schemes; these

may be defined as schemes G equipped with morphisms µ : G×G → G,

ι : G → G and with e ∈ G(k) satisfying the group axioms. The notion

of algebraic group extends readily to this setting. For example, every

elliptic curve E equipped with a k-point 0 has a unique structure of an

algebraic group with neutral element 0 (see [32, §III.2]).

1.4 Lie algebras and applications

1.4.1 The Lie algebra of derivations of an algebra

Definition 1.4.1 A derivation of an algebra A is a k-linear map

D : A → A which satisfies the Leibniz rule:

D(ab) = aD(b) +D(a)b (a, b ∈ A). (1.13)

We denote by Der(A) the set of derivations of A. For any D ∈ Der(A)

and a ∈ A, the map aD : A → A, b �→ aD(b) is a derivation. This yields
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an A-module structure on Der(A), which is in particular a k-vector space.

If A is finite-dimensional, then Der(A) is finite-dimensional as well.

Given D1, D2 ∈ Der(A), the commutator

[D1, D2] = D1 ◦D2 −D2 ◦D1

is easily seen to be a derivation. Moreover, the commutator map is bilin-

ear, antisymmetric (that is, [D,D] = 0 for all D ∈ Der(A)), and satisfies

the Jacobi identity:

[D1, [D2, D3]] + [D2, [D3, D1]] + [D3, [D1, D2]] = 0

for any D1, D2, D3 ∈ Der(A). So Der(A) is a Lie algebra.

Given D ∈ Der(A) and a positive integer n, we obtain

Dn(ab) =

n∑
m=0

(
n

m

)
Dm(a)Dn−m(b) (a, b ∈ A) (1.14)

by induction on n, where Dn = D ◦ · · · ◦D (n times). If p = char(k) > 0,

then it follows that Dp is a derivation for any D ∈ Der(A).

Example 1.4.2 Let A be the polynomial ring k[T1, . . . , Tn]. Then

Der(A) is a free A-module with basis the partial derivatives ∂i : P →
∂P/∂Ti (i = 1, . . . , n). The Lie algebra structure on Der(A) is given by

[P∂i, Q∂j ] = P (∂iQ)∂j − (∂jP )Q∂i

for all P,Q ∈ A and all i, j. If p > 0 then ∂p
i = 0 for all i.

More generally, let P1, . . . , Pm ∈ k[T1, . . . , Tn] and consider the quo-

tient A = k[T1, . . . , Tn]/(P1, . . . , Pm). Denote by t1, . . . , tn the images

of T1, . . . , Tn in A. Then the assignment D �→ (D(t1), . . . , D(tn)) iden-

tifies the A-module Der(A) with the kernel of the “Jacobian matrix”

(aij)1≤i≤n,1≤j≤m, where aij denotes the image of ∂iPj in A.

As a consequence, Der(A) is a finitely generated A-module for any

finitely generated algebra A.

Example 1.4.3 Let n be a positive integer, and A = k[T ]/(Tn). Then

A is a local algebra with basis 1, t, . . . , tn−1, where t denotes the image

of T , and with maximal ideal m = (t). For any D ∈ Der(A), we have

ntn−1D(t) = 0 by the Leibniz rule. Moreover, by the preceding example

or a direct argument, the map D �→ D(t) identifies the A-module Der(A)

with the ideal I = {f ∈ A | ntn−1f = 0}. We have I = m if p = 0 or p

does not divide n, and I = A otherwise.

In the former case, there exists a unique D1 ∈ Der(A) such that

D1(t) = t (it arises from the derivation Td/dT of k[T ]). Moreover, the
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Finite group schemes 27

Di = tiD1, where 0 ≤ i ≤ n−2, form a basis of the vector space Der(A).

We have the commutation relations

[Di, Dj ] =

{
(j − i)Di+j−1 if i+ j ≤ n,

0 otherwise.
(1.15)

In particular, dim(Der(A)) = n − 1 and Der(A) stabilizes the powers

mi = (ti) for i = 1, . . . , n− 1. As a consequence, the Lie algebra Der(A)

is solvable.

In the latter case (where p > 0 divides n), there exists a unique D0 ∈
Der(A) such that D0(t) = 1 (arising from d/dT ∈ Der(k[T ])) and the

vector space Der(A) has basis the Di = tiD0, where 0 ≤ i ≤ n−1. These

satisfy the relations (1.15). In particular, dim(Der(A)) = n and Der(A)

does not stabilize m. But it stabilizes the powers mi, where i is a positive

multiple of p. If n > p then mn−p is a nonzero subspace of A, stable by

Der(A) and killed by Dp
0 but not by D0. As a consequence, the Lie

algebra Der(A) is not simple. If n = p then Der(A) = Der (k[T ]/(T p))

is the Witt algebra; it is solvable when p = 2, and simple when p ≥ 3

(exercise).

Lemma 1.4.4 Let A be an algebra.

(i) We have D(e) = 0 for any D ∈ Der(A) and any idempotent e ∈ A.

(ii) If A = B × C is decomposable, then the natural map Der(B) ×
Der(C) → Der(A) is an isomorphism of Lie algebras.

(iii) Assume that A is finite-dimensional. Then Der(A) = 0 if and only

if A is reduced.

Proof (i) Since e = e2, we have D(e) = 2eD(e) and hence eD(e) =

2e2D(e) = 2eD(e) = D(e). It follows that D(e) = 0 as desired.

(ii) Denote by e the identity element of B; then B = eA. By (i),

every D ∈ Der(A) satisfies D(e) = 0, and hence D(B) ⊂ B in view of

the Leibniz rule. Clearly, D|B ∈ Der(B). Likewise, D|C ∈ Der(C); this

implies readily the statement.

(iii) If A is reduced, then it is spanned by its idempotents by Lemma

1.2.7. So Der(A) = 0 by (i).

Conversely, assume that Der(A) = 0. Using (ii), we may further as-

sume that A is indecomposable; then A is local by Theorem 1.2.13. If

A �= k then its maximal ideal m is nonzero, and hence there exists n ≥ 2

such that mn−1 �= 0 = mn (Lemma 1.2.11). Choose a nonzero linear

map f : m/m2 → mn−1 and define a linear map D : A = k ⊕m → A by

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009563208.002
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 22 Aug 2025 at 03:22:38, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009563208.002
https://www.cambridge.org/core


28 Michel Brion

D(1) = 0 and D(a) = f(ā) for any a ∈ m with image ā ∈ m/m2. Then

D �= 0 and one may readily check that D is a derivation.

1.4.2 Restricted Lie algebras

Given a vector space V , we denote by gl(V ) the Lie algebra of endomor-

phisms of V (relative to the commutator map). If V = kn then we get

the Lie algebra of n× n matrices, denoted by gln.

For any algebra A, the space of derivations Der(A) is a Lie subalgebra

of gl(A). If p > 0 then Der(A) is stable by the pth power map of linear

maps gl(A) → gl(A), u �→ up = u ◦ · · · ◦ u (p times). We then say that

Der(A) is a restricted Lie subalgebra of gl(A).

The notion of restricted Lie algebra may be defined intrinsincally, as

follows. One may check that the pth power map of g = gl(V ) satisfies

the following relations:

(i) (tx)p = tpxp (t ∈ k, x ∈ g),

(ii) ad(xp) = ad(x)p (x ∈ g),

(iii) (x+ y)p = xp + yp +
∑p−1

i=1 si(x, y) (x, y ∈ g).

