
Introduction and Main Examples

Since the introduction of the derived category of an abelian category, triangu-
lated structures have become an integral part of homological algebra. Abelian
model structures provide a convenient method for implementing and studying
triangulated structures arising as a type of localization of an abelian (or ex-
act) category. Indeed the homotopy category associated to any abelian model
structure is a triangulated category. This section is meant to give the reader a
broad overview of this idea along with a survey of the most fundamental ex-
amples appearing on R-Mod, the category of (say left) R-modules over a ring
R, and Ch(R), the associated category of chain complexes of R-modules. These
categories are the simplest ones with meaningful applications and they serve
as a common ground for anyone that might be interested in learning some of
the theory of abelian model categories. These examples will also be referenced
throughout the book, to illustrate the general theory as it is being developed.

Cotorsion pairs are the cornerstone of the theory of abelian model cate-
gories. Let (X,Y) be a pair of classes of objects in an abelian category A,
such as R-Mod or Ch(R), and consider short exact sequences

0 −→ Y −→ Z −→ X −→ 0 (1)

inA. We say that (X,Y) is a complete cotorsion pair if it satisfies the following.

• X ∈ X if and only if every such short exact sequence (1) with Y ∈ Y splits,
thus inducing a direct sum decomposition Z � Y

⊕
X.

• Dually, Y ∈ Y if and only if every such short exact sequence (1) with X ∈ X
splits.

• Given any A ∈ A, there exists a short exact sequence 0 −→ Y −→ X −→ A −→ 0
with X ∈ X and Y ∈ Y. We say (X,Y) has enough projectives.

• Dually, there exists a short exact sequence 0 −→ A −→ Y ′ −→ X′ −→ 0 with
Y ′ ∈ Y and X′ ∈ X. We say (X,Y) has enough injectives.

xv
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xvi Introduction and Main Examples

The first two conditions can be expressed more succinctly by writing X⊥ = Y,
and ⊥Y = X. The usual definition of this orthogonality is given in terms of the
Yoneda Ext functor, Ext1A(−,−), discussed in Section 1.6.

Note that the concept of a complete cotorsion pair generalizes the fundamen-
tal idea from homological algebra thatA = R-Mod has enough projectives and
enough injectives. Indeed this can be summarized in the language of cotorsion
pairs by saying that the pair (A,I), where I is the class of all injective R-
modules, is a complete cotorsion pair. Dually, (P,A) is a complete cotorsion
pair, where P is the class of projective R-modules. We call these, respectively,
the canonical injective and canonical projective cotorsion pairs in R-Mod. In
Chapter 2 we define and study cotorsion pairs in the quite general setting of
Quillen exact categories, in terms of Yoneda’s Ext functor.

A result known as Hovey’s Correspondence reduces an abelian model struc-
ture (whatever that means precisely) on A to a triple of classes of objects,
M = (Q,W,R), where (i) W satisfies the property that if two out of three
terms in a short exact sequence are in W then so must be the third, and (ii)
(Q,W∩ R) and (Q ∩W,R) are each complete cotorsion pairs. Objects in Q
(resp.R) are called cofibrant (resp. fibrant), and objects inW are called trivial.
Hovey’s Correspondence, Theorem 4.25, shows that such a triple M is equiv-
alent to the seemingly more complicated notion of an abelian model structure.
Thus one could even define an abelian model structure to be such a Hovey
triple, and in fact this is the philosophy and approach taken in this book. Since
a Hovey triple packages a great amount of data in a very simple way, this per-
spective has proven to be beneficial. It also makes the subject more accessible.

Before proceeding, let us now give what are perhaps the two most funda-
mental examples of abelian model categories. Here we take A = Ch(R), the
category of chain complexes of R-modules. By a chain complex X, we mean a
Z-indexed sequence of R-module homomorphisms

· · · −→ Xn+1
dn+1
−−−→ Xn

dn
−→ Xn−1 −→ · · ·

satisfying dndn+1 = 0 for all n ∈ Z. A morphism f : X −→ Y of chain complexes
is a chain map, that is, a collection of R-module homomorphisms fn : Xn −→ Yn

making all squares commute with the dn.

