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1. Introduction
1.1. COINVARIANT SPACES OF 5[,

Let a be a Lie subalgebra of a Lie algebra g, and L a g-module. The quotient space
L/aL is called the space of coinvariants of L with respect to a. In [FKLMMI,
FKLMM2] we studied spaces of coinvariants for integrable 3[,-modules. The pre-
sent paper is Part III of the series. We make extensive use of the results of the
previous papers.

In this paper, we consider the following special case of the coinvariant. Let e;, f;, /;
(i € 7) be the loop generators of 3l;, and a = a™™ the subalgebra generated
by fei= M);f(i= N)}. Let L= 1L, be the level-k integrable highest weight
3l,-module with highest weight (k — /)Ag + /A;. We are interested in the coinvariant

LYY = Liy/aM VL . (1.1)

The main result of [FKLMM?2] was a theorem about the dimension of this space,
which we showed is given by the Verlinde rule:

THEOREM 1.1.1. For M, N >0,
dim LMY = # (PY), (1.2)
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where P,ZX ; is the set of level-k admissible paths of length N and weight |.
(see [FKLMM?2)] for the precise definition).

In fact, the coinvariant space inherits a graded structure from the integrable mod-
ule Ly ;. Let d denote the homogeneous degree element of 305, [d, x;] = ix; for x € 3,
and define the Hilbert polynomial or character of the coinvariant space to be

(M.N) _ d_h
Ly (z,q) = trace Lmg'z 0

where hg = h € 3,. In [FKLMM2] we used a recursion relation for such characters
to prove Theorem 1.1.1. The purpose of this paper is to derive explicit formulas for
these polynomials. It turns out that our procedure naturally results in fermionic for-
mulas for the characters. See [FS, St] for some related formulas in the special case
[=0.

1.2. THE HEISENBERG LOOP ALGEBRA AND COINVARIANTS

In order to study the dimension of the coinvariant, in [FKLMM2] we introduced the
simpler coinvariants associated with modules of the Heisenberg loop algebra.

Let $ be the three-dimensional Heisenberg algebra with generators e, f, & and rela-
tions [e, f] = h and & central (note that we use the same notation for the generators of
3[5, but the relations are different; it should be clear from the context which algebra
the generators belong to). Let © be the algebra of loops into $, generated by
{ei, fi hi 1 € Z} withrelations [e;, fi] = hiyj, [hi, ¢]] = [, f;] = 0. Note, that in contrast
to 35, O has a triple-grading, with degrees defined by

dege;=(1,0,i),  degfi=(0,1,))  degh=(1,1,i). (1.3)

Let Willi, 1, 5] be the k-restricted Ss-module (see (3.7) for the definition). It is the
analog of the level-k 3[;-modules, although it is not irreducible. It turns out that
there is a simple relationship between the characters of these modules and those of
Lk,l- ~

We consider the coinvariants of Wi[l, b, ] with respect to the $ subalgebras
a = a™N generated by the set of elements {e;(i > M); fi(i > N)):

WML b, B = Will, b, B/ aM VWil b, B).

Qn this section, we assume M, N > 1, but in the main text, we treat M, N > 0.) The
$-modules and coinvariants inherit the triple-grading (1.3), and we define the char-
acter by

Xl((MN)[ll s 12, 13](21, z2, Q) = Z dlm( WﬁcM,N)[ll ) 12’ I3]m,n,d) Z}lnzqu’

m,n,d

where WW‘M[ZI, b, 13],.n.q 18 the subspace of degree (m, n, d).
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In [FKLMM2], we showed that é%AIz-coinvariants and Sg-coinvariants are closely
related, and that ;(%‘N) is given in terms of X}(M'N)[ll, h]l= x}(M’N) [/1, L, min(ly, b)]:

2 ) = Uk = 172 27 )

qy,((MH N)[l —1,k—1— 1](q_222, 772 q).

The key property of XfcM’N)[l], lh, 3] used in the proof of Theorem 1.1.1, is that it
satisfies the following recursion relation with respect to (M, N) (see Theorem 6.1.5
of [FKLMM2]:

THEOREM 1.2.1.

N b B gy =Y Az M L L )z gz g). (14)

Osas<iy
0<c<h-a

where

[ =min(h+c—ak—a), L=k—c  L=I+—k

In this paper, we give an explicit formula for the characters x,((M’N) [h, b, I5] (see
Theorem 3.6.2). These formulas have a fermionic form in the sense of [KKMM].

1.3. FUNCTIONAL REALIZATION OF DUAL SPACES

The basic 1dea in denvmg closed forms for the characters is to consider the function
spaces W( [ll b, 13] dual to W( [11 b», I]. The defining relations for S;) are sim-
pler than those for :vIz because they respect the grading (1.3). As a consequence, for
each fixed m, n, the space W,EM‘N)[l], b, 13]:“1 can be realized as a subspace of the

space of rational functions F(xi,...,Xu; V1,...,Vs), Symmetric in each set
{x1,...,xn} and {y1, ..., y,} separately, having at most simple poles when x; = y;
and zeros on the submanifolds x; = x; = y; (i #j) and x; = y; = y; (j # [). The dual

space is characterized by the vanishing of functions F on certam submanifolds
depending on k, [, I, 5. For example, the restriction related to the level k reads as

F=0, ifxyj=---=Xxpy Or yj=--= Vi1 (1.5)

(See Section 3.2 for the full definition.) Because of the high codimensionality of these
submanifolds, it is not possible to immediately deduce the formulas for the charac-
ters, and it is necessary to introduce a filtration on the dual space, such that adjoint
graded spaces are isomorphic simply to spaces of symmetric functions, and thus have
simple characters. We follow [FS] in this process.

Let

o= (K" = 1y™=1 o 1my, oy = (R (e — 1%, L 1) (1.6)

https://doi.org/10.1023/A:1020594703726 Published online by Cambridge University Press


https://doi.org/10.1023/A:1020594703726

196 B. FEIGIN ET AL.

be level-k restricted partitions of m and n, respectively, so that > am, = m and
>, an, = n. We consider the following family of submanifolds

My X = =32 (I<a<k1<i<my),
W= =) I<a<kl<i<n, (1.7)

where the sets of variables {x;}, {y;} are relabeled {xgi)} and {ygfx,) 1, respectively.

A subspace F,, C Wilh, b, 13]m , 18 the subspace of functions vanishing on the
submanifolds M, ,. Using lexicographic ordering on partitions, these give a filtra-
tion of the dual space, and the adjoint graded space to this filtration has a simple
structure. For example, if /3 = min(/;, [;), the graded component corresponding to
(u, v) is spanned by the set of all symmetric polynomials on M, ,. More precisely,
we identify the (u, v)-graded component with the space of functions of the form
G,.g, where G, is a fixed rational function depending only on y, v and g is an arbi-
trary polynomial in the variables {x\*}, _, . m and () ;< s 1 <o <k, symmet-
ric under the exchange of variables with the same superscrlpt o, x() (“) or

W o y(“). This space has a basis Sym(HM(x(“)) (y(“)) ), where for each o,

r® = {I(la)<l<m } and s@ = {s{’.,_, } are sets of integers satisfying 1" > .- >
r9 >0and s’ > -+ > s >0, respectively.

These basis elements are in one to one correspondence with combinatorial data
(u, r; v, 8) called rigged partitions, introduced in [KKR, KR]. The set of non-negative
integers r is called a rigging of the partition p.

If 5 < min(/,, l»), there is an additional restrictions for the riggings from below,

#? + 5P > min(e, B) — max(« — /1, 0) — max(f — 5, 0) — /5. (1.8)

The space dual to the coinvariant, W,EM’N) 41, b, 13]*, is the subspace of functions F

which satisfy the degree restrictions deg, F < M, deg, F < N. We will show that the
degree restrictions translates to conditions for the riggings » and s of the form

A< PO, s < oMb, (1.9)

0,V

where the vacancy numbers P*)[/;], Q™[5] are defined in Equations (2.6), (2.7).

Our final result is that the adjomt graded space of W( )[ll, b, l;]m , has a basis
labeled by pairs of rigged partitions (i, r; v, s) with the restrictions on the riggings of
the form (1.8) and (1.9). Denote the set of such rigged partitions by Rm N[, b, B).
Because of Theorem 1.2.1, one can expect that there is an inductive construction of
RMNI b, ) from RNV (115, 1] 4 15 — k. In fact, this is true, and we will
describe it explicitly.

The logical ordering of this paper is somewhat different. We prove directly that the
evaluation map which maps the space of functions of the form F'to the space of func-
tions spanned by G, ,g is injective. However, we do not have a simple direct proof
that it is surjective. Instead, we construct R%;N)[ll, b5, I3] inductively, and this assures
the surjectivity by dimension counting argutnents.
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The plan of paper is as follows. In Section 2 we give preliminaries on rigged parti-
tions and state the main recursion theorem (Theorem 2.2.1). In Section 3, we con-
struct the functional realization of dual spaces, their filtrations and describe the
adjoint graded spaces. We also give the resulting fermionic formulas for the charac-
ters. Sections 4, 5 and 6 are devoted to the proof of Theorem 2.2.1. The arguments in
these sections are purely combinatorial. In Section 4, we define admissible pairs (Z, J)
of index sets belonging to {1, ..., k}. Then, we define two types of subsets of rigged
partitions indexed by admissible pairs, the lower and upper subsets. We construct a
bijection from the upper to the lower subsets indexed by the same pair (/,J). In
Sections 5 and 6, we give the decompositions of the set of rigged partitions for
(M, N) by the lower subsets, and that for (M, N — 1) by the upper subsets, respec-
tively. This completes the proof of Theorem 2.2.1.

2. Rigged Partitions and the Main Recursion Theorem

We define level restricted rigged partitions, and state the main recursion theorem for
sets of rigged partitions, Theorem 2.2.1, together with an outline the proof.

2.1. RIGGED PARTITIONS AND VACANCY NUMBERS

LetkeZsi,meZspand I, ={1,2,...,k}. Let u be a level-k restricted partition
of m, that is

k
= (K", ..., 2", 1m), > am, =m, (2.1
a=1

We denote by m, (1) the number of rows of length « in the partition (or Young dia-
gram) L.
A rigging of u is a set of integers r = {VE“)}C{E,AW I <i<my Such that

iy =0 (@€ ). (2.2)

A partition with a rigging, (i, r), is called a rigged partition. Denote by R,, the set of
all such level-k restricted rigged partitions of m. We set R, , = R, X R,.
Let /;, b5, I be integers satisfying

0<li,h <k, 0<h<min(/},h). (2.3)
Define

Py, b, l]= min(e, B, b, by b+ B — o b+ o — B, L+

+bh—alh+hL—-p)—15h
=min(x, f) — (@ =)' = (B —h)" -4, (2.4)

where x* = max(x,0), x~ = max(—x, 0). We define a subset of R, , where the lower

bounds of the riggings are restricted by (2.4):

Ryl by 5] = {(1, 75v,9) € Ry 3 1o 450 = 7P, b, B} (2.5)
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Since t®P[l}, L, min(/;, )] <0, there is no restriction in this case, and
Rm,n[llv 127 min(ll , 12)] = Rm,n-

Let M, N be nonnegative integers. Define vectors of vacancy numbers P%)[Zl],
OMIL] € 7k, where

k
PO, =aM — (e — D" + Z min(a, B)(mp(v) — 2mg(w)), (2.6)
p=1
o\, = P, 2.7)

We define the subset RMN[l}, L] C R,,..:

m,n

RN, B) = {(, 13 v, 8) € Ry P11, ONIL], =0, (2.8)
AP < PO, s < 0Nk, (2.9)

The first condition, (2.8), is nontrivial only in the case m,(u) = 0 or m,(v) = 0. Other-
wise, it follows from (2.9). However, see Proposition 2.1.1 for the actual implication
of this conditions.

Finally define the set

RMN[ 1 1] = RMN[1 LIN R, by B (2.10)

m,n m,n

It is defined for negative values of m,n by RO N[/, b, 5] =0, m <0 or n<0.
Before passing, we prove

PROPOSITION 2.1.1. Suppose that the conditions (2.9) hold. Then, the conditions
(2.8) are equivalent to the following requirements:

IfM=0thenn—-2m=>=k-—1I; (2.11)

IfN=0, thenm—-2n=k—1h. (2.12)
Namely, it is enough to require the conditions (2.8) only for the cases M = 0, oo = k and
N=0,0==k.

Proof. In the following, when we write a condition concerning the Oth component
of a k vector (e.g., the case i = 0 for P*)[/]; > 0 in the next paragraph or P; > p; in
the proof of Lemma 4.2.2), we mean that the condition is void.