Here we denote by

ad : g −→ gl(g), x �−→ (y �→ [x, y])

the adjoint representation, and we set

si(x, y) = −1

i

∑
u

ad(xu(1))ad(xu(2)) · · · ad(xu(p−1))(x1),

where u runs through the maps {1, 2, . . . , p−1} → {0, 1} which take the

value 0 exactly i times. For example, s1(x, y) = [x, y] if p = 2. We refer

to [7, II.7.3.2] or [25, Prop. 10.38] for details.

Definition 1.4.5 A restricted Lie algebra is a Lie algebra g equip-

ped with a self-map x �→ x[p] (the pth power map) satisfying the above

relations (i), (ii), (iii).

We will see that both notions of restricted Lie (sub)algebras are equiv-

alent. For this, we will use two universal constructions in Lie theory.

First, one associates with every Lie algebra g, the enveloping al-

gebra U(g) defined as the quotient of the tensor algebra T(g) by the

two-sided ideal generated by the elements

x⊗ y − y ⊗ x− [x, y], x, y ∈ g.
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Finite group schemes 29

Then U(g) is an associative algebra with an identity element; it is com-

mutative if and only if g is commutative. The natural map α : g → U(g)

is the universal homomorphism of Lie algebras from g to an associa-

tive algebra (viewed as a Lie algebra via the commutator map). If g is

finite-dimensional with basis x1, . . . , xn, then the monomials

α(x1)
i1 · · ·α(xn)

in (i1, . . . , in ≥ 0)

form a basis of U(g) by the Poincaré–Birkhoff–Witt theorem (see for

example [25, Thm. 10.36]). In particular, α is injective.

Next, assume that p > 0 and consider a restricted Lie algebra g with

pth power map x �→ x[p]. The restricted enveloping algebra U[p](g)

is the quotient of U(g) by the ideal generated by the elements

α(x)p − α(x[p]), x ∈ g

(these are contained in the center of U(g) in view of (ii)). As above,

U[p](g) is an associative algebra with an identity element, equipped with

a map β : g → U[p](g) which is the universal homomorphism of restricted

Lie algebras from g to an associative algebra (viewed as a restricted Lie

algebra via the commutator and the pth power maps). If g is finite-

dimensional with basis x1, . . . , xn as above, then the monomials

β(x1)
i1 · · ·β(xn)

in (0 ≤ i1, . . . , in ≤ p− 1)

form a basis of U[p](g) (see [7, Prop. II.7.3.6] or [25, Thm. 10.40]). In

particular, U[p](g) is finite-dimensional; we have dimU[p](g) = pdim(g).

Moreover, U[p](g) is commutative if and only if g is commutative.

As a consequence, every finite-dimensional restricted Lie algebra g is

equipped with a faithful finite-dimensional representation, namely, its

representation in U[p](g) by left multiplication. This yields:

Proposition 1.4.6 Every finite-dimensional restricted Lie algebra is

isomorphic to a restricted Lie subalgebra of gln for some n.

We also record the following easy result, see Corollary 1.4.25 for an

application.

Lemma 1.4.7 Every nonzero finite-dimensional restricted Lie algebra

contains a restricted Lie subalgebra of dimension 1.

Proof By Proposition 1.4.6, it suffices to show the assertion for a Lie

subalgebra g ⊂ gln, stable by the pth power map.

We first consider the case where g consists of nilpotent endomorphisms.
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Then there exists a nonzero x ∈ g such that xp = 0, and hence kx is the

desired subalgebra.

So we may assume that g contains a non-nilpotent element x. We have

x = y + z where y is diagonalizable, z is nilpotent and y, z commute;

thus, y �= 0. Then xpn

= yp
n

for n � 0, and hence we may assume that

x is diagonalizable.

Replacing x with a scalar multiple, we may further assume that 1 is

an eigenvalue of x. If all its eigenvalues are in the prime field Fp, then

xp = x and hence kx is the desired subalgebra. Otherwise, xp − x is a

nonzero diagonalizable element of g and Ker(x) � Ker(xp−x). Iterating

this argument completes the proof.

1.4.3 Zariski tangent spaces

We begin with a slight generalization of the notion of derivation of an

algebra: given an algebra homomorphism u : A → B, we say that a

linear map D : A → B is a derivation if it satisfies the Leibniz rule:

D(a1a2) = u(a1)D(a2) +D(a1)u(a2) for all a1, a2 ∈ A. The set of such

derivations is a B-module, denoted by Der(A,B).

Derivations may be viewed as “infinitesimal algebra homomorphisms”.

More specifically, recall the algebra of dual numbers, k[ε] = k[T ]/(T 2).

For any algebra A, we set A[ε] = A ⊗ k[ε]. We then have the following

result, whose proof is a direct verification.

Lemma 1.4.8 Let u : A → B be an algebra homomorphism, and

D : A → B a linear map. Then D is a derivation if and only if u+ εD :

A → B[ε] is an algebra homomorphism.

We will mostly consider the case where B = k, and view Der(A, k) as

a subspace of the dual vector space A∗. This subspace can be described

as follows:

Lemma 1.4.9 Let f : A → k be an algebra homomorphism with kernel

m, so that A/m = k. Then the assignment D ∈ Der(A, k) �→ D|m ∈ m∗

induces an isomorphism of vector spaces Der(A, k)
∼−→ (m/m2)∗.

Proof Since A = k ⊕ m, every D ∈ Der(A, k) is uniquely determined

by D|m. Moreover, D|m2 = 0 by the Leibniz rule, and hence D|m factors

through a unique linear map δ : m/m2 → k. Conversely, given such

a map δ, let D : A → k be the linear map such that D(1) = 0 and

D(a) = δ(ā) for any a ∈ m with image ā ∈ m/m2. Then one may readily

check that D is a derivation.
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Definition 1.4.10 A vector field on an affine scheme X is a deriva-

tion of the algebra A = O(X).

The Zariski tangent space of X at x ∈ X(k) is the vector space

Tx(X) = (m/m2)∗,

where m denotes the kernel of the homomorphism x : A → k.

The composition of the map Der(A) → Der(A,A/m) = Der(A, k),

D �→ x ◦ D with the isomorphism Der(A, k)
∼−→ Tx(X) (Lemma 1.4.9)

is the evaluation map

evx : Der(A) −→ Tx(X).

If X is a finite scheme, then Theorem 1.2.13 yields an isomorphism

Tx(X) � (mx/m
2
x)

∗, where mx denotes the maximal ideal of the local

algebra OX,x. Also, the dimension of Tx(X) is the minimal number of

generators of this algebra in view of Lemma 1.2.12.

We will obtain an interpretation of the Zariski tangent space in terms

of “infinitesimal calculus” on schemes. We keep the setting of Definition

1.4.10. By Lemma 1.4.8, we may identify Der(A, k) with the set of algebra

homomorphisms ϕ : A → k[ε] such that π ◦ ϕ = x, where π denotes the

algebra homomorphism k[ε] → k, ε �→ 0. This identifies Tx(X) with the

fiber at x of the map X(π) : X(k[ε]) → X(k). Also, we denote by σ the

algebra homomorphism k → k[ε]. Then π ◦ σ = id, and hence X(σ) is a

section of X(π); it sends x to the origin of Tx(X).