• The standard projective model structure on Ch(R) is most easily described
by a triple

Ch(R)proj =
(
dgP̃, Ẽ, All

)
(2)

of classes of chain complexes. Here,W = Ẽ is the class of all acyclic (i.e.
exact) chain complexes of R-modules; those for which all homology groups
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are 0. The chain complexes in the class Q = dgP̃ of cofibrant objects are
usually called DG-projective, (or sometimes semiprojective, or homotopi-
cally projective). More details on this model structure are given shortly in
Example 3. But we note now that the homotopy category of Ch(R)proj is
D(R), the derived category of R. A fundamental idea, discussed a bit more
shortly and made precise in Section 6.7, is that D(R) is the triangulated lo-
calization of Ch(R) with respect to the class Ẽ of acyclic complexes. More-
over, each chain complex X is isomorphic in the homotopy category, D(R),
to a DG-projective complex, QX.

• Dually, there exists the standard injective model structure on Ch(R), given
by the triple

Ch(R)inj =
(
All, Ẽ, dgĨ

)
(3)

of classes of chain complexes. Again,W = Ẽ denotes the class of all acyclic
chain complexes. But this time every chain complex is cofibrant while the
fibrant objects form the class dgĨ of DG-injective chain complexes. This
gives an injective model for the derived categoryD(R).

We will explain how to establish the existence of these two model structures
later, in Examples 3 and 4. We will also relate them to the standard fact that
ExtnR(M,N) may be computed by way of either a projective resolution of M, or
an injective coresolution of N.

The first big idea behind model categories is the construction of Ho(M), the
homotopy category ofM. In general, we want it to be a category with the same
objects asA, and in the abelian case it should, at the very least, be an additive
category for which the trivial objects have been “killed”. That is, each W ∈ W
should identify as a 0 object in Ho(M). But the additive category obtained by
setting the objects ofW to 0 is merely St(A), a category we will call the stable
category of M. By definition, the category St(A) has the same objects as A,
but its morphism sets are defined by

Hom(A, B) := HomA(A, B)/ ∼,

where ∼ is the equivalence relation defined by f ∼ g if and only if g− f factors
through some trivial object W ∈ W. The stable category St(A) is not the
homotopy category Ho(M), but it is an important first step. While the stable
category St(A) may be thought of as the additive localization with respect
toW, the homotopy category, Ho(M), may be thought of as the triangulated
localization with respect toW. This is made precise in Section 6.7, but let us
now note this: We also want any short exact sequence 0 −→ A −→ B −→ C −→ 0
in A to identify as a distinguished triangle in Ho(M), with the idea being that
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distinguished triangles hold onto much of the homological data encoded within
the class of short exact sequences. This condition implies in particular that any
monomorphism i : A −→ B, with trivial cokernel, Cok i ∈ W, shall become an
isomorphism in Ho(M). We call such a morphism i a trivial monic. Similarly,
the dual statement will be true: Each trivial epic, that is, epimorphism p : B −→
C with Ker p ∈ W, will become an isomorphism in Ho(M). This leads to the
idea that we wish to invert the class of all morphisms f which factor as f = pi,
where i is a trivial monic and p is a trivial epic. Such morphisms make up the
class of weak equivalences, which we denote by We.

Following a purely categorical approach that does not involve the classes Q
or R, one may formally invert the morphisms of We. With this approach one
defines the homotopy category Ho(M) := A

[
We−1

]
, by keeping the objects the

same asA, but defining the morphisms to be finite “zig-zags” ofA-morphisms
where we allow the reversal of any arrow in We; see Exercise 5.4.1 for more
details. This forces all weak equivalences to become isomorphisms and one
obtains a canonical functor γ : A −→ A

[
We−1

]
which is universally initial with

respect to the property of inverting the morphisms of We. The standard result
about Quillen model categories is that this construction does indeed produce a
category in the sense that we still have small hom-sets, but more importantly
that there is a more useful way to construct the homotopy category, Ho(M). For
our case of an abelian model category, M = (Q,W,R), we get the following
elegant theorem. To describe it, we need the notion of (co)fibrant approxima-
tions. Their existence follows immediately from the definition of a complete
cotorsion pair, as given above. Indeed since (Q,W∩R) is a complete cotorsion
pair, there exists for each object A, a short exact sequence

