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ON POINT-SYMMETRIC TOURNAMENTS

BY
BRIAN ALSPACH(*)

1. Introduction. A fournament is a directed graph in which there is exactly one
arc between any two distinct vertices. Let «(7") denote the automorphism group
of T. A tournament T is said to be point-symmetric if «(T) acts transitively on the
vertices of T. Let g(n) be the maximum value of |#(7T)| taken over all tournaments

of order n. In [3] Goldberg and Moon conjectured that g(n) < V3"~ with equality
holding if and only if # is a power of 3. The case of point-symmetric tournaments
is what prevented them from proving their conjecture. In [2] the conjecture was
proved through the use of a lengthy combinatorial argument involving the struc-
ture of point-symmetric tournaments. The results in this paper are an outgrowth
of an attempt to characterize point-symmetric tournaments so as to simplify the
proof employed in [2].

The construction discussed in §2 was used in [1] as a means of producing regular
tournaments. The analogous construction for graphs was employed by J. Turner
in [6] independent of any knowledge of [1]. There is an obvious generalization to
directed graphs.

We list some of the terminology used in this paper. If there is an arc from the
vertex u to the vertex v in 7, we write (u, v) € T. If S is a subset of the vertex set of
T, then {S) denotes the subtournament whose vertex set is .S. We use the symbol
“~* to denote isomorphism between tournaments. The sets O(u)={ve T: (u,v) € T}
and Fw)={veT:(v,u) €T} are called the outset and inset of u, respectively.
The score s(u) of the vertex u is given by s(u)=|0(u)|. The score sequence of T is
the sequence (53, Ss, . . ., 87;) of scores of the respective vertices of T written so

that §;<s;<---<sq. Throughout this paper all subscripts are understood
modulo 2n+1.

2. Main results. Consider a fixed integer of the form 2n+1, n>1. Let
S={cy,...,o,} be a set of n distinct integers chosen from 1, 2, ..., 2n with the
property that o;+e,;%#2n+1 for any two «;, ;; in S. Construct a directed graph T
with vertices vo, vy, . . ., Us, as follows: There is an arc from v; to v; if and only if
j—i=oy (mod 2n+1) for some «, € S. It is not difficult to see that T is a regular
tournament of degree n. Any tournament that is constructible in the above manner
is called a rotation tournament and S is called the symbol of the rotation tourna-
ment.
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It is easy to see that the permutation (vo ;. . . vg,) is an automorphism of 7"and
this proves the following result.

PROPOSITION 1. A rotation tournament is a point-symmetric tournament.

Moreover, if T is a tournament of order m and the automorphism group of T
possesses an m-cycle (vo vy...vn-1), then T is a rotation tournament with
symbol S={j: (vo, v;) € T}. The following proposition has been proved.

PROPOSITION 2. A tournament T of order m is a rotation tournament if and only
if «(T) possesses an m-cycle.

We are interested in the question of whether or not the construction given above
produces all the point-symmetric tournaments. By Propositions 1 and 2 an equiva-
lent question is the following: If T is a point-symmetric tournament of order 2n+1,
does «(T) possess a (2n+1)-cycle? In the case that 2rn+1 is a prime the latter
question is easy to answer. For if 2n+1 is a prime and «(T) acts transitively on the
vertices of 7, then 2n+1 divides |«(T)| and, thus, «(T) contains a (2n+ 1)-cycle
[6, Theorem 3.2 and Exercise 3.12]. We have proved the following result.

THEOREM 1. A tournament T of prime order is point-symmetric if and only if it
is a rotation tournament.

The first non-prime case to consider is 2n+1=9. There are 15 regular tourna-
ments of order 9 of which three are point-symmetric. It can be verified directly
that all three of them are also rotation tournaments. However, we shall give a
proof that every point-symmetric tournament of order 9 is a rotation tournament
as it employs a technique that is useful for point-symmetric tournaments of larger
composite order.

Let T be a point-symmetric tournament of order 9. Let u, be a fixed vertex of T
and let «,, denote the stabilizer of u,, i.e., #,,={o € a(T): o(up)=u,}. Notice that
@y, is, in a very natural way, the automorphism group of {(T'—uy). Since O(u)
contains four elements and the orbits of the automorphism group of any tourna-
ment have odd cardinality because every permutation in an odd order permutation
group is a product of disjoint cycles of odd length and any automorphism group
of a tournament has odd order by [4], «,, must fix at least one element of O(u,).
Let u, be a vertex of O(u,) fixed by ,,. Therefore, if H={c € a(T): s(up)=u',u' a
fixed vertex of T}, then each ¢ € H maps u; to the same vertex of 7. In particular,
every o € «(T) that maps u, to u; maps u; to the same vertex of 7, call it u,. Since
{T—uyy~<{T—u,y, each o € «(T) that maps u; to u, maps u, to the same vertex
of T, call it u;. Either us=u, or we can continue this process until we obtain a
sequence ug, s, . . ., 4; of distinct vertices of 7" such that every o € «(T) for which
o(uo)=u, also satisfies o(u;)=u,, o(uz)=ug,...,o;-1)=u; and o(u)=u, If
Ug, Uy, . . ., u; does not exhaust all the vertices of T, pick a ugy € T not appearing in
the sequence. For every 7 € «(T) such that 7(u,)=ug we also have 7(u)=uy, .. .,
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t(u)=u; with {ug, uy, ..., u} N {ug, ui,. .., u;y=. Hence, either ug, uy, ..., u;
exhausts all the vertices of T or the vertices of T can be decomposed into mutually
disjoint sequences of vertices of T having the same property as ug, 1, - . ., 4; With
respect to automorphisms and such that <{{u,, us, . .., u}>~<{{vy, v4, . . ., v;}) via
the isomorphism u —> vy, . .., t; = v;, Where vy, vy,...,v; denotes any of the
other sequences.

