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1. Introduction. A tournament is a directed graph in which there is exactly one 
arc between any two distinct vertices. Let a(T) denote the automorphism group 
of T. A tournament T is said to be point-symmetric if a(T) acts transitively on the 
vertices of T. Let g(ri) be the maximum value of \&(T)\ taken over all tournaments 
of order n. In [3] Goldberg and Moon conjectured that g(n) < V 3 n _ 1 with equality 
holding if and only if n is a power of 3. The case of point-symmetric tournaments 
is what prevented them from proving their conjecture. In [2] the conjecture was 
proved through the use of a lengthy combinatorial argument involving the struc­
ture of point-symmetric tournaments. The results in this paper are an outgrowth 
of an attempt to characterize point-symmetric tournaments so as to simplify the 
proof employed in [2]. 

The construction discussed in §2 was used in [1] as a means of producing regular 
tournaments. The analogous construction for graphs was employed by J. Turner 
in [6] independent of any knowledge of [1]. There is an obvious generalization to 
directed graphs. 

We list some of the terminology used in this paper. If there is an arc from the 
vertex u to the vertex v in T, we write (u, v) e T. If S is a subset of the vertex set of 
T, then <£> denotes the subtournament whose vertex set is S. We use the symbol 
" ~ " to denote isomorphism between tournaments. The sets (9{u)—{v e T: (u, v) e T} 
and Jr(u)={veT:(v,u)eT} are called the outset and inset of u9 respectively. 
The score s(u) of the vertex u is given by s(u) = \@(u)\. The score sequence of T is 
the sequence (sl9 s2,..., sm) of scores of the respective vertices of T written so 
that s1<s2<- — <sm. Throughout this paper all subscripts are understood 
modulo 2n+l. 

2. Main results. Consider a fixed integer of the form 2n+l, n>\. Let 
S={<xl9..., an} be a set of n distinct integers chosen from 1, 2 , . . . , In with the 
property that ai + a J^2«4-l for any two ai9 a; in S. Construct a directed graph T 
with vertices v0, vl9..., v2n as follows: There is an arc from v{ to Vj if and only if 
j—i=ak (mod 2n+1) for some ak e S. It is not difficult to see that T is a regular 
tournament of degree n. Any tournament that is constructible in the above manner 
is called a rotation tournament and S is called the symbol of the rotation tourna­
ment. 
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It is easy to see that the permutation (v0 v1... v2n) is an automorphism of T and 
this proves the following result. 

PROPOSITION 1. A rotation tournament is a point-symmetric tournament. 

Moreover, if T is a tournament of order m and the automorphism group of T 
possesses an w-cycle (v0v1...vm-.1)9 then T is a rotation tournament with 
symbol S={j: (v0, v3) e T). The following proposition has been proved. 

PROPOSITION 2. A tournament T of order m is a rotation tournament if and only 
if a(T) possesses an m-cycle. 

We are interested in the question of whether or not the construction given above 
produces all the point-symmetric tournaments. By Propositions 1 and 2 an equiva­
lent question is the following : If T is a point-symmetric tournament of order 2n+l> 
does a(T) possess a (2« + l)-cycle? In the case that 2n + l is a prime the latter 
question is easy to answer. For if In + 1 is a prime and a{T) acts transitively on the 
vertices of T, then 2n+l divides \&(T)\ and, thus, u(T) contains a (2«+l)-cycle 
[6, Theorem 3.2 and Exercise 3.12]. We have proved the following result. 

THEOREM 1. A tournament T of prime order is point-symmetric if and only if it 
is a rotation tournament. 

The first non-prime case to consider is 2n+\—9. There are 15 regular tourna­
ments of order 9 of which three are point-symmetric. It can be verified directly 
that all three of them are also rotation tournaments. However, we shall give a 
proof that every point-symmetric tournament of order 9 is a rotation tournament 
as it employs a technique that is useful for point-symmetric tournaments of larger 
composite order. 