0 −→ RA
iA
−→ QA

pA
−−→ A −→ 0 (4)

with QA ∈ Q and RA ∈ W ∩ R. Although such a short exact sequence is not
unique, any such morphism pA is unique in St(A), up to a canonical isomor-
phism. We call any such QA a cofibrant approximation, or a cofibrant replace-
ment, of A. Note that pA is a trivial epic, so it will provide an isomorphism
QA � A in Ho(M). On the other hand, the dual notion is that of a fibrant
approximation (or fibrant replacement), RA, obtained by taking a short exact
sequence

0 −→ A
jA
−→ RA

qA
−−→ QA −→ 0 (5)

with RA ∈ R and QA ∈ Q ∩W. Objects in Q ∩ R are called bifibrant and by
a bifibrant approximation of A we mean RQA, that is, a fibrant approximation
of a cofibrant approximation of A.
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Theorem 1 (The Fundamental Theorem of Abelian Model Categories) Let
M = (Q,W,R) be an abelian model category (i.e. Hovey triple) on an abelian
category A. Then there is an additive category, Ho(M), called the homotopy
category ofM, whose objects are the same as those ofA but whose morphisms
are given by

Ho(M)(A, B) := Hom(RQA,RQB),

where these are morphism sets in the stable category, St(A), between any
choice of bifibrant approximations. Moreover, we have the following.

(1) The inclusion Q ∩ R ↪→ A induces an equivalence of categories

St(Q ∩ R)
'
−→ Ho(M),

whose inverse is given by any bifibrant approximation assignment RQ.
(2) There is a functor γ : A −→ Ho(M) which is the identity on objects but bi-

fibrant approximation on morphisms. It is a localization ofA with respect
to the class We (of all weak equivalences), and hence there is a canonical
isomorphism of categories

Ho(M) � A
[
We−1

]
.

(3) For any choice of cofibrant approximation QA and fibrant approximation
RB, there is a natural isomorphism Ho(M)(A, B) � Hom(QA,RB).

These results are all proved in Chapter 5, where our initital study of the ho-
motopy category takes place. Chapter 6 then studies the triangulated structure
that exists on the homotopy category. Our proofs are in the more general setting
of any Quillen exact category for which every split monomorphism admits a
cokernel. These are the so-called weakly idompotent complete exact categories
which we find to be the most natural abstract setting to develop the theory of
abelian model categories.

Examples: Model Structures for the Derived Category of R

As promised, the remainder of this introductory section will illustrate some
of the most well-known examples of abelian model structures for the cases
A = R-Mod, and A = Ch(R). We start by describing the construction of the
standard projective and injective model structures on Ch(R).

Through Hovey’s Correspondence, the problem of showing a cotorsion pair
to be complete corresponds to proving the Factorization Axiom for model cat-
egories. Quillen’s small-object argument is typically the tool used to construct
such factorizations. Translating back to the abelian case, this corresponds to the
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notion of a cotorsion pair that is cogenerated by a set (as opposed to a proper
class). Using the notation alluded to above, after the definition of a cotorsion
pair, a set S is said to cogenerate a cotorsion pair (X,Y) if S⊥ = Y. It just
means Y ∈ Y if and only if every short exact sequence 0 −→ Y −→ Z −→ S −→ 0 in
A, with S ∈ S, splits. Said another way, Y ∈ Y if and only if Ext1A(Y, S ) = 0
for all S ∈ S. Chapter 9 details a version of Quillen’s small object argument
that is useful for constructing complete cotorsion pairs in very general exact
categories. Our approach is inspired by the efficient exact categories introduced
in Saorı́n and Šťovı́ček [2011]. The following is a special case of the powerful
Theorem 9.34; see also Corollary 9.40 and Corollary 12.4.

Theorem 2 (Eklof and Trlifaj [2001]) Let A = R-Mod, or Ch(R). Then any
set S (not a proper class) of objects in A cogenerates a complete cotorsion
pair (⊥(S⊥),S⊥).