Next, consider a morphism of affine schemes f : X → Y and let

y = f(x) ∈ Y (k). Then we have a commutative square

X(k[ε])
f(k[ε]) ��

X(π)

��

Y (k[ε])

Y (π)

��
X(k)

f(k) �� Y (k),

and hence a map

dfx : Tx(X) −→ Ty(Y ),

the differential of f at x. The algebra homomorphism f∗ : O(Y ) →
O(X) induces linear maps mn

y → mn
x for all positive integers n, and

hence a linear map my/m
2
y → mx/m

2
x. One may readily check that the

transpose of the latter map is the differential dfx. Also, differentials

satisfy the chain rule: for any morphisms of affine schemes

X
f−→ Y

g−→ Z, x �−→ y �−→ z,
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we have d(g ◦ f)x = dgy ◦ dfx.
For any two affine schemes X,Y and any x ∈ X(k), y ∈ Y (k), we have

a natural isomorphism

T(x,y)(X × Y )
∼−→ Tx(X)× Ty(Y ) (1.16)

given by (d(prX)x, d(prY )y).

If G is an affine group scheme, then G(k[ε]) is a group equipped with

a homomorphism G(π) : G(k[ε]) → G(k) with kernel Te(G), and with a

homomorphism G(σ) : G(k) → G(k[ε]) such that G(π) ◦ G(σ) = id. As

a consequence, we have

G(k[ε]) = Te(G)�G(k). (1.17)

Moreover, every homomorphism of affine group schemes f : G → H

yields a homomorphism of (abstract) groups f(k[ε]) : G(k[ε]) → H(k[ε]),

which restricts to the differential dfe : Te(G) → Te(H). If f is the im-

mersion of a closed subgroup scheme, then dfe is injective. In the next

subsection, we will equip Te(G) with the structure of a (restricted) Lie

algebra, and show that dfe is a homomorphism of such algebras.

1.4.4 The Lie algebra of an affine group scheme

Let G be an affine group scheme, and A = O(G) with comultiplication

map ∆.

Definition 1.4.11 A derivation D of A is left invariant if the dia-

gram

A
D ��

∆

��

A

∆

��
A⊗A

id⊗D �� A⊗A

commutes.

It is easy to check that the left invariant derivations form a restricted

Lie subalgebra DerG(A) of Der(A).

Proposition 1.4.12 The evaluation map eve : Der(A) → Te(G) re-

stricts to an isomorphism

DerG(A)
∼−→ Te(G). (1.18)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009563208.002
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 22 Aug 2025 at 03:22:38, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009563208.002
https://www.cambridge.org/core


Finite group schemes 33

Proof Let D ∈ Der(A). Then D is left invariant if and only if the

diagram

A
ϕ ��

∆

��

A[ε]

∆[ε]

��
A⊗A

id⊗ϕ �� A⊗A[ε]

commutes, where ϕ = id + εD. This is equivalent to the commutativity

of the dual diagram

G×G× Spec(k[ε])
id×ψ ��

µ×id

��

G×G

µ

��
G× Spec(k[ε])

ψ �� G

where ψ : G × Spec(k[ε]) → G is the morphism of affine schemes cor-

responding to the algebra homomorphism ϕ : A → A[ε]. In turn, this

is equivalent to the equality ψ(xy, z) = xψ(y, z) for any algebra R, any

x, y ∈ G(R) and any z ∈ Spec(k[ε])(R) = Homalg(R, k[ε]). But this

amounts to the equality ψ(x, z) = xψ(e, z) for any R and x ∈ G(R),

where ψ(e, z) ∈ Hom(Spec(k[ε]), G) = G(k[ε]). As ψ ◦ (id, π∗) = id,

we have ψ(e, z) ∈ Ker(G(π)). So ψ(e, z) ∈ Te(G); this yields the asser-

tion.

The above proposition is a key ingredient in the proof of a central

result of the theory:

Theorem 1.4.13 If p = 0 then every finite group scheme is reduced.

Proof By Theorem 1.3.13, it suffices to show that every infinitesimal

group scheme G is trivial. Let m be the maximal ideal of O(G) = A;

then Te(G) = (m/m2)∗. By Proposition 1.4.12, there exist D1, . . . , Dm ∈
DerG(A) such that eve(D1), . . . , eve(Dm) form a basis of Te(G). So we

may choose a1, . . . , am ∈ m such that the images ā1, . . . , ām ∈ m/m2

form the dual basis. Equivalently, Di(aj)(e) = δi,j for 1 ≤ i, j ≤ m.

Consider the algebra R = k[[T1, . . . , Tm]] consisting of the formal

power series
∑

i1,...,im
ci1,...,imT i1

1 · · ·T im
m , where i1, . . . , im run over the

nonnegative integers, and ci1,...,im ∈ k. Then R is a local k-algebra with

maximal ideal (T1, . . . , Tm) (consisting of the series with constant term

0) and residue field k. Each quotient R/(T1, . . . , Tm)n is isomorphic to

the truncated polynomial ring k[T1, . . . , Tm]/(T1, . . . , Tm)n, a local finite-

dimensional algebra.
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We have a linear map defined via “Taylor series expansion”

u : A −→ R, a �−→
∑

i1,...,im≥0

(Di1
1 · · ·Dim

m a)(e)
T i1
1 · · ·T im

m

i1! · · · im!
.

Using the formula (1.14), one may check that u is an algebra homomor-

phism. Also, we have u(ai) ≡ Ti mod (T1, . . . , Tm)2 for i = 1, . . . ,m.

In view of Lemma 1.2.12, it follows that the composition of u with the

quotient map R → R/(T1, . . . , Tm)n is surjective for all n ≥ 0. But A is

finite-dimensional, and the dimension of R/(T1, . . . , Tm)n is arbitrarily

large if m ≥ 1 and n � 0. So we must have m = 0, i.e., A = k.

Theorem 1.4.13 is a special case of Cartier’s theorem: if p = 0 then

every algebraic group is reduced (see [26, p. 101, Thm.], from which the

above proof is borrowed).

We now return to a finite group scheme G in arbitrary characteristic.

Definition 1.4.14 The Lie algebra Lie(G) is the Zariski tangent

space Te(G) equipped with the restricted Lie algebra structure obtained

via the isomorphism (1.18).

Example 1.4.15 Let G = Ga. Then A = k[T ] and Der(A) = Ad/dT .

One may readily check that DerG(A) = k d/dT . Thus, Lie(G) � k with

trivial pth power map.

Next, let G = Gm. Then A = k[T, T−1] and Der(A) = Ad/dT =

ATd/dT ; moreover, DerG(A) = k Td/dT . So Lie(G) � k with pth power

map x �→ xp.

Every homomorphism of affine group schemes f : G → H induces a

linear map

Lie(f) = dfe : Lie(G) = Te(G) −→ Te(H) = Lie(H).

Moreover, every G-action α on an affine scheme X = Spec(A) induces an

action of the group G(k[ε]) on the algebra A[ε] by k[ε]-algebra automor-

phisms, which lifts the G(k)-action on A by algebra automorphisms (Re-

mark 1.3.10). Thus, for any ξ ∈ Te(G) = Ker(G(π) : G(k[ε]) → G(k)),

we obtain a k[ε]-automorphism of A[ε] lifting id, and hence an algebra

homomorphism A → A[ε], a �→ a+εDξ. ThenDξ is a derivation (Lemma

1.4.8), so that we obtain a map

α′ : Te(G) −→ Der(A), ξ �−→ Dξ.

Proposition 1.4.16 With the above notation, Lie(f) and α′ are ho-

momorphisms of restricted Lie algebras.
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This follows from an alternative description of the restricted Lie alge-

bra structure on Te(G) that we now sketch. The G-action on itself by

conjugation fixes e, and hence induces a linear representation

Ad : G −→ GLTe(G),

the adjoint representation (see [25, Cor. 8.10]). The differential of Ad

at e may be identified with a linear map

ad : Te(G) −→ gl(Te(G)).