If ug, uq, . . ., ug exhausts all nine vertices of T, then o=(u, u;...ug) is an auto-
morphism of 7. There is only one possibility remaining, namely, «(7T) is imprimi-
tive with three blocks (see [7]), say {uo, Ui, Us}, {Us, Us, Us}, and {us, U, ug}. Every
o € a,,, the stabilizer of u,, fixes uo, u;, and u,. Suppose some o € 2,, moves one
of the other vertices. Without loss of generality assume o(u3)7#us. Then either
o(us)=uy, or o(uz)=us for otherwise ¢ would contain an even cycle in its disjoint
cycle decomposition which cannot happen.

By considering what happens to the remaining vertices of 7" under any auto-
morphism containing the 3-cycle (4o, 1, u5), we see that all arcs between two dis-
tinct 3-blocks must have the same orientation. Therefore, (4o ug tg Uy Uy Uy Ug Us Ug)
€ «(T) and T is a rotation tournament.

We may assume every o € «,, fixes every vertex of T, that is, |2,,| =1 which
implies |«(T)|=9. To within isomorphism there are two transitive permutation
groups of order nine in S,. One is cyclic and generated by a 9-cycle and, hence,
corresponds to a rotation tournament. The other is generated by two permutations
a4, g, of the form o, =(123)456)789) and o,=(147)(258)(369). By using
the process described in the addendum to [3] it can be shown that the latter permu-
tation group is not the automorphism group of a tournament of order nine.
Therefore, every point-symmetric tournament of order nine is a rotation tourna-
ment.

We now consider the point-symmetric tournaments of order fifteen. Let a,
denote the stabilizer of the vertex u in a point-symmetric tournament 7" of order
fifteen. If the orbits of =, are {u}, O(u), and #(u), then the transitive constituents of
a, [see 7] in O(u) and F(u) must each contain a 7-cycle. Therefore, <O(u)> and
{F)> are both rotation tournaments of order seven of which there are two to
within isomorphism. By considering the four possible cases for <0O(u)> and {(#(v)>
it can be shown through a tedious argument that it is impossible for the orbits of
a, to be {u}, O(u), and #(u). Therefore, «, fixes a point of either O(u) or #(u). We
assume without loss of generality that ., fixes a point of O(u) since T and T* have
the same automorphism group where T* denotes the converse tournament of 7.

We proceed as before via some fixed point of @(x) under «,. If &(T) is primitive,
then T must be a rotation tournament. Otherwise there are three 5-blocks or five
3-blocks. Suppose we have the blocks {uy, ug, Ug, Ug, Us}, {Ug, U, Ug, Ug, Uso}, and
{u11, Urg, Uyg, Uy, Uys). Let By={uq, us, ..., us}y, Bo=Cug, ts, ..., u1n}», and
By={{u11, Uy, - . ., U3}y, If any automorphism o € «,,, the stabilizer of u;, moves
some vertex in B; or B,, then following the argument used in the order nine case
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we see that all arcs between two distinct B;’s must have the same orientation and,
therefore, the permutation (uy ug Uyq Ug Uy Uyg. . .Us Uy Uys5) € @(T). Now suppose
we have the decomposition {u;, ug, ug}, {4, us, Ug}, {7, Ug, Ug}, {U10, U131, U1}, and
{uss, U4, U35} Where each set of three vertices forms a 3-block in 7. Notice that
2(T) induces an odd order transitive permutation group on the five 3-blocks as
the object set. Since no odd order transitive subgroup of Ss contains a 3-cycle,
there is no ¢ € 2(T') that maps exactly three of the 3-blocks onto different 3-blocks.
If any o € @,, moves some vertex in another 3-block, say o(uy)#u,, then by the
preceding remark and the fact there are no even cycles appearing in the cycle
decomposition of o, we have that o(u,) =u5 or ug and all the arcs between {{u;, us,
us}y and {uy, us, us}) have the same orientation. By examining o’s action on the
remaining three 3-blocks we see that all the arcs between two distinct 3-blocks
have the same orientation. Thus there is a 15-cycle in «(T). Therefore, we are left
with the case that |z, | =1, i.e., |&(T)| =15. However, to within isomorphism there
is only one transitive permutation group in S;5 of order fifteen and it is generated
by a 15-cycle. Therefore, every point-symmetric tournament of order fifteen is a
rotation tournament.