First we prove that if M > 1 the condition P{D[], > 0 follows from (2.9). Sup-
pose otherwise, there exists 0 < i<k — 1 such that P*0[1]; >0 and my =--- =
my = 0. (Here, m, = my, (1), ny, = my(v).) Then, we have

0> P,
=P+ (k=DM +(G— )" —(k—1)+ D (B—imy

B =i+l

=0,
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which is a contradiction. Similarly, if N > 1 the condition QL{\?[lz]k > 0 follows
from (2.9).
Now we will prove that for all M >0, the conditions P%\{)[ll]% >0 for
1 <a<k—1follow from P[], = 0. (The proof is similar for Q[4],.)
Suppose otherwise, there exists i and j such that

O<i<j—1<k—1,  PMMm=0, PN, =0 and PM[1], <0

v

(and thereby m, =0) for i+1<o <j—1. Set p=: so that we have
pi+ (1 —p)j=j— 1. Then we have '

0 < pPML]+ (1= p) P10,
=P +G— 1= —pli— )" =1 =p)G— )+
+ Z(P min(i, ) + (1 — p)min(j, f) — minG — 1, f))ng
B

=PM[h] —0G+1<h <j—Dh—ip— Y, (B—ipng
i+l < p<j-1
<0, (2.13)
which is a contradiction. Here we used the notation
1, if *is true;
0x)=1" ’ 2.14
) { 0, if *is false. @.14)
Proposition 2.1.1 implies ]
COROLLARY 2.1.2. For (M, N) = (0, 0) we have
0,0) | @,0;0,0), iflhi=hb=kandm=n=0;
Ryl b, B = { @, otherwise. (2.15)

2.2. RECURSION THEOREM FOR RIGGED PARTITIONS

We state the main theorem on recursion.

THEOREM 2.2.1. The cardinalities of the sets of the rigged partitions satisfy the
following relation:

#RUDM, b B = Y # RN (L4 1),

0<a<lh

where O<c<h-a
11/:11+C—a_(ll+c_k)+,
I =k—c, L=1 41—k (2.16)

In what follows, we fix the notation /], /5, [; to be the integers given by (2.16), and
b = a+ c. Theorem 2.2.1 is proved in Sections 4, 5 and 6.
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Let us outline the idea of the proof. We construct an explicit bijection

me || RGN LB B~ RUEVI b, )

m—a,n—a—c m,n
0<a<h
0<c<h-a
in several steps. In Section 4.2, for I,JC{l,...,k}, we define the subsets
R(M’M[ll,lz]“c Ry, (the lower subsets). In Section 4.3, we define

m,n

R(M’N_l)[ll]l"’ C Ry—an—p (the upper subsets), where ¢« =#(I) and b =#(J). In

m—a,n—b
Section 4.4, we construct the bijection

my e RO — RMN[ b, .

m—a,n—b

In Section we will prove that for each (/1, &, l5) satisfying (2.3)

RV bR = | ] ROV Bl

m,n
LIC(L,....k}
#<h. #D)<h

and in Section 6 that for each (/1, a, ¢) and (/{, 13, [;) determined by (2.16)

R(M,N*l)[llr’ 12/’ lé] — I—I R(M,N*l)[ll]l,‘].

m—a,n—b m—a,n—b
LJc{l,...k}
#(=a.#())=b

This will complete the proof of Theorem 2.2.1.

An important implication of Theorem 2.2.1, and the main interest we have in
proving it, is the following result.

COROLLARY 2.2.2. Fix an integer k € 7. 1, and consider the spaces of coinvariants
of the -modules, W[}, I, 15] (see (3.7), (3.8)) and the sets of rigged partitions

RMN b, I5] = '—'m,HR%,/IﬁN)[I" b, 13},
Then
dim WML, b, 5] = # (R, b, 15)). 247

Proof. Using Theorem 1.2.1 with z; =z, = ¢ = 1, we see that these two sets of
numbers satisfy the same recursion with the same initial condition. OJ

3. Functional Realization of Dual Spaces and Character Formulas

In this section we identify the space dual to the module W[/, b, 3],,,, with a cer-
tain space of rational functions in m + n variables. We introduce a filtration in
this space and describe the adjoint graded space explicitly by using the rigged
partitions. As a corollary we compute the character of the space of coinvariants

WMV, b, B).
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3.1. DUAL OF THE UNIVERSAL ENVELOPING ALGEBRA

Let 55 be the Heisenberg loop algebra with generators e;, f;, h; (i € 7)) and relations
lei, fi] = hiy)s lei, hj] = [fi, hi] = 0.

Consider its universal enveloping algebra U§§>. The algebra U.S% is graded by
dege; = (1,0), degf; = (0, 1), degh; = (1, 1).

Let (Ué)m,n be the subspace of degree (m, n). We construct the space dual to (Ustg)
in the space of rational functions in the variables (x1, ..., Xp; V1 5.+, Vu)-
Consider the space of rational functions

m,n

p

fm,n =1F=
Hi,j(xi )

. ol +1 4l +1
peClxy o x ]

symmetric in xi, ..., X, and yq, ..., y, separately,
where p =0 if x; = x, = y; or x| = y; = )».

(3.1)

There exists a coupling between (Ué)m!n and F,, ,. In order to define it, consider the
mappings Le;:fn1,n - mel,na Lf,-:fm,n — fm,nfla Lh,-:]:m,n - mel,nfl:

_ dX1 —i
L(F) = § o (3.2)
, _ dyi —i
Ly(F) = %727#—_1% Fyi', (3.3)
dy IR
Lh,’(F) = %27’[«/:}}1 {(Xl _yl)F}‘M:nyll s (34)

where F' € F,,,. In each of these equations, we take the contour of integration to be
a circle in C oriented counter-clockwise such that all the poles are inside. Because of
the vanishing of p at x; = x, = y; and x| = y; = y», the integrand of (3.4) has the
only pole in y; at y; = 0.

Similarly, we define the mappings R.,, R;, Ry, by the same formulas (3.2), (3.3),
(3.4), respectively, using a contour such that all the poles except the origin are out-
side. As we noted above, we have L;, = Ry,.

The following proposition is standard. We omit the proof.

PROPOSITION 3.1.1. There exists a unique coupling between (Ustgi))myn and Fp, , such
that

(e, F) = (w, Lo(F)),  {fw, F) = (v, Li(F)),  {haw, F) = (w, L,(F)),
(wer, F) = (w, Ry(F)),  (wfi, F) = (w, Ry(F)),  (whi, F) = (w, Ry (F).

https://doi.org/10.1023/A:1020594703726 Published online by Cambridge University Press


https://doi.org/10.1023/A:1020594703726

202 B. FEIGIN ET AL.

For example, it follows immediately that

LEMMA 3.1.2. If w=e; ---€;, fj - f, then the coupling (w, F) is equal to the

coefficient of xi‘ --~xj;;y{‘ -«yl in the Laurent series obtained by expanding F in

positive powers of yj/x;.

PROPOSITION 3.1.3. The coupling given by Proposition 3.1.1 is nondegenerate.
Proof. First we show that for any nonzero F € F,,,, there exists w € (U9),, , such
that (w, F') # 0.

Consider the lexicographic ordering of monomials x%' - - x/ny/' ...y Namely, the

monomial x{ ---x/y) ...y is higher than x| --- x| -~y if iy > i, or if i) = i

and i, > i}, and so on. Let x! ---xi)/l ... 3/ be the highest monomial present in p
of Fin (3.1). Then, taking w = ¢;, - - - ¢;,ufj, - - - f;, we have (w, F') # 0.

Next we show that for any nonzero w € (U9),,, there exists F € F,,, such that
(w, F) # 0. For [ < min(m, n) let Z; be the set of indices (k, i, j) such that k € 7/,
iec 7" andje 7", with

ky < oo <k < S, 1< e
By the PBW theorem the monomials

Mk, i j] = hkl T hk/eil e 'efrvt—l-ﬁl e '.}3),71 (3.5)
span (Ug))m’n. Set

m—[

1 k n—/
V' xl’h Je
b | 1 Vite )
1=1 c=1

F[k,1i,j] = Sym
a= Xa = Va b=1
Take (k,1i,j) € Z; and (k’,i’,j’) € Z;. Using the definition of the coupling, we have

0 ifl>1

Sk diidiy if =1 (3.6)

(M[k,i,jl, F[k',i",j']) = {
The assertion follows from this. O

3.2. DUAL TO THE .§-MODULE AND COINVARIANT

Following [FKLMM?2], define the S;:)-module W1k, b, 5] as a quotient of US;S by the
left ideal generated by the elements

X ((<0,xe), et fhrt o phtl (3.7)

and the level-k restricted module Wi[l, 5, 5] is the quotient of W[/, I, l3] by the
two-sided ideal generated by

), f)M, 3.8)
where we used the generating series e(z) = Y., e;z', fiz) = >, fiz'. (Strictly speak-

ing, these elements are in the completion of U$; however as usual, the module is in the
category O due to (3.7) and, when acting in W [l;, b, I3], they are finite sums in U$.)
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The dual space of Wi[ly, b, 1],,,, is realized in F,, , as the subspace orthogonal to
these ideals. We denote this subspace by W[/, &, 5], ,- The following theorem is a
consequence of Proposition 3.1.1.

THEOREM 3.2.1. The space Willy, b, 3],

T v
Willy b 1, = L= ALY oo
' Hi,j(xf =¥
Fe€CXL, e ey Xy Y1y - v Yl
f=0ifxi=---=Xpyp 0ryy =+ = Yy1 OF
xp=--=x41=00ry1=---=y,+1 =0,

is given by

n

1
kL i
- a a

=01
,1-_1[<3Xi+1 3J/i+1>f /

xl:"‘:xlwrlZYI:"':)%H:O}'

Take M, N € 7.~ . Let the subalgebra a™™ of § be generated by the elements ¢;
(i = M) and f; (i = N). Following [FKLMM?2], define the space of coinvariants by

W]EM’N)[ll, ZZ, 13] = eBm,n MCMYN)[ZI’ ZZ’ 13] (39)

m,n?

0, fM=0andn—-2m<k—1;
WM b, By, =10, if N=0and m—2n < k — b
Wil b, lg]/(I(M'N) Wk[ll, b, 13], otherwise.

Define ‘7:5%1\0 C Fmn to be the subset consisting of functions F satisfying the
degree restrictions

deg, F <M, deg, F<N. (3.10)

Here the degree of the rational function F'in the variable x; is defined to be the highest
power in x; appearing in the Laurent series expansion of Fin positive powers of y;/x.
In other words, we have deg, F=1-—n+deg,f Similarly, we have deg, F=
1 —m+deg, f. If m or nis zero, the corresponding degree restriction is void.

DEFINITION 3.2.2. We define the space of rational functions W,EM’N) [, b, K]* by

WM, b, B = @ua WMVl b BT,
0, f M=0andn—-2m<k—1;
W,EM’N)[[l, L. 5L, =10, ifN=0andm—2n<k—b; (3.11)
Wilh, b, KI5, N FOEN - otherwise.
The space W[}, b, ], is finite-dimensional and dual to WM™ [1, 1, 15]
given by (3.9).

m,n
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3.3. POLYNOMIALS WITH SERRE RELATIONS

In this section we study symmetric polynomials of the form f(xy, ..., Xu; Vi, ..., Vn)
which vanish when x; = x, = y; or x| = y; = y,. Proposition 3.3.3 will be used in
the proof of Theorem 3.5.7 (see Lemma 3.5.4).

For a function f(x1, ..., Xu; ¥1,...,ys) and a;, b; € Z > ¢ denote

[al,...,as;bl,...,bt]f::ﬁ(%)w (%)b"ﬂx1 e mx=
i=1 ! !

We also denote the functions

o\’ il 0\ di ! 0\ bi
(&) 1_[(37,) l_[(aiy,) 22033200 Mg oo =Xy = g e =y = 2

Il
Il
=
|
[\

!

i=1

i=3 i=2
AN s G Naiele s 9N
(&) l_!(a_xl) 1_!(8_)/,) f(Z,xz,"'§Z,Z,J’37"')|x2=...:xS=y3=...=y,=z

by
las, ..., a5, Gk, % %), by B S, [az, ..., ag (ks %, %), b3, ... DS
If the number of x variables in f'is smaller than the s or the number of y variables
is smaller than ¢ then we define the functions [ay, ..., a by, ..., b]f, a3, ..., as,
Gk, %5 %), bo, ..., DS [ag, .. ., ag, (%5 %, %), b3, ..., b]f to be 0.
We have relations
[as, ..., a5 (%, %, %), by, ..., b]f

]

- —lan s as b b (3.12)
il ailaalby!
[az, ..., a5, (s, %) b3, .. B f
r!
= — gl ag by bl S s
a‘+h1+b2:,'a1-b1.b2_
For the rest of this section, let f(x, y) be a polynomial in X, ..., X, V1, ..., Vu,

symmetric with respect to permutations of x and to permutations of y, satisfying
the Serre relations:

fx,y)=0, if xy =x,=y; 0r x; =y =). (3.14)
Note that now [ay, ..., a; b1, ..., b]f does not depend on the order of g; or b;. Also
we have

las, ..., a5, (x,%; %), ba, ..., b f=az, ..., a5 (x; %, %), b3, ..., b]f=0.