In fact, this map equips Te(G) with a restricted Lie algebra structure

such that α′ is a homomorphism of restricted Lie algebras for any G-

action α (see [7, II.4.4.4, II.4.4.5, II.7.3.4]). In particular, the G-action on

itself by right multiplication induces a homomorphism of restricted Lie

algebras Te(G) → Der(O(G)); its image is DerG(O(G)) by [7, II.4.4.6]).

This completes the proof of Proposition 1.4.16 in view of the equivariance

of f relative to the conjugation actions.

If G = GLn, then Te(G) is the vector space gln of n×n matrices, and

the adjoint representation is the conjugation action again. Its differential

at e is the adjoint representation of gln (see e.g. [25, Thm. 10.23]) and

hence Lie(GLn) = gln as restricted Lie algebras.

Also, the Lie algebra of any closed subgroup scheme H ≤ G is a

restricted Lie subalgebra of Lie(G). We illustrate this on the following:

Example 1.4.17 Let G = µn, so that A = k[T ](Tn − 1). If p = 0

or n is prime to p, then A is reduced and hence Lie(G) = 0 (e.g. by

Lemma 1.4.4). On the other hand, if p > 0 divides n, then the inclusion

G ≤ Gm yields the equality Lie(G) = Lie(Gm) for dimension reasons.

So Lie(G) = k with pth power map x �→ xp.

Next, let G = αp. Then similarly, the inclusion G ≤ Ga yields that

Lie(G) = k with trivial pth power map.

Example 1.4.18 Let B be a finite-dimensional algebra. By assigning

to any algebra R the automorphism group of the R-algebra R⊗B, one

obtains a group functor AutB . One may readily check that this group

functor is represented by a closed subgroup scheme of GLB , that we will

still denote by AutB . We have AutB(k) = Aut(B) (the automorphism

group of B), and Lie(AutB) = Der(B) as follows from Lemma 1.4.8.

If B is reduced of dimension n, then B � kn and hence Aut(B) is

isomorphic to the symmetric group Sn (permuting the idempotents of

B). Together with Lemma 1.4.4 (iii), it follows that AutB � Sn as well.

On the other hand, if B is nonreduced, then Aut(B) is infinite. Indeed,
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using Theorem 1.2.13, we may assume that B is local with maximal ideal

m; then Aut(B)
∼−→ Aut(m). Denote by n the smallest positive integer

such that mn = 0. If n = 2 then Aut(m) � GL(m) is infinite. Otherwise,

consider a linear map f : m/m2 → mn−1 ⊂ m2 as in the proof of Lemma

1.4.4 (iii). Then one may check that the assignment m → m, x �→ x+f(x̄)

yields an automorphism uf of m. Moreover, the assignment f �→ uf

yields an injective homomorphism Hom(m/m2,mn−1) → Aut(m), where

the left-hand side is viewed as an additive group. Thus, Aut(m) is infinite

in this case too, and hence AutB is infinite as well.

Also, AutB may be nonreduced if p > 0. Take indeed B = k[T ]/(T p)

and denote by t the image of T in B, as in Example 1.4.3. Then for any

algebra R, the group AutB(R) consists of the maps

t �−→ a0 + a1t+ · · ·+ ap−1t
p−1,

where a0, . . . , ap−1 ∈ R satisfy ap0 = 0 and a1 ∈ R×. In particular,

AutB(k) = Aut(B) consists of the maps t �→ a1t+ · · ·+ap−1t
p−1, where

a1 ∈ k× and a2, . . . , ap−1 ∈ k. So the reduced subgroup scheme AutB,red

is the proper closed subscheme of AutB with ideal (a0).

1.4.5 The relative Frobenius morphism

In this subsection, we assume that char(k) = p > 0. Let A be an algebra;

then the Frobenius map

F = FA : A −→ A, a �−→ ap.

is a ring endomorphism. But F is not an algebra endomorphism, since

F (ta) = tpF (a) for all t ∈ k, a ∈ A. To correct this, we define a new

algebra structure on A via t · a = t1/pa. The resulting algebra will be

denoted by A(p). Then we obtain an algebra homomorphism

FA/k : A(p) −→ A, a �−→ ap,

or equivalently a morphism of affine schemes

FX/k : X −→ X(p),

where X = Spec(A) and X(p) = Spec(A(p)). We say that FX/k is the

relative Frobenius morphism. If A is finite-dimensional, then A(p)

is finite-dimensional as well, and dim(A(p)) = dim(A); thus, FX/k is a

morphism of finite schemes.

Next, let f : X → Y be a morphism of affine schemes and denote by

u : O(Y ) = B → A the corresponding algebra homomorphism. Then we
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have FA ◦ u = u ◦ FB . As a consequence, u induces a homomorphism

u(p) : B(p) → A(p) such that FA/k ◦ u(p) = u ◦ FB/k. Equivalently, we

have a commutative diagram of affine schemes

X
FX/k ��

f

��

X(p)

f(p)

��
Y

FY/k �� Y (p)

Also, we have a natural isomorphism of algebras

A(p) ⊗B(p) ∼−→ (A⊗B)(p),

and hence the relative Frobenius morphism commutes with products.

Thus, for any affine group scheme G, there exists a natural structure

of affine group scheme on G(p) such that FG/k is a homomorphism. Its

kernel is the Frobenius kernel; we denote it by G1. If G is finite, then

G(p) is finite and we have |G| = |G(p)|.
This construction can be iterated: given a positive integer n, we replace

p with pn and F with Fn : A → A, a �→ ap
n

. We then denote by A(pn)

the ring A equipped with an algebra structure via t · a = t1/p
n

a. This

yields a homomorphism Fn
A/k : A(pn) → A, and hence a morphism

Fn
X/k : X −→ X(pn),

the nth iterated relative Frobenius morphism. The above proper-

ties of the relative Frobenius morphism extend to this setting. So for any

affine group scheme G, we obtain a homomorphism

Fn
G/k : G −→ G(pn),

where G(pn) is an affine group scheme; if G is finite, then G(pn) is finite

of the same order. The kernel of Fn
G/k is the nth Frobenius kernel Gn.

This notion gives back some of the examples of §1.2.1:

Example 1.4.19 If G is the multiplicative group Gm, then Gn is the

group scheme µpn (the kernel of the pnth power map), of order pn.

Also, if G is the additive group Ga, then G1 = αp. More generally, Gn

is denoted by αpn ; it has order pn as well.

Finally, the nth Frobenius kernel of an elliptic curve E has order pn

again. Moreover, we have

En �

{
µpn if E is ordinary,

αpn if E is supersingular

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009563208.002
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 22 Aug 2025 at 03:22:38, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009563208.002
https://www.cambridge.org/core


38 Michel Brion

(see [26, §22, Thm.]).

In these three examples, Gn is contained in the kernel of the multipli-

cation by pn. This is a general fact for commutative group schemes, see

[7, IV.3.4.10].

We now record some properties of the iterated relative Frobenius mor-

phism of affine schemes:

Lemma 1.4.20 Let X be an affine scheme, and n a positive integer.

(i) The morphism Fn
X/k is bijective on k-points.

(ii) For any x ∈ X(k), the fiber of Fn
X/k at y = Fn

X/k(x) satisfies

O(Xy) = O(X)/(fpn

, f ∈ mx),

where mx denotes the maximal ideal of x.

(iii) Assume in addition that X is finite. Then Fn
X/k is an isomorphism

if and only if X is reduced.