With this, we can easily construct the standard projective model structure
Ch(R)proj =

(
dgP̃, Ẽ, All

)
, described earlier in (2). A comment on notation:

Given any R-module M, we denote by S n(M) the chain complex consisting
only of M in degree n and 0 elsewhere. We call S n(M) the n-sphere on M.

Example 3 (The Standard Projective Model Structure for D(R)) Again, Ẽ
denotes the class of all acyclic (i.e. exact) chain complexes of R-modules. Let
S = {S n(R)} be the set of all n-spheres on R, where here R is considered as
a (left) R-module over itself. There is an isomorphism Ext1Ch(R)

(
S n+1(R), X

)
�

HnX, from which it follows that S⊥ = Ẽ. So by Theorem 2 we have a complete
cotorsion pair,

(
⊥Ẽ, Ẽ

)
. This is the key to the existence of the Hovey triple

Ch(R)proj =
(
dgP̃, Ẽ, All

)
,

where dgP̃ := ⊥Ẽ is the class of DG-projective chain complexes. The DG-
projective complexes are characterized as those complexes P such that each
Pn is a projective R-module and any chain map P −→ E is null homotopic
whenever E is an exact chain complex. The latter condition is automatic if P
is a bounded below complex of projectives.

The chain homotopy category of R, denoted K(R), is the category whose ob-
jects are chain complexes but whose morphisms are chain homotopy classes of
chain maps. Results of Sections 10.5 and 10.6 relate abelian model structures
on Ch(R) to the classical notion of Verdier quotients of K(R). In particular, the
formalities associated to the triangulated structure on Ho(Ch(R)) (such as the
suspension functor, Σ, the mapping cone, Cone( f ), etc.) will typically coincide
with the classical notions in K(R). In the current case, Ho

(
Ch(R)proj

)
identifies
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as the Verdier quotientD(R) := K(R)/Ẽ, and shows the category to be equiva-
lent to the isomorphic closure of dgP̃ in K(R). In the language of Spaltenstein
[1988], these are the precisely the K-projective complexes. �

Example 3 is a special case of Corollary 10.42 where the projective model
structure is constructed in a far more general setting.

It is often stated that model categories encompass homological algebra. Let
us give an example, beyond the above construction of D(R), supporting this
sentiment. A well-known fact in algebra is that for two given R-modules M and
N, the cohomology groups ExtnR(M,N) may be computed by taking a projective
resolution

· · · −→ P2
d2
−→ P1

d1
−→ P0

ε
−→ M −→ 0 (6)

of M, and then taking the nth-cohomology group of the cochain complex ob-
tained by applying HomR(−,N) to the projective resolution

P◦ ≡ · · · −→ P2
d2
−→ P1

d1
−→ P0 −→ 0.

That is,

ExtnR(M,N) � Hn[HomR(P◦,N)] � K(R)(P◦, S n(N)).

From the abelian model category perspective, the projective resolution P◦
ε
−→

M −→ 0 of (6) is a cofibrant approximation of M in the projective model struc-
ture Ch(R)proj =

(
dgP̃, Ẽ, All

)
. To see this, we identify M with the 0-sphere

complex S 0(M). Note that the projective resolution of (6) may then be con-
strued as a short exact sequence of chain complexes

0 −→ E −→ P◦
ε
−→ S 0(M) −→ 0.

The projective resolution P◦ is indeed a DG-projective complex while the ker-
nel E is an exact complex. Referring to the very definition of a cofibrant ap-
proximation, given previously in Equation (4), this means that the projective
resolution P◦ is a cofibrant approximation of S 0(M) in the projective model
structure Ch(R)proj. So by part (3) of the Fundamental Theorem 1,

Ho
(
Ch(R)proj

) (
S 0(M), S n(N)

)
� Hom(P◦, S n(N)).

But in this case we have Hom(P◦, S n(N)) = K(R)(P◦, S n(N)); in the stable
category St(Ch(R)proj), morphisms with cofibrant domain are precisely chain
homotopy classes of chain maps. Putting all this together we have

Ho
(
Ch(R)proj

) (
S 0(M), S n(N)

)
� ExtnR(M,N).