In particular, we have many linear relations among [ay, ..., ay; by, ..., b;]f thanks to

(3.12), (3.13). The following lemma describes some of the relations which consist of a
single term.
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LEMMA 3.3.1. Fors,t € 7., we have the identities

[0,1,2,...,855:0,1,2,...,s—1,5s+1f=0, (3.15)
[0,1,2,...,s—1,54+£0,1,2,...,5,5,5]f=0. (3.16)
where s' denotes s, s . .., s repeated t times.

Proof. We use induction on s.
The identity (3.15) for s = 0 takes the form

02 f=0, teZxo, (3.17)
The case r = 0 is just the Serre relation: [0, 0; 0] f = 0. We obtain (3.17) by induction
on t. Assume [07F2;/]f=0, t=0,...,10— 1. Then [0°%2; t]f =0 follows from

the identity [0%(x, %;%)"]f=0. Indeed on the right-hand side of (3.12) for
[07(x, *; %)"], the only term left is exactly [0°%2; so] f = 0. The s = 0 case of identity
(3.16) is proved similarly.

Now assume (3.15), (3.15) are proved for s =0, ...,s9 — 1 and let us prove them
for s = s59. It is enough to prove (3.15), then (3.16) is done by the same argument
switching the roles of x and y.

We use induction on . The case t = 0 follows from the identity

[0,1,2,..., 50— 1, Gk, % %)°°,0,1,2, ..., 5 — 1]f=0.

Suppose we have the statement for t+ =0,..., 7 — 1, then the case ¢t = 7 follows
from the identity

[0, ..., 50 — 1,8, (x, % %) 0, 1,...,50 — 1]/ = 0. O

Now we derive more identities under additional assumptions.

For a function g(x1, ..., Xu; ¥1,...,ys) and a;, b; € 7. > o, we denote

lar,...,as; by, ....b) g=1lai,...,asby,...,blgl.—

[az, ..., a5 Gk, %3 %) bo, ... b)) g = a3, ..., a5 (x, % %), by, ..., b]2l.—0»

[aa, ..., aq (x; %, %), by, ..., b g =lao, ..., ay (x; %, %), b3, ..., bJgl._-
Then the 4}*' = 0 relation is translated into

[0,1,...,4;0,1,...,5]f=0, (3.18)
see Theorem 3.2.1.

Remark 3.3.2. The condition ¢/ *' = 0 reads [0*!; #]'f = 0. It follows from our
results that we automatically have /111‘+l = 0. It is an instructive exercise to prove
[0,1,...,04:0,1,...,]'f =0 starting from [0"*!; @]/ = 0 and using (3.12), (3.13).
PROPOSITION 3.3.3. Let f satisfy (3.18). Then for s € 7. > 1, we have the identity

[0 s5 ) 'F = 0. (3.19)
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Proof. We use the induction on s. Assume the statement is proved for
s=1,...,50 — 1. (We assume nothing if sy = /5.) We will prove it for s = sy9. To do
that we prove by the inverse induction on r the identity

[0,1,....r =1, ("0, 1,...,r = 1,(s0)* ") f=0, (3.20)

where r =10+ 1,053,135 —1,...,0. The case r = 0 is exactly (3.19) for s = s¢.
The identity (3.20) for r = I5 4+ 1 follows directly from (3.18). Assume we have (3.20)
forr=5L4+1,04,...,r+ 1. Let us prove it for r = ry. For that we prove the identity

[0, 1,70, (ro)*(ro + 1 740, 1+, rg — 1, 1o + ¢, (50)" "]/ = 0,

for ¢=0,...,50 —ro by induction on ¢. For ¢ =0 we have exactly (3.20) for
r =ro+ 1. If the statement is proved for ¢ =0, ..., go — | then the statement for
q = qo follows from the relation

[0, 1,...,70 — 1, (r0)™ " (rg 4 1) 07D (s %), 0, 1, ..., 7o — 1, (50)""°1'f
=0

and (3.15).
For g = sy — rp we obtain (3.20) for r = ry and the proof is finished. O

3.4. MULTIPLICATION OF FUNCTIONAL SPACES

In this section we describe a multiplicative structure which relates the functional
spaces for different levels k. Though the results of this section are not used in what
follows, we think that Theorem 3.4.2, is interesting in its own right.
Fix kO, 1) (i=1,2,3, j=1,2)and setk =k + k@, [, = IV + 1P (i =1,2,3).
Let A: U — UH® U be the usual comultiplication defined by the rule
Ag)=1®g+g®1 for g € H. We also denote by A the map of U modules

A Wil b, 3] = WiolV, 10, 101 @ W[l 17, 18]

uniquely determined by the condition A(v) = vV @ v@, where v, vV and v® are the
highest weight vectors of the corresponding modules.
The map A descends to the spaces of coinvariants

AN M0 b ] - w0 5 e WiV, 57, 1)

By Proposition 6.3.3 in [FKLMM2] the map A is injective.
Define the map

e Wiall", 180, 5 @ Wi 12, 19, 17 — Will, b, )
by the following rule. Let

F(])(x(ll)v ey xi;;()/h y(lvl)v sy y;(1{/)) € W;k((/)[ll(l)a 12(./)7 13(])]”1(/'),'1(/)’ (j = 1’ 2)
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Then FV x F® e Willy, b, B, ., where m = mD + m®@, n=n® 4+ 1@ is given by
FO s FOGX, o X Vi V)
= Sym(F(l)(xl, s X5 VD e ey V)
FOXpp 1 -« Xons Vug s -5 V)

Here Sym denotes the symmetrization with respect to two groups of variables
X1, s X and yi, ...,y

LEMMA 3.4.1. The map = is well defined. Moreover, the map * is dual to the map A:

(A(w), FOD @ F®y = (w, FD 5 F®), (3.21)

where w € Wi[ly, L, 3] and the pairing on the tensor product of vector spaces is stan-
dard: (U(l) v, FO g F(2)> — (U(l)’ F(l))(v(z), F(Z)).

Proof. The fact that the map = is well defined follows directly from the definition.
Note that the vectors w of the form w=e; ---¢;, f; - f;,v, where v is the highest
weight vector, span W[l b, Blyn- Indeed, as shown in the proof of Proposition
3.1.3, the orthogonal complement of the span of such vectors is trivial. Therefore it is
enough to check (3.21) for w. For such vectors, Equation (3.21) is clear from Lemma
3.1.2. O

The map * obviously descends to the spaces dual to the coinvariants:

M, 1 1 1 M, 2 2 2 M,
M VD 1D 1M @ w12, 171 — wi MV b, B).

From Lemma 3.4.1 and the injectivity of the coproduct, Proposition 6.3.3 in
[FKLMMZ2], we obtain

THEOREM 3.4.2. The map «™-N) is surjective.

This is a rather simple statement for certain spaces of symmetric functions. How-
ever, we do not know of any direct proof of this statement.

3.5. FILTRATION OF Wi[l, b, 11]

Let p be a level-k restricted partition of m of the form (2.1). We will define a map ¢,
which sends functions of the variables (xi,..., x,) to functions of the variables
05 Vet << mar

Fix a numbering from 1 to m of the set of indices («,j) where « € I, and
1 <j < my(n). We define o(x;) = xj(-“) where (o, j) is the ith index in this numbering.
The p-evaluation map ¢, is defined by ¢, (F(x1, ..., xXn)) = F(@,(x1), ..., ¢,(xm)).
If Fis a symmetric function, then ¢, (F) is symmetric in the variables o X))
with fixed o. Moreover, ¢, (F) is independent of the choice of the numbering.
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Given a pair of partitions (g, v) of (m, n), (i, v)-evaluation ¢, , is defined by

@y (F (X1, oo X3 Y15 - 0) = Flo(x1), -5 0, (Xm); @(31), -+, 04(Vn))-

Partitions are ordered lexicographically, u > u’ if and only if there exists some i
for which y; > u/ and p; = ,uj/ for all j < i. Similarly, pairs of partitions (u, v) are
ordered, (u,v) > (u’,v')if and only if u > p/, or u =’ and v > v’.

Now suppose F' € Wi[li, b, []. Since F does not have a pole at x; = x; or y; = yj,
the (u, v)-evaluation is well-defined. Consider the subspaces

Kero,, C Wi, b, I3], Iy, = ﬂ Kero,,, F//t , =T NKerg,,.
(W' v)>(u,v)

The subspaces I',, give a filtration of Wi[l;, 1, /3]. Our goal is to characterize the
adjoint graded space Gry, =T',,,/T"] v (see Theorem 3.5.7).
LEMMA 3.5.1. Let Fel,,. The function ¢, ,(F) has a zero of order at least
2min(a, f) if x* = (/j ) or yf“) y(ﬁ )

Proof. Consider the case x(y) J(ﬁ ) with o > p, with o, § fixed. Denote the vari-

ables x; such that ¢, (x) = x(ﬁ ) by x(ﬁ ) (!/=1,..., mg) in some ordering.
We can carry out the evaluatlon in two steps ¢, (F) = @2(@,(F)), where ¢, is the
evaluation of all the variables except x(ﬁ ) (!=1,...,mg) and ¢, is the evaluation of

the variables x(ﬁ) Let Fi1 = ¢ (F). Smce o= p and FeTl,,, we have

F ™ =0, 1<I<p.
/
Differentiating the left hand side of this equality by x(“) and using the symmetry of F
with respect to (xi, ..., X,;), we can deduce that
F
i; =0, 1<I<B
dx; A

Therefore, F; has a zero of order at least two at x([? = x( “ for each /. After evalua-

tion, @,(F) is divisible by (x'* — (/3))2/3‘ O

LEMMA 3.5.2. Let Fely,. The function ¢, ,(F) has a pole of order at most
min(x, f) if X = yfﬁ ),

Proof. Without loss of generality, we can assume that o > . If « = 1 the assertion
follows immediately.

Suppose o >2. Set g=¢, ,(f), where f is the polynomlal function of

Theorem 3.2.1. It is enough to show that g is divisible by (x (ﬂ ))(“ D8 because
the evaluation of the prefactor in Theorem 3.2.1 only contains a pole of order of at
this point.

Let Yjp = {yll h<i<p= =9, 1(y(ﬁ)) We obtain g in two steps: gou",(f) =
@->(p(f)), where ¢, is the evaluation of all the variables except those in YJ; p).
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Using the fact that =0 if x; = x, = yy,

85
—B(X(“))“ 0,(f) S0 =0, 0<s<a—-2, I<I<p.
i Jo i

Therefore, ¢,(f) is divisible by (3{) —x{”)*"" and, hence, g is divisible by
(x® — Py Dp ’ O
i J :

LEMMA 3.5.3. Let F € Iy, and f be as in Theorem 3.2.1. The function ¢, (f) has a
zero of order at least (o« — )" (resp., (o — b)) if X =0 (resp., y* = 0).

Proof. The assertion follows by a similar argument as in the proof of Lemma 3.5.2
from the restriction on f that it is zero if xj=---=x;,41 =0 or y;=---=
Vb1 =0. O

Let f(x, y) be a polynomial in two variables x and y. We say that f has a zero of
order s at x = y = 0 if f(¢x, ty) has a zero of order s at t = 0.

LEMMA 3.54. Let Fe ', and f be as in Theorem 3.2.1. Then the function ¢, (f)
has a zero of order at least aff — I3 at xE“) = y](ﬁ) =0.
Proof. If I3 = min(a, ) then there is nothing to prove due to Lemma 3.5.2.

Therefore, without loss of generality we assume /53 + 1 < o < ff. Let

Y -1
ho=f(x1, ..., X5 Vs ooy V), g:= <H(x,——y)ﬁ_l) h.
N e’ =1

B
Note that for i=1, ..., a, we have
a\*
(5> hly=y =0, s=0,...,p-2,

because f'= 0 if x; = y; = y,. Therefore, g is a polynomial.
From Proposition 3.3.3 and (3.17) we obtain

9 sp—h—1
(5> hly =.m=x,=y=0 = 0, s=hL+1,54+2,...,0—1. (3.23)
Now, it follows by induction on r that for r =0, ..., o — /5 the polynomial g is of
the form g = 'g/ + Z;:& y'g:, where g/ is a polynomial and g; are polynomials inde-
pendent on y of degree at least « — /3 — i in Xy, ..., X,. Indeed, if we have the state-
ment for r = ry — 1, then the case r = ry follows from (3.23) with s = ry + /3.
Therefore g is of degree at least & — /3 in x1, ..., x,, y and the lemma follows. []

Let u and v be level k partitions of m and n, respectively. Set
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G‘u,‘, = n(xgoc))wr(afll )+ 1—[0}59{)?“9{75)+ y
o,i

o,i
l—[(xga) _ xj(ﬁ))2min(oc,ﬁ) H(yfoc) _ yj(/f))Zmin(ac,ﬁ)
X I—[(xga) _ ygﬂ))min(oc,ﬂ) :

Consider the space of rational functions in the variables {xg“)}, {yE“)} defined as
follows:

Gunlli, b, ] = {G = G,,g; g € CLIx™), 171,

g is invariant by the transposition x
@ _ P
J

E“) PN x/@ or yg“) < y_;“),

g has a zero at x;” =y’ = 0 of order at least

P11, ;] given by (2.4).} (3.24)

We define the total homogeneous degree of G as the homogeneous degree of G in all

the variables x'” and y\*.