Consider the following three 7 x 7 matrices:

0 1 1 1 0 0 07 1 0 0 0 0 0 O
0011100 0010000
0001110 000O0T1O00
A;=]0 0 0 0 1 1 1|, A4,=1]0 0 0 O0 0 O 1},
1000011 01 000O0O00D0
1100001 0001000
|1 110 0 0 O] |0 000 01 O
0 1 1 1 1 1 17
1111011
1011111
As=1]1 1 1 1 1 0 1
1101111
1111110
|1 11011 1]
Let T be the tournament of order twenty-one whose incidence matrix is given
by
A, | Az | 4s
As | 4, | 4s
Ay | As | A,

The score sequence of <O(u,)> is (3,3 4,4,4,5,5,6,7) and the four vertices
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with score four form a transitive quadruple implying the automorphism group of
{O(u,)) is the identity group. Similarly, the score sequence of {#(u,)) is (2, 3, 4, 4,
55,5,5,6,6) and the four vertices with score five form a strongly connected
quadruple implying the automorphism group of {#(u,)) is the identity group. In
particular, |z, |=1.

It is easy to check that the two permutations

o = (uy ug uy5)(Ug Ug Use). . .(Uq Uys Ugy)
and
7 = (UyUqUigsUstglia)(Ughty gty 1 1ol 41 Uy 0) (U 5Uy a1 U1 7laoly 6U1)

are in «(T). Since 4,, ={1}, the given permutations ¢ and , with 7" =0®=1, generate
a group of order 21. Observing that (¢7)(u;) =u;, while (70)(u;) =u,3, we see that
the group is non-abelian, hence non-cyclic, and, therefore, contains no element of
order 21. Hence, T is an example of a point-symmetric tournament that is not a
rotation tournament.

An anti-automorphism of a tournament 7T is a mapping ¢ of the vertex set of T
onto itself satisfying (¥, v) € T if and only if (o(u), o(v)) ¢ T for every pair of distinct
vertices # and v belonging to T. A tournament T is said to be self-converse if it has
an anti-automorphism, that is, if T~T*,

PROPOSITION 3. A rotation tournament is self-converse.

Proof. Let T be a rotation tournament with vertices ug, uy, . . ., Ug,. The permu-
tation o defined by o(u;)=u5,_; 41 is easily seen to be an anti-automorphism of 7.
Thus T~T*.

An anti-automorphism of a tournament 7 composed with an automorphism of
T results in an anti-automorphism of 7. Therefore, if 7 is point-symmetric and
self-converse, there exists an anti-automorphism of 7 that fixes any vertex one
chooses. Let T denote the order twenty-one tournament exhibited above. If T is
self-converse, there exists an anti-automorphism of T that maps O(x) onto S (u)
with the four vertices of score four in <O(u)> going onto the four vertices of score
five in {#(u)). But since one quadruple is transitive and the other is strongly con-
nected we see that no such anti-automorphism exists. Therefore, T is not self-
converse.

This suggests the following question: If T is a self-converse point-symmetric
tournament, is T a rotation tournament ?

3. Enumeration of rotation tournaments. We now consider the problem of
enumerating the rotation tournaments of a given order. Let C, denote the set of
all symbols of the rotation tournaments of order 2n+1 so that |C,|=2". For each
integer m satisfying 1 <m <2n+ 1 with m and 2n+ 1 relatively prime define P, ,, by
P, .(S)=mS={x;=me(mod 2n+1): 1<x,<2,} where SeC,. It is easy to see
P, . is a permutation on C,. The set of all such P, , form a permutation group,
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call it G,, acting on C,. The number of orbits in C, under the group G, is given by
the result [5, Theorem 3.21]

1
Ot D) GZn F(Py,m)

where F(P,,,) is the number of symbols fixed by P, , and ¢ denotes the Euler
g-function. Denote the number of orbits by g(n).

If 8'=mS=P, ,(S), then the mapping = defined on (uy, uy,..., tz;) by
(u;) =u'y,; is an isomorphism between the tournaments corresponding to S and S'.
Thus, g(n) gives us an upper bound for the number of non-isomorphic rotation
tournaments of order 2n+1. The results obtained in [6] apply equally well to
circulant tournament matrices so that in case 2n+1 is a prime we have that two
rotation tournaments are isomorphic if and only if their corresponding symbols
are in the same orbit. Theorem 1 then proves the following result.

THEOREM 2. If 2n+1 is a prime, then the number of non-isomorphic point-sym-
metric tournaments of order 2n+1 is

1
g(2n+ l) = 2_n GZ F(Pn,m)'

Letting r(n) denote the number of non-isomorphic rotation tournaments of
order 2n+1 and #(n) denote the number of non-isomorphic point-symmetric
tournaments of order 2n+ 1 we have the following table.

n g(n) r(n) t(n)
1 1 1 1
2 1 1 1
3 2 2 2
4 4 3 3
5 4 4 4
6 6 6 6
7 16 16 16
8 16 16 16
9 30 30 30

10 88
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