Note that this identifies ExtnR(M,N) with a morphism set in the homotopy cat-
egory.
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On the other hand, recall that ExtnR(M,N) may be computed by taking an
injective coresolution in the second variable N. This corresponds to the ex-
istence of the dual standard injective model structure described earlier in (3).
However, the dual of Theorem 2 doesn’t hold, simply because R-modules don’t
satisfy the dual properties needed to carry out the constructions. The following
example indicates the set-theoretic flavor of arguments that are typically used
to construct (cofibrantly generated) abelian model structures.

Example 4 (The Standard Injective Model Structure for D(R)) Again, let
Ẽ denote the class of all exact chain complexes. Let κ be a regular cardinal
number satisfying κ ≥ max{|R| , ω}. Up to isomorphism, there exists a set (that
is not a proper class) of exact chain complexes E with each |En| ≤ κ. Let Ẽκ
denote a set of isomorphism representatives for all the exact chain complexes
with this property. It is not too hard to argue that for each exact chain complex
E ∈ Ẽ, there exists an exact subcomplex E′ ⊆ E with each |E′n| ≤ κ. It follows
from this that the set Ẽκ cogenerates a complete cotorsion pair

(
Ẽ, Ẽ⊥

)
; see

Exercise 10.9.1. This provides the abelian model structure,

Ch(R)inj =
(
All, Ẽ, dgĨ

)
,

where this time, the class dgĨ := Ẽ⊥ is the class of DG-injective chain com-
plexes. Such complexes are characterized as chain complexes I of injective
R-modules such that any chain map E −→ I is null homotopic whenever E is
an exact chain complex. In other words, these are Spaltenstein’s K-injective
complexes but with injective components. �

Example: Modules over Iwanaga–Gorenstein Rings

The category of R-modules over an Iwanaga–Gorenstein ring possesses a beau-
tiful homotopy theory which can nicely be described in terms of abelian model
structures. This corresponds to part of the subject known as Gorenstein homo-
logical algebra, as presented in the book by Enochs and Jenda [2000].

Let’s first consider some immediate consequences of having an abelian
model structure M = (Q,W,R) on R-Mod, regardless of the ring R we are
considering. If we are to have such anM, then since (Q∩W,R) is a cotorsion
pair, it is immediate that Q ∩ W must contain all projective R-modules. On
the other hand,W∩R must contain all injective modules, and so the classW
must contain all projective and injective modules. But then by the 2 out of 3
property on short exact sequences,W must contain any module of finite injec-
tive dimension, or of finite projective dimension. Consequently, the smallest
class of trivial objects possible is the class of all modules having either finite
injective dimension, or finite projective dimension.
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In the case of an Iwanaga–Gorenstein ring R, there exist abelian model
structures on R-Mod for which W is nothing more than this minimal class
of modules. In fact, Iwanaga–Gorenstein rings are characterized as the two-
sided Noetherian rings for which the class of all (left and right) modules of
finite injective dimension coincides with the class of all (left, resp. right) mod-
ules of finite projective dimension. This class of Noetherian rings includes the
simplest case of quasi-Frobenius rings which are characterized by the prop-
erty that a module is injective if and only if it is projective. A key example
is the group ring R = k[G] where k is a field and G is a finite group. In rep-
resentation theory, the stable module category St(k[G]) naturally arises from
k[G]-Mod by killing the projective–injective modules. Formally, the objects of
St(k[G]) are just k[G]-modules, but morphisms are identified by the relation
f ∼ g if and only if g − f factors through a projective–injective k[G]-module.
The Tate cohomology groups of G reside as morphism sets in St(k[G]). Be-
yond quasi-Frobenius rings, Iwanaga–Gorenstein rings include, for instance,
integral group rings Z[G] and p-adic group rings Zp[G] over finite groups G.

Example 5 (Hovey [2002]) Let R be an Iwanaga–Gorenstein ring and let
W denote the class of all (say left) R-modules of finite projective dimension,
equivalently, finite injective dimension. Then we have the following.

• There is an abelian model structureMinj = (All,W,GI) on R-Mod in which
every module is cofibrant. The modules in GI are called Gorenstein injec-
tive, and they are precisely the modules appearing as a cycle in some (pos-
sibly unbounded) exact chain complex of injective modules.