PROPOSITION 3.5.5. The evaluation map
@ Wills, b, Bl — Guilh, b, B, Fr> @, (F)

is well-defined, injective and preserves the total homogeneous degree.
Proof. This follows from Lemmas 3.5.1, 3.5.2, 3.5.3 and 3.5.4. OJ

LEMMA 3.5.6. If F belongs to the subspace W,EM’N)[ZI, b, Y, , NIy defined by the

m,n

conditions (3.10) and (3.22) then the function g given by ¢, (F) = G,,g satisfies the
degree restrictions

deg,ng < PUVIN],.  deggog < ONIh],, (3.25)
where Pf%)[l]], QL]X,)[ZQ] are given by (2.6), (2.7).
The proof is straightforward. Set
GV, b, )= @ G Nin. b, ),

GMNL b, 3] = {G = Gyug € Gunlli, b, B

ul=m, pl=n P}[NH]1=0, OM[h]>0,

deg g < PM[L],,  deg g < QNI ) (3.26)

Consider the filtration of W,EM’M[ll,lz,h]*
WM, b, )

set

mn consisting of the subspaces
NIy, and the adjoint graded space Gr( W}:(M’N)[ll, b, ], We

m,n

Gr(w "M, b, 1) = @ Gr(w; MVl b, B),,.,)

m,n
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The mappings ¢, , induce an injective map

@ : Gr(W MMy b, BY) - GV, b, 1) (3.27)

In fact, this map is an isomorphism, however we do not know of a straightforward
proof of the surjectivity. Nevertheless we can prove the following theorem:

THEOREM 3.5.7. The mapping ¢ of (3.27) is an isomorphism preserving the total
homogeneous degree.

Proof. For a rigged partition (u, r) we denote by m,({x(‘)}) the monomial sym-
metric polynomial corresponding to the monomial [, l(x(“))’ . The space of rational
functlons Q(M NI\, b, ;] can be parameterized by the set of rigged partitions

mn N[, b, l3] by associating G,,g to (u,r;v,s) where g= m,({x()})m ({; O‘)}).
The statement follows from the injectivity of ¢ and the equality of dimensions

2.17). O

3.6. CHARACTERS OF COINVARIANTS

The purpose of this section is to compute the characters of W‘ Ml b, 5] and the
space of 3l- coinvariants.

The algebra U@ has a triple grading given by (1.3). The spaces W< 1, b, I3] are
quotients of U and have an induced grading on them. Define the characters of
WD b, 1) to be

chzy o WV b ] = Y dim(W MV 1, B, L, ) 2 g
m,n,d
where W< /1, b, 3]ynq 18 the subspace of degree (m, n, d).

Note that the dual space W( [11, b, K]* is similarly graded, with degx; =
(1,0,1), degy; =(0,1,1). Hence we can define the character of the function
spaces described above. These are equal to those of the corresponding quotients
of U9.

The evaluation mapping preserves the degree. Hence, in the image of the evalua-
tion by ¢, the induced degree is deg x\* = (1,0, 1), degy(y) 0,1, 1).

We can rephrase this in terms of rigged partitions. Define the degree of a pair of
rigged partitions (u, r; v, s) to be

d(p,r; v, s) = deg Gy y +Zr(“ +ZS(“)

and the character of the set RM N[/, I, 5] by

m,n

ch (ROEVL, b, 5] = > g, (3.28)

m,n
(.r;v.8)eRWV1 I )
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By definition chqgnf’[” (1, b, 3] = ch yRYM-N[Ly, I, 5]. Finally, by Theorem 3.5.7,
we have

ch WV, by By, = ch GV by ).
Let us compute these characters explicitly. Set A4, g = min(x, ). The degree of
deg G, in the space G, ,[/1, L, 3] is given by
Dyl )= (o= h) my(u) + Y (o = b)Y my(n)+
o o
+ Z Aa,ﬁma(ﬂ)mﬂ(ﬂ) + Z Aa,[)”noc(v)mﬁ(v)_
o,f o B

SN A gmomg) (3.29)

o, f

In the special case when /3 = min(/;, 1), we have t*P[l;, ,, min(/;, /)] < 0 and
thus there is no lower-bound condition on the riggings.
The summation (3.28) with respect to the riggings r, s can be immediately compu-

ted using
. . M—+n
Pt
I

o< <-—<rmnsM

where (if m € 7 and n € 7 ) the Gaussian polynomials are

M. -4

n m—n ' lf m 2 n;
[’Z] - N O (3.30)
0 if m < n.
LEMMA 3.6.1.

ch WA, b, min(ly, b)),

_ Dy [h.1] I + my(u) OMIb], + my(v)
s H[ }H[ mo |

|ul=m,|v|=n m (:u) o
Let WML, b = WM, b, min(ly, b)]. Then
THEOREM 3.6.2. The character of the space of coinvariants W( [11, h)] is given by

7§(M ML, bz, 220 9)

(V)
_ Zzulz\v\ ol 1—[[ ot ma(#)} U[Qu,v[’iz(;mam}. (3.31)

ma(ﬂ)

In what follows, we set 3" [/, b1(z1, 22, ) = 0 if [j <0 or l, < 0.
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In Section 6.4 of Part IT [FKLMM2], we obtained several identities between the
characters of coinvariant spaces for § and 3l,-modules. One can apply the result
above to give “fermionic” formulas for them. For, example, we have

THEOREM 3.6.3. The character (1.1) of the S’AIz coinvariant space L%’M is

M, (. (M+1, _ _
Y =ML k= g 2 2 )

MV 1 k= 1= 1072 272, ).

4. The Upper and Lower Subsets of Rigged Configurations

In the rest of the paper we prove Theorem . In this section we define admissible pairs
(1, J) of subsets of {1, ..., k}. Then, we define two kinds of subsets of rigged parti-
tions indexed by admissible pairs, the lower and upper subsets and construct a bijec-
tion from the upper to the lower subsets indexed by the same pair (Z, J).

4.1. ADMISSIBILITY OF (, J)

For a k-vector p € 7*, the o-th coordinate of p is denoted by p,- The positive and
negative parts of p, p* € 7, are defined by (p*), = (p,)*. We have p = p* — p~.
For k-vectors &, € 7F we write & > y if and only if &, > 5, for all 1 < o <k. In
particular, ¢ > 0 means &, > 0 for all 1 <o < k.
For I C {l,...,k}, define the k-vectors x(I) € {0, 1, ..., k}*, e(I) € {—1,0, 1}¥ by

the formula

kD, = Y L e, =) (61— Sinp1),

iel, i<a iel
where o =1,..., k.
We define a partial ordering in the set 2!"++K: J > J if and only if x(J) = x(J'). If
we set J={vy,...,v} and J = {v{,...,v,} where v; <--- <v;and v <--- <,

this is equivalent to s > s" and v; < v/ for 1 <i<s.

Sometimes it is convenient to extend the definition of x(/) to I not necessarily
satisfying 7 C {1, ..., k}. Namely, we use the same definition for 7 C {1, 2,3,...}.
Note, however, that k(/), =x([IN{l,...,k}), because we consider o only in the
region {1, ..., k}.

Note that if 7 =1 u I, then (1) = k(1) + k(I>) and &(I) = &(1,) + &(1>). We have
k(I) =73 k() and e(I) = > _,, &(i), where we denoted (i) = x({i}) and &(i) = &({i}).
For example, if k=35, we have k({2,4,5}))=(0,1,1,2,3) and &¢({2,4,5}) =
(-1,1-1,0,1). For a, p € {1,2,3,...}, we denote the interval {o, 0 + 1, ..., f} by
[, ] and the k-vector x([a, B]) by x[e, f].

FixO0</l,hb<k.LetlI={up,....,u}(uy <---<uz)and J={vy,..., 05} (v <---
< vp) be subsets of {1, ..., k}. We define the (/;, /)-admissibility of (Z, J) as follows.
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Let p = p(/;, J) be the number of elements of J which are less than /; + 1,

V<<t <h+1<0pp1 <0 <vp.

Set
t=max(l,,; +b—k+1). 4.1)

We have ¢t < a if and only if /; + ¢ < k.
LEMMA 4.1.1. We can label the complement of [, + 1, kI1NJ in [[} + 1, k] as follows.

U+ LN vp1, -, vp}
{v,....v)} w/1erev;<---<v;, ifli+b=k;
a (V). U Wi, Wip —p} Wherev) <--- <v] <Wj <---<Wg_y_p, if I +b<k.

P
(4.2)

Proof. Note that # ([l1 + 1, k\{vp1, ..., ) =k—-L —=b+p. If [ +b =k we
have k —/; — b+ p < p, and we label the complement as v, < --- < v, If 1 +b <k
we have k—1Ili—b+p>p, and we label the complement as v, <--- <y
< W < v < Wi —b- ]

In the case /;y + b = k it is convenient to set

v, =-=v =k+1. 4.3)
We have
LEMMA 4.1.2.
)4
() = k[l + L L+ BT =D (k(v:) — x(v/)). (4.4)
i=1

Proof. Observe x, = (x(J) — k[ly + 1, [, + b]), when o varies from 1 to k. For
o < [, k increases from k,_; to x, by 1 if « =v; (1 <i<p) or stays constant
otherwise. In the case /| + b > k, for [}, + 1 < a < k, k decreases from k,_; to k, by 1
if a=v] (t<i<p) or stays constant otherwise. In the case /; +b <k, for
h+1<a<uv|, k, decreases by 1 at « = v/ (1 < i< p) or stays constant otherwise.
In particular, we have x,; =0. For « > v{, k, < 0. The equality (8) follows from
these observations with the convention (4.3) for [} + b > k. OJ

A pair of subsets (1, J) is called (/;, l,)-admissible if
a<pl,)), b<bh and v;<u;<v/ (1<i<a). 4.5)
Note that /, appears only in the restriction b < . A pair (@, J) is ({1, l,)-admissible if

and only if # (J) < L. An (/;, k)-admissible pair is simply called /;-admissible. If
(1, J) is l,-admissible, then # (1) < [;.
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Note that if /; + ¢ >k, (I, J) is [} admissible if and only if v; < u; (1 < i< a). The
condition a < p(/;, J) is satisfied because v, < v, —c < k—c <.
If I} + ¢ < k, for an /;-admissible pair (/, J) we set

I=I1J)=1Iur, (4.6)
"o {v,,....,v)} fh+b>k | @
{v,,...,opu{wi, ..., wepp}, L +b <k

Note that

#(=k-1. (4.8)
We also set

J=Jn[l, v, —1]. (4.9)
We have

#)=v +c—1 —1. (4.10)
because

#()=#UN[L LD +#UN[L+ 1,0, —1])
=p+#(h+ Lo, — 1) —#({vy. ... 000D
=a+v,—L -1
=uv,+c—1 -1

If Iy + ¢ > k we have v, =k + 1 by (4.3). We set I=1andJ=J. The equalities
(4.8) and (4.10) are valid in this case, too.

LEMMA 4.1.3. Suppose that I, + ¢ < k. The map b : (I, J)— (1, J) given by (4.6) and
(4.9) is a bijection between the set of I,-admissible pairs (I, J) satisfying # (1) = a and
#(J) = a+ c and the set of (1, J) satisfying
I={u,...,uz (a=a+k—-0L—-¢), u<---<uz up=h+1, (411
j:{vl,...,v};} (l;=a+ua+1 -h=1, v <--<uv;,
va <, vp<ugp, vi<u (1<i<a). (4.12)
(In (4.12), the condition v, < [} follows from the others.)
Proof. We will prove that the inverse map ¢ : (1,J)+— (I, J) is given by
I={ur,...,us}, J=JU(ugs1, kKI\D). (4.13)

Let us prove that the composition ¢ o b is the identity map. Consider (/,J) and
(I, J))= bW, J). Set (I, J1) = ¢(I, J). Since u, < v,, the smallest a elements in I are
Uy < -+ < u,. Therefore, I =1I,.
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Note that
o) =tgpr, S =JN0[L g — 1],
[tas 1, KINT = [ttg1, KNI
= [tas1. KN\ ([tas1. K] 0 ([1 + 1, K\T)
= [tas1, K\ ([tas1, K\J)
= [ugs1, k)N J.

Therefore, we have

Ji = JU (tgrt, KND = (T O L, g — 1)U (apr, K10 T) = J.