Let T be a point-symmetric tournament of order 9. Let u0 be a fixed vertex of T 
and let aUo denote the stabilizer of u0, i.e., ^Wo={a e U{T): O(U0) = U0}. Notice that 
aUo is, in a very natural way, the automorphism group of <JT— U0}. Since 0(wo) 
contains four elements and the orbits of the automorphism group of any tourna­
ment have odd cardinality because every permutation in an odd order permutation 
group is a product of disjoint cycles of odd length and any automorphism group 
of a tournament has odd order by [4], uUo must fix at least one element of 0(u0). 
Let Wi be a vertex of &(u0) fixed by aUo. Therefore, if H={a e ^(7) : a(w0) = w', u' a 
fixed vertex of T}, then each GE H maps ux to the same vertex of T. In particular, 
every a e a(T) that maps u0 to ux maps ux to the same vertex of T, call it u2. Since 
<r~w0>—<T— "lX each oea(T) that maps wx to u2 maps u2 to the same vertex 
of T9 call it u3. Either u3 = u0 or we can continue this process until we obtain a 
sequence u0i uu ..., % of distinct vertices of T such that every a e a(T) for which 
o(u0) = u1 also satisfies o(ux) = u29 <j(u2) = u3y..., cr(wy_1) = wy, and o(u5) = uQ. If 

t/0, ul9..., u3- does not exhaust all the vertices of T, pick a w J e T not appearing in 
the sequence. For every T E a(T) such that T(«0) = U'Q we also have r(u1) = u[,..., 
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liu^ — u] with {w0, ul9..., uj\ n {we, u[y.. .,UJ}= 0. Hence, either u09ul9 . . . , Uj 
exhausts all the vertices of Tor the vertices of Tcan be decomposed into mutually 
disjoint sequences of vertices of T having the same property as u09 ul9..., wy with 
respect to automorphisms and such that <{w0, ul9.. .9 u3}}~({v09 vl9..., i?y}> via 
the isomorphism u0 -> v09..., wy -> vj9 where i?0, vl9.. .9vj denotes any of the 
other sequences. 

If u09 ul9..., uQ exhausts all nine vertices of T9 then cr=(u0 u±.. .w8) is an auto­
morphism of T. There is only one possibility remaining, namely, a(T) is imprimi­
tive with three blocks (see [7]), say {u0, ul9 u2}9 {u39 w4, w5}, and {u6, ul9 w8}. Every 
G e &UQ9 the stabilizer of u09 fixes u09 ul9 and w2. Suppose some a e aUQ moves one 
of the other vertices. Without loss of generality assume a(tt3)^u3. Then either 
a(t/3) = t/4 or a(w3)=H5 for otherwise a would contain an even cycle in its disjoint 
cycle decomposition which cannot happen. 

By considering what happens to the remaining vertices of T under any auto­
morphism containing the 3-cycle (w0, ul9 u2)9 we see that all arcs between two dis­
tinct 3-blocks must have the same orientation. Therefore, (t/0 w3 u6 ux w4 u7 u2 w5 w8) 
G a(T) and T is a rotation tournament. 

We may assume every veaUo fixes every vertex of T9 that is, l^uoHl which 
implies |^(7) |=9. To within isomorphism there are two transitive permutation 
groups of order nine in S9. One is cyclic and generated by a 9-cycle and, hence, 
corresponds to a rotation tournament. The other is generated by two permutations 
al9 C72, of the form a1 = (l 2 3)(4 5 6)(7 8 9) and a2 = (l 4 7)(2 5 8)(3 6 9). By using 
the process described in the addendum to [3] it can be shown that the latter permu­
tation group is not the automorphism group of a tournament of order nine. 
Therefore, every point-symmetric tournament of order nine is a rotation tourna­
ment. 

We now consider the point-symmetric tournaments of order fifteen. Let au 

denote the stabilizer of the vertex u in a point-symmetric tournament T of order 
fifteen. If the orbits of au are {u}9 (P(u)9 and J{u)9 then the transitive constituents of 
au [see 7] in (9{u) and J(u) must each contain a 7-cycle. Therefore, <0(w)> and 
<*/(«)> are both rotation tournaments of order seven of which there are two to 
within isomorphism. By considering the four possible cases for <$(«)> and <«/(w)> 
it can be shown through a tedious argument that it is impossible for the orbits of 
au to be {u}9 G(u)9 and J(u). Therefore, au fixes a point of either (9{u) or J{u). We 
assume without loss of generality that ^u fixes a point of 0(u) since T and T* have 
the same automorphism group where T* denotes the converse tournament of T. 