Proof (i) Let A = O(X). We have to show that every algebra homo-

morphism f : A(p) → k extends uniquely to an algebra homomorphism

A → k. The uniqueness follows from the fact that every element of k has

a unique pth root. For the existence, let m = Ker(f) and B = A/mA.

Then the algebra B has a maximal ideal, and hence there exists an al-

gebra homomorphism g : B → K, where K is a field extension of k. By

construction, we have Kp ⊂ k and hence K = k. So g : B → k yields

the desired extension.

(ii) This follows readily from the fact that the ideal of Xy in O(X) is

generated by (Fn
X/k)

∗(mx).

(iii) Using Theorem 1.2.13, we may assume that A is local. If A = k

then (Fn
X/k)

∗ = id. Otherwise, A has nonzero nilpotent elements, and

hence there exists a ∈ A such that ap = 0 �= a. Thus, (Fn
X/k)

∗ is not

injective.

Lemma 1.4.21 Let G be an affine group scheme. Then the iterated

Frobenius kernels Gn form an increasing sequence of infinitesimal sub-

group schemes of G. Moreover, Lie(G1) = Lie(G2) = · · · = Lie(G).

Assuming in addition that G is finite, we have:

(i) Gn is trivial if and only if G is reduced.

(ii) Gn ≤ G0 with equality if and only if fpn

= 0 for all f ∈ m, where

m denotes the maximal ideal of e in O(G).

(iii) Gn = G0 for n � 0.
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Proof Recall that Gn is the fiber of Fn
G/k at e. By Lemma 1.4.20, it

follows that e is the unique k-point of Gn, and hence Gn is infinitesimal.

Using Lemma 1.4.20 again, we have

O(Gn) = O(G)/(fpn

, f ∈ m). (1.19)

Moreover, the ideals (fpn

, f ∈ m) form a decreasing sequence, and hence

the closed subschemes Gn form an increasing sequence.

Also, recall that Lie(G) = Te(G) = Te(G
0) = (m/m2)∗. Likewise, we

have Lie(Gn) = (m̄/m̄2)∗, where m̄ denotes the maximal ideal of e in Gn.

So

m̄ = m/(fpn

, f ∈ m) ⊂ O(G)/(fpn

, f ∈ m) = O(Gn).

As fpn ∈ m2 for all f ∈ m, the natural map m/m2 → m̄/m̄2 is an

isomorphism. Thus, Lie(Gn) = Lie(G); this yields the first assertion.

We now assume that G is finite. Since Gn is infinitesimal, it is a

subgroup scheme of G0 by Theorem 1.3.13. So we may replace G with

G0, i.e., assume that G is infinitesimal.

To show (i), it suffices to check that G is trivial if Gn is trivial. But

then the ideal m is generated by its pnth powers, and hence is zero by

Lemma 1.2.12.

The remaining assertions from (ii) and (iii) follow from the isomor-

phism (1.19) and the vanishing of mn for n � 0 (Lemma 1.2.11).

Definition 1.4.22 Let G be an infinitesimal group scheme. If G is

nontrivial, then its height ht(G) is the smallest integer n ≥ 1 such that

Gn = G. We set ht(G) = 0 if G is trivial.

By Lemma 1.4.21, the height of G exists and satisfies

ht(G) = min{n | fpn

= 0 for all f ∈ m},

where m denotes the maximal ideal of the local algebra O(G).

Theorem 1.4.23 Let G be an infinitesimal group scheme. Then we

have ht(G) ≤ 1 if and only if there exists an isomorphism of algebras

O(G) � k[T1, . . . , Tn]/(T
p
1 , · · · , T p

n). (1.20)

Moreover, the assignment G �→ Lie(G) yields an equivalence between the

categories of infinitesimal group schemes of height at most 1, and of

finite-dimensional restricted Lie algebras.

We refer to [25, Chap. 11.h] for the broad lines of the proof, and to

[7, II.7.4] for the full details. We will only sketch the construction of a
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quasi-inverse functor: given a finite-dimensional restricted Lie algebra g,

one considers its restricted enveloping algebra U = U[p](g) (§1.4.2), and
equips it with algebra homomorphisms

∆ : U −→ U⊗U, x ∈ g �−→ x⊗ 1 + 1⊗ x,

S : U −→ U, x ∈ g �−→ −x,

ε : U −→ k, x ∈ g �−→ 0.

Then U is a finite-dimensional Hopf algebra, which is co-commutative

(i.e., the image of ∆ is fixed pointwise by the involution x⊗y �→ y⊗x of

U ⊗ U), but not necessarily commutative. Thus, the dual vector space

is a finite-dimensional commutative Hopf algebra, which yields a finite

group scheme G(g). One then checks that G(g) is infinitesimal with Lie

algebra g.

The equivalence of categories of Theorem 1.4.23 extends to actions of

group schemes: given an infinitesimal group scheme G of height 1 and a

scheme X = Spec(A), the G-actions on X correspond bijectively to the

homomorphisms of restricted Lie algebras Lie(G) → Der(A) via α �→ α′

(see [7, II.7.3.10]). In view of Example 1.4.17, it follows that the actions

of µp (resp. αp) correspond bijectively to the vector fields D such that

Dp = D (resp. Dp = 0).

We now present applications of Theorem 1.4.23 to the structure of

finite group schemes:

Corollary 1.4.24 Let G be an infinitesimal group scheme of height 1.

Then we have |G| = pn, where n = dim(Lie(G)).

Proof The isomorphism (1.20) implies that |G| = dim(O(G)) = pn,

since the monomials T i1
1 · · ·T in

n , where 0 ≤ i1, . . . , in ≤ p − 1, yield

a basis of k[T1, . . . , Tn]/(T
p
1 , . . . , T

p
n). Also, this isomorphism identifies

the maximal ideal m of O(G) with the image of the maximal ideal

(T1, . . . , Tn) of k[T1, . . . , Tn]. Since (T p
1 , . . . , T

p
n) ⊂ (T1, . . . , Tn)

2, this

yields in turn an isomorphism m/m2 � (T1, . . . , Tn)/(T1, . . . , Tn)
2. Thus,

dim(Lie(G)) = dim(m/m2) = n.

Corollary 1.4.25 Every nonreduced finite group scheme contains a

subgroup scheme isomorphic to µp or αp.

Proof This follows by combining Theorem 1.4.23 with Lemmas 1.4.7

and 1.4.21.
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Corollary 1.4.26 Every finite group scheme of prime order � is iso-

morphic to Z/�Z if � �= p, and to Z/pZ, µp or αp if � = p.

Proof By Theorem 1.3.13, we have O(G) � O(G0) ⊗ O(Gred) as al-

gebras. Counting dimensions, this yields |G| = |G0| · |Gred|. Thus, the
assumption that |G| = � implies that G is infinitesimal or reduced. In the

latter case, we have G � Z/�Z. In the former case, G contains a subgroup

scheme H isomorphic to µp or αp by Corollary 1.4.25. Thus, we have

� = p; moreover, the resulting algebra homomorphism O(G) → O(H) is

surjective, and hence bijective for dimension reasons.

Finally, we mention a remarkable structure result for the algebras of

infinitesimal group schemes (see [7, Cor. III.3.6.3] or [25, Thm. 11.29]):

Theorem 1.4.27 Let G be an infinitesimal group scheme. Then there

exists an isomorphism of algebras

O(G) � k[T1, . . . , Tn]/(T
pa1

1 , . . . , T pan

n ),

where a1, . . . , an are positive integers.