Let us prove that the pair (/, J) given by (4.13) is /;-admissible. We define «; and v;
as before from 7 and J. It is clear that v; < u; (1 < i< a).

The number p = p(/,, J) satisfies v, > /;. Since v, < /i, we have a < p.

Let the smallest p—a+1 elements of the set [/j +1,k]\J be {v,,...,v;}
(v, <+ <v,). Wewill shothhat v, = ta41. Then, it follows that u; < v/ (1 < i< a).

Since v; < gy, we have J N [uyy1, k] = 0. Then, we have

U+ LN = ([ + 1 gy — 1N U (gt s KNttt 1, KIND)
= (i + 1, ttrr — INS) U ([ttas1, K1 N D). (4.14)

Since # ((h+ Lgyr —IN) =ttyp1 — 1 =L —(b—p)=p—a, we have v, =
Ug- ]

Fix a, ¢ and I with #(/) = a. In Section 6 we will use the minimal element J;,
among J such that #(J) = a+ ¢, ({,J) is [;-admissible and I(/, J) is fixed.

LEMMA 4.1.4. Suppose that [} + ¢ = k and fix I = {uy, . .., u,}. Consider the set of J
such that (I,J) is lj-admissible and #(J) = a4+ c. This set has the minimal element

given by
Jmin = {min(u;, k = b+ )} << Uk —c+ 1,k (4.15)
Proof. Set J={vy,...,vp} (v <--- <vp). We have obviously v; <k—b+1i
(1 <i<b). For 1 <i< awe have further v; < u;. Therefore, the minimal element is
given by (4.15). O

For [} + ¢ < k, we obtain Jy;, by using the bijection b.
LEMMA 4.1.5.  Suppose that I +c¢ <k and fix I satisfying (4.11). Set I =
{ui, ..., u,} and consider the set of J such that (I, J) is l-admissible, #(J) = a + ¢ and

I(1,J) = I. This set has the minimal element given by

Jin = {minQui, b = a+ D << o U+ 1ttt = 11U (st KND). (4.16)
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Proof. The minimal set Jyi, among J satisfying (4.12) is given by Jmin =
{min(u;, )} —a+ )} <i<aUlh + 1, g1 — 1]. Then, Juin is given by (4.13). O
4.2. VECTORS p AND ¢ AND LOWER SUBSETS

For an (/;, h)-admissible pair (/,J), define the vectors p(I,J) = p, ,(I,J),
o(J) = o1,4(J) € 7' by

a )4

pULT) = (k(v) — k) + Y (e(v)) — 1(v/)). (4.17)
i=1 i=a+1

o(J) = k[1, b] — k(J). (4.18)

Note that p(I,J), a(J) = 0.
We introduce a few notations.
We use the symbols

<, if 1;

S (4.19)
=, if e=1,
<, ife#-L

gse{ ife7 (4.20)
=, if e=-—1.

For a rigging r = {rg“)} l<a<k>We define
1 <i<m,

() i .

V[O(] — rnfxv 1f my = 1» (421)
00, if m, = 0.

For a pair of subsets (/,J) (I,J C{l,...,k}) and a pair of integers (/i, /)
(0< i, <k), we define the subset R, [/, b]l;; C Ry, as follows. If (1,J) is
(11, )-admissible, we set

Ry ully, by 5
={(, 1;v,8) € Ry s o] = 1), pU,J), and s[a] =), 0(J)), foralll <a <k}
(4.22)

(see (36)). Otherwise we set Ry, 1, bl ;= 0.

The restriction for r{«] is called marked if ¢(/), = 1 and, therefore, it takes the form
p(1,J), =rla]; it is called unmarked otherwise, namely, if it takes the form
p(1, J), < rle]. Similarly, we distinguish the marked and unmarked restrictions for s[o].

Suppose that (g, r;v,s) is contained in Ry, [/, b]; ;. Then, m, #0 if &(1), = 1;
ny # 0 if &(J), = 1.

For M, N > 0 we define

R(M’N)[ll s 12]1,.] = Rm,n[ll s 12]1,] n R,ngn’m[ll s 12] (423)

m,n

(M

If an element (u, r; v, s) is contained in R\EM(1), L], 5, and if m,, # 0 for some «, then

we have p(1,J), < PUV[0],; if n, # 0 then a(J), < QWN)[A],. In the rest of this section
we prove the validity of these inequalities when m, = 0 or n, = 0.
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Let us abbreviate PM[}], to P,, and p(1,J), to p,. Recall that

v
P a P
pULT) = k() = Y k() — Y (o)),
a=1 a=1 a=a+1
where v) <+ <y, <h, v, <. <v <V = =0 =
v <u <o (1 <i<a). Herel—max(l,ll—i—b—k—i—l).
We set
Jop ={v1, ... 0} =JIN[1, 1],
7 {v,....v}}, fh+c=k
down ™ (..., ifh+c<k

If /; +c¢ > k we have t > a and
Liown = [l + 1, KI\J.

If /; + ¢ < k we have r < a and
Jiown Y {s e =L+ 1,p, =00\ =[], + 1, k]\J.

We list a few more properties of p,.
Pl) p,—2<p, 1 <p,+1,
P2) Ifa+1ely, thenp,  =p
(P3) Ifa+1¢Jy, thenp,  <p
(P4) Ifoa+1€ iy, thenp, <
(P5) Ifo+1¢Jjpy, thenp, >

B. FEIGIN ET AL.

(4.24)

- < u, and

(4.25)

(4.26)

4.27)

(4.28)

LEMMA 4.2.1. If RMN[I,, L], contains an element (u,r;v,s), then we have

m,n

Pre < Pr.

Proof. Assume that P; = p; and P, < p, (i+ 1 < o < k) for some 0
As we noted at the begmmng of this section we have my,=0(0G0+1<

implies ¢(/), # 1 (i + 1 < o < k). Therefore, we have
IC[Li.
We have
Pig—Pi=M—(i+1-I)"+G—1)"+ > ny
=i+l
< Pit1 — Pi-
Subcase 1: i+ 1< 1.
From (P1) we have p,,; — p; < 1. Using (4.30) we have

Py —Pi=M+ Y ng<l
p =i+l
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Therefore we have M = 0 and n;;| = --- = n = 0. This implies J C [1, 7], and there-
fore i+ 1 ¢ J. Using (P3) we have p, | < p;. This is a contradiction because

O0=Py1—Pi<py—p;<0.
Subcase 2:i+1>=1; + 1.

We have i+ 1 & Jy, because Jy, C [1,/1]. From (P3) follows p;,; —p; <0 and
using (4.30) we have

Py —Pi=M—1+ Z ng < 0.
B =it

Therefore, we have M =0, n;y; =---=n,=0and i+ 1 € J again.

If i +c>=k, because of (4.27) we have i+ 1eJ),,,. Using (P4) we have
Pir1 —p; < — 1. This is a contradiction because —1 = Py — Pi < p;yg —p; < — 1.

If [y + ¢ < k, we proceed as follows. If i+ 1 € Jj . it leads to a contradiction as
above. If i+ 1 & J§ .., because of (4.28) we have p, | = 0. It implies Pi;; < 0. How-
ever, this is prohibited by (2.8). O

LEMMA 4.2.2. If RM-M[l\, 1) ; contains an element (u, r; v, ), then we have p, < P,
(1 <a<k).

Proof. We lead to a contradiction assuming that for some i and j satisfying
1 <i+1<j<kwe have

Pizp, Py<p,(i+1<a<j-1)., P=p;

We set p =1/(j—i) so that pi+ (1 —p)j=j— 1. A simple calculation as (2.13)

shows O
Piy—py Z2Ap+0G <l <)(lh —ip+ Z (B — Dpng, (4.31)

i<f<j
Ap =pp;i+ (1 —p)p; —p;_1- (4.32)

Here we used mp = 0 for i < § < j. Note that the last two terms in the RHS of (4.31)
is nonnegative.
We consider three cases p; > p;_, p; = p;_; — 1 and p; = p;_; — 2, separately.

Case 1: p; = p;_;.
Because of (P1) we have p;_; < p; +j—i— 1. From this follows

Apzplpiy —(G—i—D))+A =pp;y —pjy = —1+p.

Using (4.31) we have P;_; — p;_; = 0, which is a contradiction.

Case 2: p;=p;_; — 1.
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Subcase 1: i > 1.
Using (P3) and (4.25) we have p;_; < p;. Then, we have
Pii—piy Z2A8pZppi +(1=p)pjoy =D —pmy =—1+p. (4.33)

This is a contradiction.

Subcase 2: i < I} <.
Because of (P3) and (4.25) we have p; ; < p;+ /i —i. Therefore, noting that
0(i < I, <j) =1, we have again
Piy—pi Zzploi =L =)+ A =p)pioy =D —piy + (L —ip
=—14+p.

This is a contradiction.

Subcase 3: j < .
We have j ¢ J because otherwise j € Jy, and using (P2) we have p; > p;_;, which is
a contradiction.
We will prove by induction the following statements for i+ 1 <a <j— 1:
(C1), ny,=0,
(2), [aj1NnJ =40,
(C3), pi= Pj—1 — (x—i—1).
Then, (C3),,, leads to (63), which is a contradiction.
We first note that (C2); and (C3); are valid. These are the basis for the induction.
From (C1), follows &(J), # 1. Using (C2),,, we have o ¢ J, and therefore (C2),.

Because of (P3) from (C2), follows (C3),. Finally, we show that for i+2 < a <
from (C3), follows (Cl1),_;. Unless n,_; = 0 we have again

Piyv—piy Zplpjy —(@—i—1)+
+A=p)pojr =D —pj + (@ —1—=Dpn,
= —1+p.
Case 3: p;=p;_y — 2.

Subcase 1 : i = 1.
We will prove by induction the following statements for i+ 1 <o <j— 1.

(€1, n =0,

(C2), [ /1 C Jioun
(C3), pi= pi—1+j—o.

Then, from (C3)[’+1, we have p; > p;_; +j—i— 1. Using this we have

Piy—piyzplojy+i—i=D+A=p)pjoy —2)—pjy = —1+p.
This is a contradiction.
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As we have noted above we have (C2)j/ . Because of (P3) and (4.25), we have
p; = p;_i- This is (C3);.

Assume that (C1), and (C2),,, are valid for some i+ 1 <o <j— 1. From (Cl),
follows &(J), # 1. Since  + 1 & J by (C2),,, we have o & J.

If ly + ¢ > k, because of (4.27) we have € J| .. If [y + ¢ < k, we use (4.28). Note
thatea > i+ 1>/ +1and a ¢ J. If p, =0, we have P, < 0, which contradicts (2.8).
Otherwise, we have « € Jj ... Thus we have derived (C2), from (Cl1), and (C2),, .

Using (P3) and (P4) we can derive (C3), from (C2), .

Suppose that we have (C3), for some i + 2 < o < j. Unless n,_; = 0 we have

Py —piyz2plpi+ji—)+ (A =p)pimy —2) — pjoy + (e — i — Dpny—y
= —1+p.

This is a contradiction. We have derived (C1),_, from (C3),.

Subcase 2: i < I} <.
We will prove by induction the following statements for i+ 1 <o <j— 1.
(C1), ny, =0,
(€2), [ANJ=9,
(C3), pi=py—h—atit)
Then, from (C3)'7;4; we have p; > pj—1 +J— 1 — 1. Therefore we have
Pii—pi Zpp+ji—h=D+A=p)pjs =2 —ppy+(h —Dp=—1+p,

which is a contradiction.

We have (C2)'7; and (C3)’/;. It is obvious that from (C1)'7, and (C2)" 7,1 follows
(C2)'1,.

Suppose that (C2)'7, is valid for some i+ 1 < o <j— 1. In particular, we have
agJ. If «>=1[ +1, using (4.27) or (4.28) we have o€ Jj , unless we have
i +c¢<k and P, < p, =0, which contradicts (2.8). Therefore, by using (P4) (if
o=10 +1)or (P3) (if « < ;) we have (C3)'/,.

Suppose that (C3)’/, is valid for some i+ 2 < a < j. Unless n,_; = 0 from (4.31)
we have

Piy—piy = plpjy —h —a+i+))+(1—p)py —2)— pjy+
+ (1 —Dp+ (o —i— )pny_
= —1+p.

This is a contradiction. Thus, we have proved (C1)’7,_;.

Subcase 3: I} = j.
Because of (P5) we have j € Jj,,. Because of (4.27), this is a contradiction. []
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Next we proceed to the inequality o(J) < QLA?[IQ] Let us abbreviate Qg’v‘?[lz]a to O,
and a(J), to g,. Recall that b </, and
b b
o(J) =D x(w)— Y (v (4.34)

oa=1 i=1

We have, in particular, 0, — 1 < 0,41 < g, + 1.

LEMMA 4.2.3. Suppose that N > 1. IfanMn [, ]} ; contains an element (u, 13 v, s),
then we have o) < Q.