• There is an abelian model structure Mproj = (GP,W, All) on R-Mod in
which every module is fibrant. The modules in GP are called Gorenstein
projective, and they are precisely the modules appearing as a cycle in some
exact chain complex of projective modules.

Since these two models share the same class of trivial objects they each model
the same homotopy category which is a generalization of St(R), the stable mod-
ule category of a quasi-Frobenius ring R. Referring to the Fundamental Theo-
rem 1, the homotopy category is equivalent to each of the two stable module
categories, St(GI), and St(GP). �

Examples: Frobenius Categories and Chain Homotopy Categories

Let R be a quasi-Frobenius ring, such as R = k[G]. Since the injective mod-
ules and projective modules coincide we get that the model structures Minj

and Mproj of Example 5 each coincide and become the simple Hovey triple
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M = (All,W, All) on R-Mod. So the associated homotopy category, Ho(M),
is exactly the stable module category St(k[G]). These properties are reflect-
ing that R-Mod is a Frobenius category whenever R is a quasi-Frobenius ring.
Such structures will appear throughout this book. Let us give another standard
example of a Frobenius category, one arising in the context of chain complexes
of modules over a general ring R. Since model categories capture the idea of
homotopy it is not surprising that K(R), the chain homotopy category of R, is
itself the homotopy category of an abelian model structure on Ch(R).

Example 6 (Frobenius Model Structure for K(R)) Let Ch(R)dw denote the
category of chain complexes along with the class of all short exact sequences

0 −→ W
f
−→ X

g
−→ Y −→ 0

that are degreewise split exact. That is, each 0 −→ Wn
fn
−→ Xn

gn
−→ Yn −→ 0 is a

split exact sequence of R-modules. Then Ch(R)dw is an example of a Quillen
exact category in the sense studied in Chapter 1. We get a model structure
on Ch(R) which is abelian relative to Ch(R)dw, and it may be described quite
succinctly by a Hovey triple

MK(R) = (Ch(R),W,Ch(R)). (7)

This time W denotes the class of all contractible chain complexes; they are
precisely the projective–injective objects of Ch(R)dw. Since two chain maps
are chain homotopic if and only if their difference factors through a con-
tractible complex, it follows again from the above Fundamental Theorem 1
that Ho(MK(R)) = K(R). �

Chain complexes over general additive categories are studied in Chapter 10.
The above example is a special case of part of Theorem 10.20.

The relevance of Frobenius categories to the theory of abelian model cat-
egories goes far beyond providing easy examples of such model structures.
The vast majority of the abelian model structures that have arisen in appli-
cations have been hereditary model structures. These are studied in Chapter
8. A notable feature is that their homotopy categories are triangle equivalent
to the stable category of a Frobenius category with its classical triangulation
from Happel [1988]. See Theorem 8.6.

Examples: Flat Model Structures on Modules and Complexes

Note that Example 3 lifts the canonical projective cotorsion pair, (P,A) on
R-Mod, to the standard projective model structure on Ch(R). On the other
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hand, Example 4 lifts the canonical injective cotorsion pair, (A,I), to the
standard injective model structure on Ch(R). In general, there are infinitely
many intermediate cotorsion pairs that will lift to an abelian model structure
on Ch(R). The following is a special case of Theorem 10.49 which is stated for
Grothendieck categories.

Example 7 (General Model Structures for D(R)) Let (X,Y) be an heredi-
tary cotorsion pair on R-Mod, that is cogenerated by a set. Then it lifts to an
hereditary model structure on chain complexes,

Ch(R)(X,Y) =
(
dgX̃, Ẽ, dgỸ

)
, (8)

whose homotopy category again is equivalent to the derived category, D(R).
The complexes in dgX̃ (resp. dgỸ) are built up from R-modules in X (resp.
Y). �

An important example comes from Enochs’ flat cotorsion pair, (F ,C), in
R-Mod. Here, F is the class of all flat R-modules and C := F ⊥ is the class
of all cotorsion R-modules. Using theory developed in Chapter 9, the reader
will be asked to prove the well-known fact that (F ,C) is a complete hereditary
cotorsion pair, cogenerated by a set S; see Exercise 9.9.4. As a special case
of Example 7, we have a flat model structure Ch(R) f lat =