By considering a monomial basis of O(G) as in the proof of Corollary

1.4.24, this yields |G| = dim(O(G)) = pa1+···+an . In particular, every

infinitesimal group scheme is a p-group. We will obtain an alternative

proof of this result in Corollary 1.5.15.

1.5 Quotients

Throughout this section, we consider a finite group scheme G.

Definition 1.5.1 Let X be an affine G-scheme, and f : X → Y a

morphism. We say that f is G-invariant if f(g · x) = f(x) for any

algebra R and any g ∈ G(R), x ∈ X(R).

The invariance condition is equivalent to the equality f ◦α = f ◦ prX ,

where α : G × X → X denotes the action, and prX : G × X → X the

projection. In turn, this is equivalent to the equality α∗◦f∗ = (1⊗id)∗◦f∗

for the algebra homomorphism f∗ : O(Y ) → O(X).

Remark 1.5.2 Assume that p > 0 and consider an action G×X → X.

Then the induced morphism G(pn) × X(pn) → X(pn) is an action as

well, and the nth relative Frobenius morphism Fn
X/k : X → X(pn) is

equivariant relative to the homomorphism Fn
G/k : G → G(pn). Indeed,
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this follows readily from the functorial properties of relative Frobenius

morphisms.

If in addition G is infinitesimal of height n, then Fn
X/k is G-invariant.

Observe that every affine G-scheme X is equipped with a G-invariant

morphism q : X → Y which satisfies the following universal property:

for any invariant morphism of affine schemes ϕ : X → Z, there exists a

unique morphism ψ : Y → Z such that ϕ = ψ ◦ q. Indeed, let A = O(X)

and consider the algebra of invariants

AG = {a ∈ A | α∗(a) = pr∗X(a)}.

Then the inclusion of AG into A corresponds to a morphism of affine

schemes q : X → Y . Moreover, the morphism ϕ corresponds to an

algebra homomorphism O(Z) → A with image contained in AG. So q

satisfies the above universal property. We say that q is the categorical

quotient of X by G and we denote Y by X/G.

The following properties of the categorical quotient are easily verified:

Lemma 1.5.3 Let G be a finite group scheme, and X,Y two affine

G-schemes with categorical quotients qX : X → X/G, qY : Y → Y/G.

(i) Every G-equivariant morphism f : X → Y induces a morphism

f/G : X/G → Y/G such that f/G ◦ qX = qY ◦ f .
(ii) If G acts trivially on Y , then there exists a natural isomorphism

(X × Y )/G
∼−→ X/G× Y. (1.21)

(iii) The finite group G(k) acts on X/G0 and there exists a natural

isomorphism

(X/G0)/G(k)
∼−→ X/G. (1.22)

Also, for any algebraic affineG-schemeX, the schemeX/G is algebraic

in view of the following:

Theorem 1.5.4 Let A be a finitely generated G-algebra. Then the

algebra of invariants AG is finitely generated and the AG-module A is

finitely generated as well.

Proof We may choose a1, . . . , am ∈ A such that A = k[a1, . . . , am].

We first treat the case where G is reduced. Consider the polynomials

Pi(T ) =
∏
g∈G

(T − g · ai) ∈ A[T ] (i = 1, . . . ,m).

Then Pi(ai) = 0 and Pi has degree |G| = N . Moreover, the coefficients
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of Pi(T ) are G-invariant, since G permutes the g · ai. In other words,

Pi(T ) ∈ AG[T ] for all i. Let B denote the subalgebra of A generated by

the coefficients of the Pi. Then B is finitely generated and contained in

AG. Moreover, we have aNi ∈ B+Bai+· · ·+BaN−1
i for i = 1, . . . ,m, since

Pi(ai) = 0. By induction, it follows that ari ∈ B + Bai + · · · + BaN−1
i

for r ≥ N and i = 1, . . . ,m. As a consequence, the B-module A is

generated by the monomials ai11 · · · aimm , where 0 ≤ i1, . . . , im ≤ N − 1.

In particular, A is a finite B-module. Using again the finite generation

of B, this yields that AG ⊂ A is a finite B-module as well. In turn, this

yields the assertions in this case.

Next, we treat the case where G is infinitesimal. Let n = ht(G),

then ap
n ∈ AG for any a ∈ A in view of Remark 1.5.2. Thus, C =

k[ap
n

1 , . . . , ap
n

m ] is a subalgebra of AG. Also, the C-module A is gener-

ated by the monomials ai11 · · · aimm , where 0 ≤ i1, . . . , im ≤ p − 1. This

yields the assertions by arguing as in the first case.

For an arbitrary finite group scheme G, the algebra AG0

is equipped

with an action of G(k) such that (AG0

)G(k) = AG. So we conclude by

combining the two above cases.

Remark 1.5.5 Given an affine algebraic G-scheme X, the categori-

cal quotient is an orbit space in the following sense: the natural map

X(k)/G(k) → (X/G)(k) is bijective. Indeed, this is a consequence of

[11, Ex. 13.4] if G is reduced. Also, q is bijective if G is infinitesimal

(use Lemma 1.4.20 and Remark 1.5.2). This yields the assertion for an

arbitrary G in view of Lemma 1.5.3 (iii).

In other words, the set-theoretic fibers of q at k-rational points are

exactly the G(k)-orbits. But the natural map X(R)/G(R) → (X/G)(R)

is not necessarily bijective for an algebra R. For example, consider the

action of µn on A1 = Spec(k[T ]) by multiplication: x · y = xy. Then

k[T ]µn = k[Tn] and hence q is not surjective on (say) k(T )-valued

points. Also, note that the fiber of q at 0 is the nonreduced scheme

Spec(k[T ]/(Tn)).

Remark 1.5.6 Invariant theory of finite groups is related to Galois

theory as follows. Assume that G is a finite group of automorphisms of

an algebra A, which is an integral domain with fraction field K. This

yields a G-action on K by field automorphisms; the invariant subfield

KG is easily seen to be the fraction field of AG. By Galois theory, we

have G = AutKG(K) and K is a finite extension of KG of degree |G|.
As a consequence, G = AutAG(A) and the AG-module A has rank |G|.

This does not extend to finite group schemes if p > 0. For exam-
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ple, consider the action of µp on αn
p = αp × · · · × αp (n times) via

y · (x1, . . . , xn) = (yx1, . . . , yxn) and form the corresponding semi-direct

product G = αn
p � µp. Then G acts on A1 via

(x1, . . . , xn, y) · t = yt+ x1 + x2t
p + · · ·+ xnt

pn−1

and the algebra of G-invariants of O(A1) = k[T ] is k[T p]. So |G| = pn+1

and [K : KG] = p for the induced G-action on K = k(T ).

This failure is explained by the fact that the extensionK/KG is purely

inseparable for a (functorial) action of an infinitesimal group scheme G

on a field K. More specifically, if ht(G) ≤ n then fpn ∈ KG for any

f ∈ K (Remark 1.5.2). In particular, the extension K/KG has exponent

p if ht(G) = 1.

Definition 1.5.7 An action of G on an affine scheme X is free if the

group G(R) acts freely on the set X(R) for any algebra R.

More specifically, if g ∈ G(R) and x ∈ X(R) satisfy g · x = x, then

g = e.

Example 1.5.8 The group scheme G acts freely on itself by left mul-

tiplication, and also by right multiplication. But the G-action on itself

by conjugation is not free (if G is nontrivial), since this action fixes e.

Remark 1.5.9 Assume that G is a finite group acting faithfully on

an affine variety X. Then there exists a nonempty open subset U ⊂ X

which is G-stable (i.e., g · x ∈ U for all g ∈ G and x ∈ U) and on which

G acts freely. Indeed, the fixed point locus Xg = {x ∈ X | g · x = x} is

a proper closed subset of X for any g ∈ G. Thus, we may take for U the

free locus X \
⋃

g∈G Xg.