Proof. Assume that Q; > g; forsome 0 <i<k—1land Q, < g, (i+1 <a<k).
We haven, =0 (i+ 1 < o < k). This implies &(J), # 1 (i+ 1 < o < k). Therefore, we
have J C [1, i].

We have

Qi1 = Qi=N—(i+1=b)" + (=0 +) my<ci—o. (439

Subcase 1: i+ 1< b.
From (4.34) we have o0, —0;<1. Using (4.35) we have Q1 —Q;,=
N4> 5~ 41 mp < 1. This is a contradiction because we assumed N — 1 > 0.

Subcase 2: I, < i

We have
Qi1 — —1+ > mp<0.
p =i+l
This is a contradiction. O

LEMMA 4.2.4. Suppose that N = 1. [fR,(,%M[ll, b]; j contains an element (p, r; v, s),
then we have g, < Q, (1 < o < k).

Proof. Suppose that for some 7 and j such that 1 < i+ 1 <j < k we have Q; = 7},
Oy <o, (i+1<a<j—1)and Q; > g;. We set p=1/(j —i). We have

Qi1 =01 = Ac+0(i< b <)b—ip+ Y (B—ipmy, (4.36)
i<f<j

Ao =poi+ (1 — p)oj — gj_1. (4.37)

Case 1: 6; = 0j_1.

We have
Ao Zp(aj_l —(j—i- 1)) +(=p)oj1—0j-1 =—14+p.
Using (4.36) we have Q;_; — g,_; = 0, which is a contradiction.
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Case 2: 6 =01 — 1.
From (4.34) we have , + 1 <j and g, < 0;+ (hh — i)". Therefore, we have

Qi 1—0i 1= P(Ujfl —(h - i)+) + (1 =p)oj1 — -
—oi+(h—-)p=—1+p,

which is a contradiction. [
We have proved
PROPOSITION 4.2.5.  Suppose that M, N —1> 0. If RYLV[, L], contains an

mn
element (u, r; v, s), then we have

p(L,J) < PDI), - o)) < OVIA]. (4.38)

v

4.3. VECTORS p’ AND ¢’ AND UPPER SUBSETS

The basic idea in Theorem 2.2.1 is to change the rigged partitions with degrees
(M, N — 1) to those with degrees (M, N). The parameters (Z, J) describes the change
of the partitions from (u', v') given by m,, n; to (u, v) given by my,, ny:

my =m, +¢eI),, ny,=n,+eJ), (1 <a<k). (4.39)
The corresponding change in the riggings is described by the change of the upper
bounds:

Ar = PO — PO = k() = 26(0) + w1 + 1, k] — slly + 1, K], (4.40)

As = OWk] — O 131 = (1) — 26(J) + k{1, b] + K[l + 1, k]. (4.41)

Here /], [} are given by (2.16). Note that the results are not explicitly dependent on
(u',v’) or (u,v). They are determined only by I, J, 1, b, [}, I;.

The vectors p and o give the lower bounds to the riggings in the lower subsets. We
define the upper subsets by using the shifted lower bounds p’ and ¢’. Naturally, the
shifts are given by Ar and As.

For an /;-admissible pair (Z, J) such that #(/) = aand # (J) = b = a + ¢, we define
the vectors p'(1,J),6'(1,J) € 7F by

p'(1,J)=p(I,J)— Ar

b
= k(D) + k[l + 1K= > w(v;) — i k(v]) — k[l] +1,k]
i=p+1 i=a+1
= x(D) — «[l] 4+ 1, k], (4.42)
o' (I,J)=0a(J)— As
= w(J) — k(1) — k[l5 + 1, k], (4.43)

where we use 7 defined in Section 4.1.
The following is clear from (4.43) and (4.42).
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LEMMA 4.3.1. We have
p'(LJ),a'(I,LJ)=0 and p'(I,J),=0c'(I,J), =0. (4.44)

The following lemma will be used in Section 6. We follow the setting in Lemmas
4.1.4 and 4.1.5.

LEMMA 4.3.2. We have

(kk—b+1Lk—cl =), ifh+ec=k

O-/(Ia Jmin) = ~ (445)
(klh —a+ L k—c—w)", ifli+c<k
Proof. If [} + ¢ = k, using (4.43) and (4.15) we have
/(I Jmin) = Y _ s(min(us, k — b+ i)) — k(1)
i=1
= (klk —b+ 1,k — ] — k(D)™ (4.46)

If i +¢<k, set I=Iul’. We have I' C [ug1, k] and [ugs1, KNI = [tiast, K]\
Therefore, using (4.43) and (4.16) we have

0'(L Juin) = D s(min(u;, [y —a+0) — k(D) + k[l + 1. 1]

i=1
= (k[ —a+1,5] = k(D). (4.47)

For /1,a,b (0 < a < b) and (I, J) such that #(/) = a and #(J) = b, we define the
subset Ry_qu_s[i]") C Ry—an—p as follows. If (1, J) is /;-admissible, we set

1,J
Rmfu,nfb[lll Y= {(,u/, }"/; V/v S/) € Rmfa,nfb;

p'(IJ), < D'le] and ¢'(I,J), <*us'[e] forall ] Sa <k}  (4.48)

(see (4.20) and (4.21)). Otherwise, we set Rm,a,n,b[ll]l"’ =0.

If [} + ¢ = k, the set Rm,[,,n,;,[ll]l“’ is independent of /;. Sometimes we abbreviate
Rm,a,n,b[ll]l"] to R,];f_avn_b in this case in avoiding confusion caused by the presence of
[y in the written formulas.

We call the marking of p’, ¢’ as before. The restrictions (4.48) for r'[a] or s'[«] are
marked if and only if &(/), = —1 or &(J), = —1, respectively, and hence they are
equalities.

For M, N — 1 > 0 we define

RN = Ryanslh 1™ 0 RNV 1), (4.49)
We have
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LEMMA 4.3.3. For I.J C{l,... k} such that #(I) = a, #(J) = b, if RW"N111+
contains an element (u',r';v’,s’), then we have

p' (LI, < PUOII,.  o'(LJ), <00 I, (4.50)

i

Proof. The proof is completely parallel to Proposition 4.2.5 (we use (4.43) and
(4.42)) except that the inequalities (4.50) for o = k follow directly from (2.8) and
(4.44). ]

4.4. BIJECTION

(M,N—1)
Rm—a,n—b

Define the map m; (11" — RN, ], by the formula my (', /5 v',s") =

(u,r,v,s), where
u=u +ed), v=v' +el)), (4.51)

and the riggings r, s are defined by

rE“) = r’E“) +(Ar), (A<i<m)—1)

b A0, D), = 0,1

’
m,

m g =p0),, ifed), =1,

and

s =57+ @Ay, (A<i<n -1
s =" 4 (As),, ife(), =0, 1;

’
n,

SEI?—{-] = O-(J)oga lf S(J)“ = 1
We conclude this section by proving

PROPOSITION 4.4.1. For any I,J C {i, ..., k} the map my; is a bijection.

Proof. It is enough to show the bijectivity of mni;, between the subset of
Rf%’fn:l[))[ll]]’J with a fixed ', v/ and the subset of R}LM[1, L], ; with p, v given by
(4.51). Because of Lemma 4.2.5 and Lemma 4.3.3, and the definitions (4.40), (4.41),
(4.42) and (4.43), these two subsets are both empty or the inequalities (4.38) and

(4.50) are both valid. In both cases, the bijectivity is clear. O

5. Decomposition of R%N)[ll, b, k]

Fix k,l;,l, and 5 as (2.3). The aim of this section is to decompose the set
R(M‘N)[ll, 12, 13] as

m,n

RO b, 5] = |_| RMN[1 B, .

1.J
B <BHEUD <D
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Namely, we decompose the left-hand side, in which the riggings r and s are restricted

from below by the condition (2.5), into the subsets in the right-hand side, in which the

riggings are restricted from below separately for each r[«] and s[«] according to (Z, J).
In fact, it is enough to decompose R, /1, b, 5] as

Rualh. b B)= | | Rualli. by

1.J
B <B#D <D

The proof will be carried out in two steps.

The first step is to take the union of the sets Ry, ,[/1, k], ; over I for a fixed J. The is
done in Lemma 5.1.1; the union is denoted by Ry, ,[/i, /2, [s];. The idea of the proof is
simple. For a given nonnegative integer ¢, the set of integers {i; i > ¢} is the disjoint
union of {i;i > t+ 1} and {i; i = ¢}. We need more elaborate arguments in the proof.
However, it is done by a successive application of this simple fact.

The second step is to take the union of the sets Ry, .[/1, 2, /3]; over J and obtain
Ry ullh, b, I3). First we carry out this step for /3 = min(/}, /»). This is actually a special
case of the first step. We obtain Ry, , = Ru.alli, L, min(/i, /)] as the union. Then, we
show that the complement in R, , of the union of R, ,[/1, >, /3]; is equal to the union
of its complement in Ry, »[/1, [, min(/;, /)];. This is done by using another simple fact
that the complement {i; i = 0}\{i; i > ¢} is the union of {i;i=s} for0 <s<r—1.

5.1. UNION OF R, [}, ];; OVER [

We denote #(I) =a and #(J) = b as before. Given J such that b </, we set
p = p(l1,J) as in Section 4.1. Define

Inax(J) = {o1, ..., Umin(ig,p)}’ pmax(J) = p(Inax (), J), (5.1
Rm,n[lh 127 l3]] = {(,u, rv, S) € Rm,n;
o0 > a1 < o < ), 5101 2 o, 0,1 < o < ). (52)

We also define the subset of 2{1:-}:
T®OW L, )y={Ic{l,...,k};a</land (I,J) is /,-admissible}. (5.3)

If min(h,p) =0, TOU; [}, ) = {#}. If min(/s, p) > 0, we define the structure of
colored graph on T®(J; I, I5) as follows.

If I e T®(J; 11, 1) and I # Inax(J), we draw an outgoing arrow from 1. We denote
the terminal of this arrow by é(I) € T®(J, [1, 3) and associate the arrow with color
c(I) e {l,...,min(/s, p)}. The data &(/) and ¢(/) are determined as follows.

Consider I = {u;}, J = {v;} and {v/} as in Section 4.1. If u; = v; for 1 <i < a, we
have a < min(ls, p) since otherwise [ = Ix(J). We set ¢(l) = a+ 1 < min(s, p)
and ¢(/) = 1U{v;,, — 1}. Note that v, —1 &1 because u, = vy < vy < Uy If
there exists i such that u; > v;, we set ¢(/) to be the minimal integer 7 satisfying this
property, and &) = (IN\{un)}) U {ueqy — 1}. Note that u.y — 1 & 1, since otherwise
we have a contradiction ucy) — 1 = uypy)—1 = Ver)—1 < Very — 1 < uiery — 1. We have
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LEMMA 5.1.1.

Rm,n[l]s lZ]],J = Rm,n[lla 127 Z3]J- (54)
IeT®(J;1;,13)

Proof. We use induction on /3. If /5 =0, the statement is obvious because the
union (5.4) is for a single element I = ). We reduce the proof for /1,5, 5,k to
h—=1,hLb-1,5—-1,k—1.

Fix J = {v1, ..., vp} such that b </, and denote R; = Ry, ,[/1, b]; ;. We take the
union of R; over a maximal string I[i] € T®(J, [}, 13) (1 < i <) of color 1:

1 1 1
I[1—=I]2]— ---—1[y].
This is maximal in the sense that there is no arrow of color 1 pointing to /[1] or from
I[y]. Each arrow of color 1 belongs to one and only one maximal string of color 1.

If #U[yD=1, y=vi—vi+1, 1]=9 and I[{]={v] —i+1} for 2<i<y. If
a=#(][y]) > 1, there exists a sequence up < --- < u, such that y =u, —v; and
Ii) = {u1[d], ua, . .., uy,} where u;[i] = up, — i. Note that in the case a = 1, the situation
is the same if we set uy = v] + 1.

Consider the restriction rlo] = qq,0(U[1].J), in Rpy (1 <i<7y). Unless
v <a<u—2,e([i]), and p(I[d], J), are independent of i.

If v <o < uy — 2, we have

e(I[i]), =1 if and only if i = up — o, (5.5)
p(I[1], )),, fl<i<u-—a-—1;

p([i], J), = { : . (5.6)
p(I[1],0), =1, fuw—a<i<y.

From these observations follows that Ry (1 < i< 7y) are disjoint, and the union is
characterized by the conditions that

o]

s[a]

(e, PUD]L D), (1 < a < k),
o, 0(D)y (I S o <) (5.7)

\YAR\Y

Since p(I[y], J), = 0 for 1 < a < vy, there is no restriction on rfo] for 1 <o < v;. In
particular, there is no restriction for r[1].