We proceed as before via some fixed point of 0(u) under &u. If a(T) is primitive, 
then T must be a rotation tournament. Otherwise there are three 5-blocks or five 
3-blocks. Suppose we have the blocks {ul9 w2> w 3 , 1 /4 , u5}9 {uQ9 U>J9 UQ9 Ug9 u10}9 and 
{ull9 u129 u139 ulé9 u15}. Let #i = <{wi, w2, ...,w5}>> £ 2 = <{w6, w7 , . . . , win}>, and 
#3 = <{wn> Wi2> • • • 5 w15}>. If any automorphism a e aUl9 the stabilizer of ul9 moves 
some vertex in Bx or B29 then following the argument used in the order nine case 
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we see that all arcs between two distinct i^'s must have the same orientation and, 
therefore, the permutation (u± u6 uxl u2 u7 u12.. .u5 u10 w15) e a(T). Now suppose 
we have the decomposition {uu u2, u3}, {w4, w5, u6}, {u7, w8, u9}, {u10, ulu u12}, and 
{w13, W14, Wi5} where each set of three vertices forms a 3-block in T. Notice that 
a(T) induces an odd order transitive permutation group on the five 3-blocks as 
the object set. Since no odd order transitive subgroup of S5 contains a 3-cycle, 
there is no a e a{T) that maps exactly three of the 3-blocks onto different 3-blocks. 
If any <reaUl moves some vertex in another 3-block, say a{u^u^ then by the 
preceding remark and the fact there are no even cycles appearing in the cycle 
decomposition of a, we have that o(u±) = u5 or u6 and all the arcs between <{wl5 u2, 
w3}> and <{w4, w5, w6}> have the same orientation. By examining o-'s action on the 
remaining three 3-blocks we see that all the arcs between two distinct 3-blocks 
have the same orientation. Thus there is a 15-cycle in a(T). Therefore, we are left 
with the case that \aUl\ = 1, i.e., \a(T)\ = 15. However, to within isomorphism there 
is only one transitive permutation group in S15 of order fifteen and it is generated 
by a 15-cycle. Therefore, every point-symmetric tournament of order fifteen is a 
rotation tournament. 

Consider the following three 7x7 matrices: 

TO 1 1 1 0 0 01 
0 0 1 1 1 0 0 
0 0 0 1 1 1 0 

Ax = | o 0 0 0 1 1 1 I, A2 = 
1 0 0 0 0 1 1 
1 1 0 0 0 0 1 
Li 1 1 0 0 0 0 

1 0 0 0 0 0 on 
0 0 1 0 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 0 1 
0 1 0 0 0 0 0 
0 0 0 1 0 0 0 
Lo 0 0 0 0 1 OJ 

i<a = 

0 
1 
1 
1 
1 
1 

1 
1 
0 
1 
1 
1 

1 1 
1 1 
1 ] 

1 ] 
0 ] 
1 ] 

[ 1 
I 0 

I 1 
[ 1 
L 1 
[ 1 

1 
1 
1 
0 
1 
1 0 

. 1 1 1 0 1 1 1 

by 
Let T be the tournament of order twenty-one whose incidence matrix is given 

M 
As 

A2 

A2 

A1 

As 

As 

A2 

Ai, 

The score sequence of <0(wi)> is (3, 3 4, 4, 4, 5, 5, 6, 7) and the four vertices 
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with score four form a transitive quadruple implying the automorphism group of 
<0(HI)> is the identity group. Similarly, the score sequence of <*/(wi)> is (2, 3, 4, 4, 
5, 5, 5, 5, 6, 6) and the four vertices with score five form a strongly connected 
quadruple implying the automorphism group of <*/(wi)> is the identity group. In 
particular, |^Ml| = l. 

It is easy to check that the two permutations 

V = (Wi W8 W15)(W2 W9 Wie). • .(W7 Wi4 W2i) 

and 
T = (U1U1UQU5UAUQU2)(UQU13U11UQU1^U12U1O)(U15U16U2IU11U2OU16U1Q) 

are in ̂ (T). Since ,4Wl={1}, the given permutations a and T, with T7 = a3 = 1, generate 
a group of order 21. Observing that (crr)(M1) = w14 while (Ta)(w1) = w13, we see that 
the group is non-abelian, hence non-cyclic, and, therefore, contains no element of 
order 21. Hence, T is an example of a point-symmetric tournament that is not a 
rotation tournament. 

An anti-automorphism of a tournament T is a mapping a of the vertex set of T 
onto itself satisfying (w, i?) G T if and only if (a(w), a(u)) £ T for every pair of distinct 
vertices u and v belonging to T. A tournament Tis said to be self-converse if it has 
an anti-automorphism, that is, if T~T*. 