This does not extend to actions of finite group schemes in view of the

example in Remark 1.5.6 (exercise).

Definition 1.5.10 A morphism of affine schemes f : X → Y is finite

locally free (of rank n) if the O(Y )-module O(X) is finitely generated

and projective (of constant rank n).

By [11, Ex. 4.12], this is equivalent to the existence of g1, . . . , gm ∈
O(Y ) such that (g1, . . . , gm) = O(Y ) and the O(Y )[ 1gi ]-module O(X)[ 1gi ]

is free (of rank n) for i = 1, . . . ,m. HereO(Y )[ 1gi ] denotes the localization

of O(Y ) by gi, and likewise for O(X)[ 1gi ].

For example, the projection prY : X × Y → Y is finite locally free

if and only if X is finite; then prY has rank n = dim(O(X)). Also, the
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immersion i : X → X � Y is finite locally free, but not of constant rank

if X,Y are nonempty.

Remark 1.5.11 The notion of a finite locally free morphism extends

to (not necessarily affine) schemes as follows: a morphism of schemes

f : X → Y is finite locally free if for any affine open subset V of Y , the

preimage U = f−1(V ) is affine and f |U : U → V is finite locally free. For

example, given an elliptic curve E with origin 0 and a positive integer

n, the morphism nE : E → E, x �→ nx of Example 1.2.3 is finite locally

free of rank n2 (as follows from [15, Ex. IV.4.2]). Thus, the schematic

kernel E[n] is a finite group scheme of order n2.

Theorem 1.5.12 Let X = Spec(A) be a scheme of finite type equipped

with a free action of G, and q : X → X/G = Spec(AG) the categorical

quotient.

(i) The morphism q is finite locally free of rank |G|.
(ii) The morphism G × X → X × X, (g, x) �→ (x, g · x) induces an

isomorphism G×X
∼−→ X ×X/G X.

The second assertion means that the categorical quotient by a free

action of G is a principal G-bundle in the sense of topologists.

We refer to [26, §12, Thm. 1] or [25, Thm. B.18] for the proof of the

above result, and record an important consequence:

Corollary 1.5.13 Let H ≤ G be a subgroup scheme, and q : G → G/H

the categorical quotient by the action via right multiplication.

(i) The morphism q is finite locally free of rank |H|.
(ii) We have |G| = [G : H] |H|, where [G : H] = dim(O(G/H)) =

dim(O(G)H).

(iii) The G-action on itself by left multiplication yields a unique action

on G/H such that q is equivariant.

(iv) If H is normal in G, then G/H has a unique structure of a finite

group scheme such that q is a homomorphism.

Proof (i) This follows from Example 1.5.8 and Theorem 1.5.12.

(ii) By (i), the algebra O(G) is a projective module of constant rank

|H| over its subalgebra O(G)H . This yields the assertion by counting

dimensions.

(iii) Consider the H-action on G×G via h·(g1, g2) = (g1, g2h
−1). Then

the multiplication map µ : G×G → G is equivariant, and hence induces

a morphism α : G × G/H → G/H as categorical quotients commute
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with products by schemes with a trivial action (Lemma 1.5.3 (i) and

(ii)). Using this commutation property again, one may check that α is

an action.

(iv) This is proved by a similar argument.

With the above assumptions, the quotient G/H is called a homoge-

neous space. The structure theorem for the algebras of infinitesimal

group schemes (Theorem 1.4.27) extends unchanged to their homoge-

neous spaces in view of [7, III.3.6.2].

In turn, this yields further structure results for finite group schemes:

Corollary 1.5.14 Every finite group scheme G admits a canonical

sequence of normal subgroup schemes

e = N0 ≤ N1 ≤ · · · ≤ Nn = G0

such that every quotient Ni/Ni−1 has height 1.

Proof Take N1 = G1 (the Frobenius kernel) and argue by induction on

|G| by using Corollary 1.5.13.

Corollary 1.5.15 If G is infinitesimal, then |G| = pn for some n ≥ 0.

Proof This follows readily by combining Corollaries 1.4.24, 1.5.13 (ii)

and 1.5.14.

Corollary 1.5.16 The simple finite group schemes are exactly the

finite simple groups and the infinitesimal group schemes of height 1 as-

sociated with the simple finite-dimensional restricted Lie algebras.

There is a well-known and widely used classification of finite sim-

ple groups. The simple finite-dimensional restricted Lie algebras have

also been classified, except in small characteristic. More specifically,

these Lie algebras are in bijective correspondence with the simple finite-

dimensional Lie algebras (see e.g. [36, Thm. 4.1]). These have been clas-

sified by Block, Wilson, Strade and Premet: in characteristic p ≥ 7, they

are either of classical type (e.g., gln/kIn if n is prime to p) or of Cartan

type (e.g., the Jacobson-Witt algebra Der(k[T1, . . . , Tn]/(T
p
1 , . . . , T

p
n))

unless n = 1 and p = 2). If p = 5, one gets in addition the Melikian alge-

bras. We refer to [33] for a full account of these developments, and [36]

for a nice survey. In characteristics p = 2, 3, there are many additional

simple (restricted) Lie algebras, see e.g. the recent preprint [5].
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1.6 The inverse Galois problem for group schemes

In its original form, the inverse Galois problem may be stated as follows:

Question 1.6.1 Given a finite group G, does there exist a Galois

extension of the field of rational numbers with Galois group G?

This classical problem is unsolved, even if many finite groups have

been realized as Galois groups over Q; this includes all solvable groups

by a theorem of Shafarevich (see [27, (9.5.1)]).

A fruitful approach, initiated by Hilbert, consists in realizing G as

a Galois group over the field of rational functions Q(T1, . . . , Tn). Then

G can be realized as a Galois group over Q by specializing T1, . . . , Tn

appropriately (as a consequence of Hilbert’s irreducibility theorem; see

e.g. [31, §3.4]). This applies for example to the symmetric group Sn:

consider its action on the field of rational functions k(U1, . . . , Un) by

permuting the variables. Then the field of invariants k(U1, . . . , Un)
Sn is

generated by the elementary symmetric functions, and hence is isomor-

phic to k(T1, . . . , Tn).

We refer to [21] for a recent survey of the inverse Galois problem over

an arbitrary field K, which asks which finite groups occur as Galois

groups over K. It is known that every finite group G can be realized as

a Galois group over any algebraic function field of one variable K

over k, i.e., K/k is a finitely generated field extension of transcendence

degree 1. More specifically, there exist infinitely many Galois extensions

L/K such that the equalities G = AutK(L) = Autk(L) hold (see [13]

for k = C, and [19] for the general case).

In view of the correspondence between algebraic function fields of one

variable and algebraic curves (see [15, Cor. I.6.12]), it follows that every

nonsingular projective curve X admits a ramified Galois covering

q : Y → X with group G, i.e., Y is a nonsingular projective curve

equipped with a faithful action of G, and q is the categorical quotient.

Moreover, G is the full automorphism group Aut(Y ).

The automorphism group of a nonsingular projective curve X can be

described in terms of the genus g = g(X) as follows. If g = 0 then X

is isomorphic to the projective line P1, and hence Aut(X) � Aut(P1) =

PGL2(k). If g = 1 then choosing a point 0 ∈ X(k), we get a commu-

tative algebraic group structure on the elliptic curve X, with neutral

element 0. Thus, X acts on itself by translations. One may check that

Aut(X) = X � Aut(X, 0), where X denotes the subgroup of transla-

tions, and Aut(X, 0) stands for the subgroup fixing the origin. More-
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over, Aut(X, 0) is finite of order dividing 24 (see [32, Thm. III.10.1]).