Now, we modify the graph. We discard (i) (1 < i<y — 1) from TW(J, 1}, 1) and
replace the set Ryp;) by the union Ry, characterized by (5.7). Carrying out this process
for all the maximal strings of color 1, we obtain a new graph 70 (J; [}, ;)" and the
sets Ry (1€ T®(J; 11, 15)"). Observe that I = {uy,...,ugn} € TOW; 1y, 15) satisfies
the restriction u; = v; and there is no arrow of color 1 in T®(J; I, I5)'.

We see that the graph 70 (J; [}, 13)" is isomorphic to T*"D(J'; [} — 1,3 — 1) where
J' ={v,—1,...,v, — 1}. The isomorphism maps 7 to I' ={u, —1,...,u, — 1} and
identifies the color ¢ in the former with the color ¢ — 1 in the latter. We have
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L)y =p '),y for 2<a <k, and e(\{v1}), =1 if and only if
e, =1

Therefore, the condition for r[o] in R; is exactly the same as the condition for
rlalpha — 1] in the subset R, ,[/y — 1,5 — 1,55 —1]p ; at the level k — 1. Thus we
have proved (5.4). O

5.2. UNION OF R/, 5, 5]; OVER J

Consider the subsets indexed by J such that #(J) < b (5.2): Ruall, b, 53]; C Rin
They are disjoint. In fact, the restrictions on the riggings s given by a(J) and &(J) are
disjoint (see Lemma 5.2.1 below).
The goal is to show that the union Ry, ,[/1, 2, 3], over J is equal to R, [/, b, I5].
If I3 = min(/;, 1), we have

LEMMA 5.2.1d

Rm,n[lh 127 min(ll, lZ)]J = Rm,n' (58)
JH#H) <>

Proof. If I5 = min(/, ), we have min(/s, p) = p since p < min(/{, ;). From this
follows that Inax(J) = {v1, ..., v}, and therefore, p(Inax(J), J) = 0. Therefore, there
is no restriction on o] in Ry, [/, k, min(/i, /»)];. We take the union of the riggings s
subject to the restriction on s[a]. This is equivalent to the special case of Lemma 5.1.1
where 1, J, [}, L, I5 are replaced by J,[1, k], k, b, I, respectively. Therefore, the left

hand side of (11) is disjoint and the equality holds. O
Set
a= U U RPi g, (5.9)
I<of<k0<it<@A[h,hL,5]-1
ROPLi, jl = {(, 75 v, 8) € R 1] = i, s[B) = j). (5.10)
It is easy to see that C; = Ry, ,\Ru.nll1, b, 3]. Set
Cy, = Ry \U, (5.11)
U= || Rualh.b, 5l (5.12)
JH) < h

Lemma 5.2.1 enables us to represent C,, which is by definition the complement of
union, as the union of complements. Namely, we have

G= || =& (5.13)
J#) <h
R.(] - Rm,n[lla lZa min(ll’ 12)]J\Rm,n[l1s 127 l3]J- (514)

The goal is to show that C; = C,.
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First we assume that /3 = 0. In this case, we have I,,x(J) = ¥. We prove that (5.13)
is equal to (5.9).
We call K C [1, k] of the first kind if for some S(K), b(K) € {1, ..., k} it is of the

form
K = [B(K) — b(K) + 1, B(K)]. (5.15)
We will modify (5.13) and obtain another representation of the form
C; = U R, (5.16)
K: of the first kind and #(K) < /,
RE= | Rildl, (5.17)
0< iép?fléfl
R}g[% l] = {(,u, rv, S) € Runs
o] =1, s[B(K)] = 0(K) gy }- (5.18)

We start from a lemma on some property of the restriction (5.2) on the riggings s

given by o(J) = «[1, ] — x(J) and &(J).
For J C [1, k] such that #(J) < I, we set

Sy=1s= (st o50) € 75 g1 82 = w0, (1 < 2 < D)), (5.19)
and for K=[f—b+ 1, ] C[l,k] such that b < I,

Sk =1{s € 7% o: sp = a(K)p). (5.20)
As we have already mentioned in the proof of Lemma 5.2.1, the subsets S, are dis-

joint.
LEMMA 5.2.2. We have the inclusion
SI/< CUjy> kSy. (521)

Proof. We will prove this by induction on K with respect to the ordering defined in
Section 4.1 We see that the statement is true for the maximal element K = [1, &]. In
fact, if K =[1, h] the statement S; = Sk follows from ¢(K) = 0 and &([1, k]), = 1 if
and only if o = /5. This is the base of the induction.

Now assume that the statement is true for all K’ of the first kind such that K’ > K.
We will show that there exists a subset Sk satisfying

Skc | ] s (5.22)
J=K
SK\Sk C U Skos (5.23)

K'>K
k’: of the first kind

This will close the induction steps.
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Sk= || s (5.24)
pe =K
#UN[1,B—1])=b—1
Namely, we take the disjoint union over J = {vy, ..., Up_1, 5, Ups1, - - - , Upr} such that
IS < <p 1 <P <Vpy] <+ < Uy
with b’ < [,. Note that the element f is fixed, vy, ..., v5—1 move around the interval
[1, p — 1] and new elements vy, 1, ..., vy are added in the interval [ + 1, k]. We have

(26) obviously.

By the same argument as in the proof of Lemma 5.1.1 we obtain

Sk = s € 7K i 54 = 0(Kmax), (1 < 2 < K)},

where Kpax =[1,6— 1Ju[B, B+ L — b].
We have the following values of ¢(K), and ¢(Kmax),-
If § = b, then

a(K), = Lh+B—o—b (B—b<a<p)

L—-b (B<a<k),

max(0, 0 —b+1) (1 <a<h);
O-(Kmax)a =1hL-b+1 (l2 <oa< ﬁ — ])7

max(0,h +f—o—b) (f—1<a<k).

If g < b, then

o (I<a<<f-0b)
b

p—b (B-b<a<g<p)
o(K), = —b (B<a<h)
L—b (b<a<k),

max(0,a—b+1) (I<a<<f-1);
O-(Kmax)g:: ﬁ_b (ﬁ_1<a<12);
max(0,L+p—a—>5) (L <a<k).

Now we will prove (5.23). We have 6(K)g = 0(Kmax)s- Therefore,

I\ Q k. - /
SK\Sk = | ] {seZ sy =1 NSk
a#f
0 <7< o(Kmax)y—1
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We take K’ in (5.23) to be K,p =[x —b"+1,0]. We have K, C[1,k] and
K, = K if and only if
max(b, b+ o — f) < b’ < min(l, a). (5.31)

By case checking one can prove that the set of integers consisting of the values of
0(Kyp), = min(lh, o) — b’ where b’ runs over (5.31), contains [0, 6(Kmax), — 1]
appearing in (5.30). For example, if 1<a<h<p, we have o(Kmnax), =
max(0, « — b+ 1) and o(K, '), = o — b'. Therefore, we obtain

7k . . / /
U0 < < oK)= 1 {8 € 25 0382 = 1§ NS CUp < <aSk -
Other cases are similar. OJ

Now we prove the following lemma:

LEMMA 5.2.3. Assume that I = 0. We have C, = Cs.

Proof. If I; = 0 we have O
Ro= |J B,
0< }Sg/ly(v)g..fl\;,‘—l
Rilo, i] = {(u, 13 v, 5) € Ry s (5.32)

V[OC] =1 S[ﬁ] = 1:(J)ﬂ0-(r])/} (1 < ﬁ < k)}
First we show that if K is an interval of the first kind (5.15) we have
R¢ CUys kRS, (5.33)

From this follows that C3 C C,.
If J' > J, then p(@,J") = p(¥, J). Therefore, in order to show (5.33) one can forget
the restriction on r. Then, it follows from Lemma 5.2.2.
To finish the proof, we show that C, ¢ C3. Consider J =JW ... uJ®  where
JU) = [ﬁ(.f) — b 41, [)’(j)] and /;(j) < '3(/+1) — pU+D_ Set
KO = [BD = (b(1) + -+ b)) + 1L 7] (1 <j<h).
We will show that
RS C UL R, (5.34)
Note that o(J/)4) = a(KY ))Ii(“ and &(J)y) = 1. Therefore, the condition for the rig-

gings s in RY[a, i] is stronger than R}g,)[oc, i]. Namely, we have Rf[«, 1] C R}g ot 1.

For any o we can find j such that
ﬁ(j) D r1<a< ﬁ(l”rl) — pU+Dh,

Then we have p(@, J), = p(@, KY)),. The statement (5.34) follows from this. O
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Next we show

LEMMA 5.2.4. Assume that I3 = 0. We have C; = C;.

Proof. We show that (5.16) is equal to (5.9) by case checking for each case of the
ordering of «, 8,1}, ,. There are 24 cases. Here we give the details for the case
I, <[} < a < f. Other cases are similar.

If , <[} < a < p the intervals K which appear in (5.16) satisfying S(K) = 8 are of
the form J = [y, f] where f — L + 1 <y < a. For such K we have

p@.K),=h—y+1, oKg=hL—-(F-y+1).

Therefore, the pair of integers (p,0) = (p(4, K), — 1, 0(K)p) runs over the set
{(p,0);p,0 20, p+0 =10+ — f—1}. On the other hand we have

Py, b, 0] = min(e, B, li, b, b+ B— o b +o— B+ b —a ly + b — p)

=L+5L-p.
This completes the proof. [
Finally, we have:
LEMMA 5.2.5.
Riallss 12, 3], = Rylly, 12, 15]. (5.35)
JH#H) <

Proof. By Lemmas 5.2.3 and 5.2.4 we have shown (5.35) for /5 = 0. Let us reduce
the proof to the case /3 = 0. Suppose that /3 > 0. Then, we have /i, , > 0. We will
reduce this case to the case where /,, /5, ;5 and k replaced by ; — 1, — 1,15 — 1 and
k — 1, respectively.

Note that the union is taken over J such that #(J) < b, i.e., J € TO([1, b]; k, b).
Therefore, we refer to the structure of colored graph in this set.

Recall the definition of p,,,(J) given by (5.1). If J varies on a maximal string of
color 1, then only v; changes. However, we see that the p,,.(J) is independent of
v because for I = In.(J) we have u; = v;. It follows that the vector p,,(J) is con-
stant on the maximal string. Therefore, we can take the union over J on maximal
strings of color 1 only on the riggings s forgetting r.

Taking unions over all of the maximal strings of color 1, we can rewrite the left
hand side of (5.35) as the union of the resulting subsets over such J that satisfies
1 € J,ie., of the form J = {1, v, ..., vy}. The subgraph of T®([1, L]; k, l») consisting
of such J is isomorphic to T%=D([1,,h —1];k — 1,1, — 1) by mapping J to J' =
{vo—1,...,vp — 1} and identifying the color ¢ in the former with the color ¢ — 1
in the latter.
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We have p; (Imax(V), )y = 011 -1 Umax(J), J)y 1 (2 < < k). Therefore, we
have

o1, k() = (([1, b)) — K(]),
= (1, b = 1] = k(T )y
= 0141 )yt
Note also that
P, b, B = — 1L b= 15— 1)

Thus, we have reduced the case /1, L, 5, ktoly — 1, L —1,5—1,k—1. O

In conclusion, we have

PROPOSITION 5.2.6.

Ruall . 5)= || Rualln. ) (5.36)
#UN)<LHAWD <DL

PROPOSITION 5.2.7.

RN L= | ] ROV LY. (5.37)
#U) < LAHJ) <L

6. Decomposition of R%ZL’Z[[LI&, ]
Fix k,li,a,b such that 0<a</i <k, a<b=a+c<k, and define /{,/;, /5 by

(2.16). We denote m’ = m — a and n’ = n — b in this section.

The aim of this section is to decompose the set R,(%’,f\,/_l)[l{, 5, 3] as

M,N—1 M,N—1 g
RMN V= L] RYS O (6.1)
#()=a#(J))=b

Again, it is enough to decompose R, [/}, [5, 3] as
Runlll, 5. 1)= || Rwwlt]”. (6.2)
#()=a#()=b

It is useful to note that if & = k or = k then t*P[/], 15, ;] = 0. Also, because of
(4.44) there are no restrictions on r’[k] nor s'[k] in the definition (4.48) of the upper
subsets Rm/,”/[ll]’ “/_Therefore, we can restrict our discussion on k vectors in this sec-
tion to the interval 1 <o <k — 1.

The proof is divided into two cases: /; + ¢ >k and [ + ¢ < k.

6.1. CASEly +c>k
In this case, we have (see (2.16))

l=k—a l=k—c L=k—b
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and

o' (I,J)=x(J)— () —«x[k — c+ 1, k],
p'(I,J)=x()—k[k—a+1,k].

Note, in particular, that the /;-dependence disappears. We write Rf;l{n, for
Rm’,n’[ll]I’J'

First, we fix the subset 7 = {u, ..., u,} and take the union over J = {vy, ..., vp}.
This is similar to Lemma 5.1.1 We use (4.15) for Jnin, (4.42) with I=1 for
o'(I) = p'(I, Jnin) and (4.45) for ¢'(I) = 6'(1, Jnin). They are all independent of /;.