PROPOSITION 3. A rotation tournament is self-converse. 

Proof. Let T be a rotation tournament with vertices u09 ul9..., w2n- The permu­
tation a defined by (̂Wi) = w2n-i + i is easily seen to be an anti-automorphism of T. 
Thusr-T*. 

An anti-automorphism of a tournament T composed with an automorphism of 
T results in an anti-automorphism of T. Therefore, if T is point-symmetric and 
self-converse, there exists an anti-automorphism of T that fixes any vertex one 
chooses. Let T denote the order twenty-one tournament exhibited above. If T is 
self-converse, there exists an anti-automorphism of T that maps 0(u) onto J{u) 
with the four vertices of score four in <0(w)> going onto the four vertices of score 
five in <«/(w)>. But since one quadruple is transitive and the other is strongly con­
nected we see that no such anti-automorphism exists. Therefore, T is not self-
converse. 

This suggests the following question: If T is a self-converse point-symmetric 
tournament, is Ta rotation tournament? 

3. Enumeration of rotation tournaments. We now consider the problem of 
enumerating the rotation tournaments of a given order. Let Cn denote the set of 
all symbols of the rotation tournaments of order 2n+1 so that \Cn\ =2n . For each 
integer m satisfying 1 < m < In + 1 with m and In +1 relatively prime define Pn>m by 
Pn.m(ty = mS={xx=mai(moà2n + \): l<ATi<2n} where SeCn. It is easy to see 
Pn,m is a permutation on Cn. The set of all such Pn#m form a permutation group, 
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call it Gn, acting on Cn. The number of orbits in Cn under the group Gn is given by 
the result [5, Theorem 3.21] 

^ + l ) I F ( i > n , m ) 

where F(Pntm) is the number of symbols fixed by Pn>m and <p denotes the Euler 
95-function. Denote the number of orbits by g(n). 

If S'=mS=Pn>rn(S), then the mapping TT defined on (uQ, uu..., u2n) by 
Tr{u^ = u'mi is an isomorphism between the tournaments corresponding to S and S'. 
Thus, g(n) gives us an upper bound for the number of non-isomorphic rotation 
tournaments of order 2n + \. The results obtained in [6] apply equally well to 
circulant tournament matrices so that in case In +1 is a prime we have that two 
rotation tournaments are isomorphic if and only if their corresponding symbols 
are in the same orbit. Theorem 1 then proves the following result. 

THEOREM 2. If2n + \ is a prime, then the number of non-isomorphic point-sym­
metric tournaments of order 2n + \ is 

g(2n+l) = ±yF(Pntm). 
LYl Gn 

Letting r(n) denote the number of non-isomorphic rotation tournaments of 
order 2n+l and t(n) denote the number of non-isomorphic point-symmetric 
tournaments of order 2n +1 we have the following table. 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g(n) 
1 
1 
2 
4 
4 
6 
16 
16 
30 
88 

K») 
1 
1 
2 
3 
4 
6 
16 
16 
30 

t(n) 
1 
1 
2 
3 
4 
6 
16 
16 
30 

REFERENCES 

1. B. Alspach, A class of tournaments, unpublished doctoral dissertation, University of 
California, Santa Barbara, 1966. 

2. —-, A combinatorial proof of a conjecture of Goldberg and Moon, Canad. Math. Bull. 
11 (1968), 655-661. 

3. M. Goldberg and J. W. Moon, On the maximum order of the group of a tournament, 
Canad. Math. Bull. 9 (1966), 563-569. 

https://doi.org/10.4153/CMB-1970-061-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1970-061-7


1970] ON POINT-SYMMETRIC TOURNAMENTS 323 

4. J. VV. Moon, Tournaments with a given automorphism group, Canad. J. Math. 16 (1964) 
485-489. 

5. J. Rotman, The theory of groups: An introduction, Allyn and Bacon, Boston, 1966. 
6. J. Turner, Point-symmetric graphs with a prime number of points, J. Comb. Theory 3 (1967), 

136-145. 
7. H. Wielandt, Finite permutation groups, Trans. R. Bercov, Academic Press, New York, 

1964. 

SIMON FRASER UNIVERSITY, 

BURNABY, BRITISH COLUMBIA 

https://doi.org/10.4153/CMB-1970-061-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1970-061-7