Finally, if g ≥ 2 then Aut(X) is finite of order at most 84(g − 1) (see

[15, Ex. IV.2.5]). In particular, Aut(X) is the group of k-points of an

algebraic group for any nonsingular projective curve X.

More generally, one associates to any projective scheme X the auto-

morphism group scheme AutX . Its points with values in an algebra R

are the automorphisms of X × Spec(R) of the form (x, y) �→ (f(x, y), y),

where f : X × Spec(R) → X is a morphism. (We may view f as a fam-

ily of automorphisms of X parameterized by Spec(R)). In particular,

AutX(k) = Aut(X). Also, the Lie algebra Lie(AutX) (the kernel of the

group homomorphism AutX(k[ε]) → AutX(k), ε �→ 0) is identified with

the Lie algebra Vect(X) of vector fields on X. The scheme AutX is lo-

cally of finite type, i.e., it admits an open covering by affine schemes of

finite type (but AutX is not necessarily an algebraic group, see Example

1.6.4 below). Given a group scheme G, the G-actions on X correspond

bijectively to the homomorphisms of group schemes G → AutX .

The construction of AutX is due to Grothendieck in a much more

general setting, see [14]; it has been extended to proper schemes over

an arbitrary field by Matsumura and Oort (see [24]). If X is a finite

scheme, this gives back the group scheme AutB of Example 1.4.18, where

B = O(X); in particular, AutX is not necessarily reduced if p > 0. Also,

if X is a nonsingular projective curve, then AutX is a reduced algebraic

group (as a consequence of the above description of Aut(X) together

with a Lie algebra argument). In view of the above discussion, this yields:

Proposition 1.6.2 Every finite group can be realized as the automor-

phism group scheme of a nonsingular projective curve.

By contrast, there are strong restrictions on infinitesimal subgroup

schemes of nonsingular projective curves. For example, their Lie algebra

has dimension at most 3. If one considers a possibly singular projective

curve X, then there are still strong restrictions on the Lie algebra of

AutX as follows from [30, Thm. 12.1]. The same holds for several classes

of nonsingular projective surfaces, see [35, 22, 23].

By analogy with the inverse Galois problem, one may ask:

Question 1.6.3 Which group schemes can be realized as the automor-

phism group scheme of a projective scheme X? One may further impose

geometric conditions on X, e.g., restrict to nonsingular varieties.

This question is wide open, even if our understanding of automorphism

group schemes has improved significantly during the last years. Before
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mentioning some recent developments, we review a classical structure

result on the group scheme AutX , where X is a proper scheme. Since

this group scheme is locally of finite type, its connected component of

the identity is a normal subgroup scheme of finite type, denoted by Aut0X
and called the connected automorphism group scheme. Moreover,

the quotient group scheme

AutX/Aut0X = π0(AutX)

exists; it is a discrete group scheme which parameterizes the connected

components of AutX (see [7, II.5.1]). Thus, we may view π0(AutX) as an

abstract group. This component group is countable (as follows from

[14]), and generally infinite in view of the following:

Example 1.6.4 Let E be an elliptic curve with origin 0, and X =

E × E. One may check that AutX = X � AutX,(0,0), where X acts on

itself by translation. Moreover, Aut0X = X and π0(AutX) � AutX,(0,0).

In particular, π0(AutX) contains the group GL2(Z) acting on X via(
a b

c d

)
· (z, w) = (az + bw, cz + dw).

In this example, one may easily show that π0(AutX) is an arithmetic

group; as a consequence, it admits a finite presentation. More gener-

ally, the group π0(AutX) is arithmetic for any abelian variety, i.e., a

projective group variety. But there exist complex nonsingular projective

varieties X such that AutX is discrete and non-finitely generated; see

[16] for the first example of such a variety, in dimension 6, and [9] for

further examples in dimension 2. Such examples also exist when p is odd

and k is not the algebraic closure of its prime field, see [28].

So the component group of AutX is quite mysterious. By contrast, the

identity component can be any prescribed connected algebraic group:

Theorem 1.6.5 Let G be a connected algebraic group. Then there

exists a projective variety X such that G � Aut0X . If p = 0, one may

further take X nonsingular.

Taking for G an infinitesimal group scheme of height 1 and using the

equivalence of categories of Theorem 1.4.23 and its version for actions

of group schemes (see [7, II.7.3.10]), this yields:

Corollary 1.6.6 Assume that p > 0 and let g be a finite-dimensional

restricted Lie algebra. Then there exists a projective variety X such that

g � Vect(X).
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Also, Question 1.6.3 has been answered for abelian varieties:

Theorem 1.6.7 Let A be an abelian variety with origin 0. Then there

exists a projective variety X such that A � AutX if and only if the

group Aut(A, 0) is finite. Under these conditions, one may further take

X nonsingular.

This result was first obtained by Lombardo and Maffei over the field of

complex numbers (see [18]), and then extended in [1] to an algebraically

closed ground field. As a consequence, every elliptic curve E can be

realized as the automorphism group scheme of a nonsingular projective

variety, but E × E admits no such realization.

Part of Theorem 1.6.7 has been generalized in [3, Thm. 2]; this yields

a necessary condition for a reduced connected algebraic group G to be

the full automorphism group scheme of a nonsingular projective variety.

But this only gives restrictions when G is not affine. So Question 1.6.3

is still unanswered for linear algebraic groups.

One may also consider Question 1.6.3 over an arbitrary ground field k

(not necessarily algebraically closed). Here again, some results have been

obtained recently: Proposition 1.6.2 extends to an arbitrary field, see [2].

It also extends to a finite field k and a finite commutative group scheme

of order prime to the characteristic, as a consequence of the main result

of [6]. Also, Theorem 1.6.5 holds over an arbitrary field (see [4]), as well

as Theorem 1.6.7 by a result of Florence (see [12]).
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géométrie algébrique IV: les schémas de Hilbert,” Sém. Bourbaki, Vol. 6
(1960–1961), Exp. 221, 249–276.

[15] R. Hartshorne, “Algebraic geometry,” Graduate Texts Math. 52,
Springer, New York, 1977.

[16] J. Lesieutre, “A projective variety with discrete, non-finitely generated
automorphism group,” Invent. Math. 212 (2018), 189—211.

[17] C. Liedtke, “A McKay correspondence in positive characteristic,”
preprint, https://arxiv.org/abs/2207.06286

[18] D. Lombardo, A. Maffei, “Abelian varieties as automorphism groups of
smooth projective varieties,” Int. Math. Res. Not. (2020), 1942—1956.

[19] M. Madan, M. Rosen, “The group of automorphisms of a function field,”
Proc. Amer. Math. Soc. 115 (1992), 923–929.

[20] D. Madden, R. Valentini, “The group of automorphisms of algebraic func-
tion fields,” J. Reine Angew. Math. 343 (1983), 162–168.

[21] G. Malle, B. Matzat, “Inverse Galois theory. 2nd edition,” Springer Mono-
graphs in Mathematics, Springer, Berlin, 2018.

[22] G. Martin, “Infinitesimal automorphisms of algebraic varieties and vector
fields on elliptic surfaces,” Algebra Number Theory 16 (2022), 1655–1704.

[23] G. Martin, “Automorphism group schemes of bielliptic and quasi-
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