Set

Ryln/,n' = {(/,L/, }’/; V/v S/) € Ry s
rla] = Dap'(N,1 <a<k—1),5Ta] =>0'(I),(1 <a<k—1)).
(6.3)

LEMMA 6.1.1. For I ={uy,...,u,}, we have

IJ  _ pl
|| RM =R, .
J=A{v,...,vp} C{l,...,k}
U S UL .oy Vg S Uy

Proof. The proof of Lemma 6.1.1 is parallel to that of Lemma 5.1.1.
In Lemma 6.1.1 the restriction on r’ in R%n, is independent of J and the restric-
tion on s’ is of the form

s = () + A)ye i 6T, # — 1,
s = () + A, if e(J), = 1.

Here A is a k-vector independent of J.
In Lemma 5.1.1 the restriction on s in Ry, ,[/;, k]; ; is independent of 7/ and the
restriction on r is of the form

o] > (—K(I) + B),. if e(]), # ~ 1.
"o = (—x(1) + B, if (1), = 1

Here B is a k-vector independent of 1.

In Lemma 6.1.1 the union is taken over J such that J,;, < J <[1, b], where Jp, is
given by (4.15), and in Lemma 5.1.1 the union is taken over I such that @ < I < Iy,
where I« is given by (5.1).

Recall that in the proof of Lemma 5.1.1 we take the union over the maximal
strings of color 1 as the first inductive step. Similarly, in the setting of Lemma 6.1.1

we take the union over strings J[i] (1 <i<7y) of the form J[i] = {vy, ..., bp_1[i]}
(v) <--- <wvp_1) and vp[i] = vp_; + i. Here O
Y — k—Ub_l, ifb>a;
/= Uy — Vp_1, if b =a.
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The difference between two cases is that #(J) = b is fixed in Lemma 6.1.1, while # (1)
var_ies in Lemma 5.1.1. However, if we consider I=1Iu {vl;, el v#’#(,)H} instead of I,
#(I) = p is fixed and two cases are completely parallel.

Therefore, the union is obtained by substituting J by J;, and make the restriction
on s’ unmarked. [

Now we translate the formula (to be proved)

|| RL = Rl 3. 15] (6.4)
#()=a

into the formula

Rl b, 0= | | Ruwlh. by, (6.5)
#()<h

which is the special case of (5.36) with /3 = 0. We use the case /; = ¢ and /;, = a by the
following reason.

In R}, ,, we have
p'()=x)—«klk—a+ 1,k =x() —x[l{ + 1, k], (6.6)
+ +
o'(I) = (K[k —b+ 1 k—c— K(I)) — (K[zg +1,5] - ;c(])) . (6.7)
On the other hand, in (6.5) we have
+
p0. 1) = (k) = Kle+ L e+ #(N) . o) =l al = K(J).
Note, in particular, that p(4, J), = a(J), = 0.
We define an involution of the set {1, ..., k} by F=k+1—1i Using
K(i), + x()_, =1, (6.8)
we obtain
p'), =0y (6.9)
a'(1), = p@, 1), (6.10)

In this way, we can translate (6.4) into (6.5) except that the union is taken over /
with the fixed size # (/) = a in (6.4) while J in (6.5) is only restricted by #(J) < a.
Therefore, we need some modification. We will take the union in (6.5) partially so
that only J of size a remain.
Given J = {vy, ..., vy} such that a’ < a we define the closure of J by
J=Ju{wi, ..., Wa—ar}, (6.11)

where w; < .-+ < w,_, are chosen to be the maximal ¢ — &’ elements in [1, k]\J.
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For K such that #(K) = a we set

(Rm’,n’)K :{(,uv rov, S) € Rm’,n’;
o] = p@3,K), (I1<oa<k-1),

slo] = yro(K), (1 <a<k-—1)} (6.12)
Note that we impose no restrictions at o = k.
We have
LEMMA 6.1.2.
(Ruv) g = || Rovwle.aly. (6.13)
JJJ=K

Proof. Suppose that #(J)=a'<a and J=K=Koulk—d+1,k] where
k —d & Ky. Then, we have Ky C J, and K and d are uniquely determined from K.
We have

p@, ) = k() —klc+ 1, c+a'D"
=w(Ky) —k[c+ 1, c+a—d +x(N\Ky) —k[c+a—d+1,c+a']".

Note that #(Ko) =a—d and #(J\Ko) = @’ + d — a. Therefore, we have (k(Ko)—
Kle+1,c+a—d]),<0fora>c+a—d Since \Ky C [k —d+ 1, k], we have

kK(N\Ko) <klk—d+1,k+a —d <«klc+a—d+1,c+a'].
From these observations follows that
p(@,J) = (1K(Ko) — k[c + 1, ¢ +a — d)" = p(%, K).
The set J satisfies #(J) < a and J = K if and only if J = KouJ' where J' C [k—

d+1,k].
By a similar argument as the proof of Lemma 5.1.1, taking the union of
Ry wle, aly ; over J', we obtain (R, ). O

Now we are ready to finish the proof of (6.2) for [} + ¢ > k.

LEMMA 6.1.3.

I_l R}{n’,n’ = Rm’,n'[”* 12/’ 13,] (614)
#()=a

Proof. Let us observe that there is a correspondence between R,’n,,n, and (Ry »/)k-
We have (6.9) and (6.10). Moreover, because of

o(i), +e(k+ 1 —i),_, =0, (6.15)

e(I"),_, =1 if and only if &(I), = —1.
Finally, note that

&P —ak — e,k —a— ] =1*P[e, a,0].
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In this way, (6.14) follows from Proposition 5.2.6. O

6.2. CASEl, +c <k

In this case, we have (see (2.16)) [ =l +c—a, L =k—c, I5=10 —a. We use
(4.16) for Jumi, (4.42) for p'(I)=p'(, Jmin) and (4.43) for ¢'(I) = o’(I, Jmin)-
Namely, we have

p'(D) = re(l) — k[l + 1, k], (6.16)
o'(h = (ell; + 1, 5] — k(D))" (61.7)

Because I’ C [/} + 1, k], we have

(il — a+ 1, 5] — k(D)) = ([l —a+ 1, 1] — )" +«lly + 1, L] — w(I').
(6.18)

1
m’.n’

In the following lemma, when /| + ¢ < k, we define R
defined in (6.3) when [} 4+ ¢ > k.

differently from R, .

LEMMA 6.2.1. Suppose that I satisfies the condition (4.11). Set

R;,’n, ={u,r’;v',s") € Ry
] = Pep'(D,(1 S o <k — 1), 5'[0]
> u,0'(D,(1 S a < k—1). (61.9)

We have |_|j Rmr,nr[ll]"(”) = Ié{n,’n, where the summation in the LHS is taken over all J
satisfying (4.12) (see (4.13) for (I,J) = (I, J)).

Proof. The proof of this lemma is parallel to the proof of Lemma 6.1.1. Note that
p'(I) (see (4.42)) does not depend on J. The summation extends to all J satisfying
[1,a+uarr — L — 11> J = Jin, wWhere

Jmin = {min(ui, ll —a+ Z)}l <i<a u [11 + 1: Ugy1 — 1]
The restriction on s[«] in R,,,/,n/[ll]“”) is given by ¢’(1, J),. It is marked if and only if
&(J), = —1. The restriction on s[«] in the union over J is given by a’(i)a. The marking
will change as follows. Because of JN[I,u,; — 1] = J the restriction on s[a] is
unmarked if o € [1, u,y; — 1]. In the interval o € [u,41, k], the marking is unchanged
because J' = J N [uyy1, k] 1s fixed.

Decompose the interval [u,1, k] = I’ LU J’ into subintervals I}, ..., I; constituting
I' and J{,...,J; constituting J’ in such a way that max(//) 4+ 1 = min(J;) and
max(J;) + 1 = min(//, ;). Note that u,,; € I] and J; may be empty. The restriction
on s[o] is marked if and only if « = min(J/) — 1 for some 1 < i < A. This is equivalent
to say that it is marked if and only if « = max(/]) for some 1 < i</ except for
o = k. Therefore, we have the marking given in (6.19). OJ
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We remake the union over 7 as follows.

LEMMA 6.2.2. Set

an =AW v s € Ry
Pl = Pp'(D, (I <a<k—Tlia#l ifup =h+1),
Pz p' Dy, ifuen =h+1,
sl =o'(D), (1<a<k-—1) (6.20)
We have

|_|Rm n' = I_lRm n' (621)

Proof. Fix . First, we can rewrite each subset 1551,,”, in terms of subsets which have
the same restriction on r’ as Rm - but a different unmarked restriction on s’. If the
restriction is s[a] = o,, we rewrite it as the difference of two unmarked restrictions
s[a] = o, and s[a] > o, + 1. We extend this argument to all « with marked conditions
by using the inclusion-exclusion principle, which will be explained below.

Let I’=1{u---ulj be the decomposition considered in the proof of Lemma
6.2.1. Denote by fright the set of integers max(/}) for 1 < i < h except when it is equal
to k. This is exactly the set of « such that the restriction on s'[x ] is marked in an e
For each K C frigh[ we denote by Ik the subset obtained from 7 by replacing all the
elements u € K with u + 1. Because of (6.18) we have

(o, = e, +1, ifae KC[h+1,k];
7 Uk { a'(D),, otherwise.

We set

REIE (', ' ', 5") € Ry
Pl = Dep'(D, (1 <a<k-1),
sl = o'(lx), (1<a<k-D} (6.22)

For a subset RC R, , we denote by lgpnr) its support function, i.e.,
Laupp(r)(X) = 1 if x € R and lgppr)(x) = 0 if x & R. The inclusion-exclusion principle
tells us that

_1)#&K)
ISUPP(R L) Z =D lsupp(R”K )

m’.n
m’.n’
KC[righl

=
=

Thus we obtain

#(K) 1
supp (LLA,.) Z Z =D supp(R”" ' 6.23)

m'.n’
1 KCIrlghl
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Denote by I the set of integers min(/}) for 1 <i < h except when it is equal to
Iy + 1. This is exactly the set of « € [u41, k] such that the restriction on r/[o — 1] is
marked in R}, .. For each K C I we denote by /X the subset obtained from /

by replacing all the elements u € K with u — 1. Because of (6.16) we have

/(7). = p'(D,+1, ifau+1leKcC[h+ 1k
* p'(D,, otherwise.

Denote by J the set of 1 satisfying (4.11). Note that

(LI 1€ T, K € Lign) = (I, I; 1 € T, K € Lt} (6.24)
Therefore, we have
(6.23) = Z Z (—1)#<’°15upp(R5f,i,). (6.25)
T Kclu '

The inclusion-exclusion principle again tells us that

_1\#(K) I .
Z ( 1) 1supp(RlK/",) - ISUPP(R’, Pl

7 m'.n m'.n
KClett

Therefore, we obtain (6.21). O

Now we finish the case /| + ¢ < k.
Seta=a+k—1 —c.ForIC{l,...,k}suchthat I = {uy,...,uz} (u <--- <ug)
we define the closure of / by

I=Nugst, .. taragd UL+ 1,0+ d, (6.26)

where
. 0, ifuu+1 >11+1;

‘= { max(is ugsi < h+ i) i ey <l 1L (6.27)
Note that if d 20 and « < /; + d, then

o'(I), = (k[ — a+ Lk — ] — k(1)) =0.
Therefore, we have

o'(I)=c'(]). (6.28)

The set 7 satisfies the condition u,,; >, + 1 if and only if /= I.

LEMMA 6.2.3. Suppose that I satisfies (4.11). Consider I with its closure equal to I
The subset R£1/,n/ is defined by (6.3), in which the definitions (6.6) for p’(I) and (6.7) for
a'(I) are used. We use I{, I, Iy given by (6.1) with a replaced by a. Then, the formulas
SJor 11,13, 15, p'(I) and ¢'(I) become exactly equal to those used in R,In,_n,. With this
understanding, we have
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| | R, =R, (6.29)

FI=I

Proof. Suppose that d is given by (6.27) for I={uy,...,uz). f d=0, then I=1
implies / = 7, and (6.29) is obvious. If d > 1, the union in the left hand side is over
Isuch that 7= I\[/; + 1, +dlul’, where

g+ Vug+d =1 =l + 1,4 +d.

Since ¢'(I) = G/(i), by a similar argument as the proof of Lemma 5.1.1, we take the
union of R}, . and obtain R}, . O

LEMMA 6.2.4. We have

L R, . =Ryl 15, 3] (6.30)

H#Dh=a+k—1 —c
Ug41 >0 +1

Proof. This is a consequence of Lemma 6.14 (with « replaced by a) and
Lemma. O

In conclusion, we have

PROPOSITION 6.2.5.

Ryl 5, 51= | ] Rwwlh]". (6.31)
#()=a#())=b

PROPOSITION 6.2.6.

M,N—1 M,N—1
RO nosi= L] RO (6.32)
#(D=a#(J)=b
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