(
dgF̃ , Ẽ, dgC̃

)
for

the derived category. Complexes in dgF̃ are called DG-flat and these include
all DG-projective complexes. However, we develop technical tools in Section
9.10 to simplify the description of the fibrant objects. It turns out that, unlike
the situation for the classes dgĨ, dgP̃, and dgF̃ , every (even unbounded) chain
complex of cotorsion modules is in the class dgC̃ of fibrant objects. This result
was proved by Bazzoni, Cortés-Izurdiaga, and Estrada [2020].

Example 8 (The Flat Model Structure for D(R)) Let dwC̃ denote the class
of all chain complexes that are degreewise cotorsion, meaning C ∈ dwC̃ if
and only if each Cn is a cotorsion R-module. Then Enochs’ flat cotorsion pair,
(F ,C), lifts to an hereditary model structure on chain complexes,

Ch(R) f lat =
(
dgF̃ , Ẽ, dwC̃

)
, (9)

for the derived category,D(R). In particular, dwC̃ = dgC̃ is the class of fibrant
objects. The interested reader will be able to prove this result from the tools
we develop in Section 9.10; see Exercises 10.9.4 and 10.9.6. �

Although sheaves and schemes are beyond the scope of this book, it should
be pointed out that the significance of the flat model structure is that it gen-
eralizes to quasi-coherent sheaves over quite general schemes. Its existence
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on the category of complexes of quasi-coherent sheaves over such a scheme
provides an abelian monoidal model structure which is a nice way to put the
derived tensor product functor on solid theoretical ground. We study abelian
monoidal model structures in Chapter 7, showing in particular that their homo-
topy categories are always tensor triangulated in the sense of Balmer [2005].
See Example 10.51 for further comments on the flat model structure for quasi-
coherent sheaves.

Returning to the example of modules over an Iwanaga–Gorenstein ring R,
there is another interesting point. We call any abelian model structure such as
Minj = (All,W,GI) from Example 5 an injective model structure. Here, every
object is cofibrant, equivalently, the trivially fibrant objects are precisely the
injectives. It follows from a technical result, Corollary 9.57, that if there is to
exist an abelian model structure of the formM = (All,W,R) on R-Mod, then
the class W must be closed under direct limits. So it then follows from the
Govorov–Lazard Theorem thatW must even contain all flat R-modules. Then
again, the 2 out of 3 property forW implies that it must contain all modules
of finite flat dimension. In particular, for Iwanaga–Gorenstein rings, any flat
module has finite projective/injective dimension, and the class W of trivial
objects is precisely the class of modules of finite flat dimension.

Example 9 Let R be an Iwanaga–Gorenstein ring and letW denote the class
of all R-modules of finite projective (equivalently finite injective, or finite flat)
dimension. There is an abelian model structureM f lat = (GF ,W,C) on R-Mod
in which the fibrant objects form the class C of cotorsion R-modules. The mod-
ules in GF are called Gorenstein flat, and they are precisely the modules ap-
pearing as a cycle in some exact chain complex of flat modules. Its homotopy
category coincides with those of Example 5 and shows them to also be equiv-
alent to St(GF ∩ C).

For which rings R can we define such nice stable module categories? Such
questions have motivated much work in Gorenstein homological algebra. For
instance, the results of Examples 5 and 9 generalize to the larger class of Ding–
Chen rings [Gillespie, 2017b]. More amazing is that it was shown in Šaroch
and Šťovı́ček [2020] that for a general ring R, there exists a complete cotorsion
pair (GF ,GF ⊥) where GF is the general class of all Gorenstein flat modules,
as in Enochs and Jenda [2000]. On the other hand, they show that we always
have a complete cotorsion pair (⊥GI,GI), where GI is the general class of
all Gorenstein injective modules. Both of these cotorsion pairs do indeed cor-
respond to abelian model structures on R-Mod although their trivial objects
may not coincide for general rings. As of the writing of this book, it is an open
question whether or not the dual statement about Gorenstein projectives holds.
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